JPH039116A - Automatic preload adjusting device for rolling bearing - Google Patents

Automatic preload adjusting device for rolling bearing

Info

Publication number
JPH039116A
JPH039116A JP1143353A JP14335389A JPH039116A JP H039116 A JPH039116 A JP H039116A JP 1143353 A JP1143353 A JP 1143353A JP 14335389 A JP14335389 A JP 14335389A JP H039116 A JPH039116 A JP H039116A
Authority
JP
Japan
Prior art keywords
preload
amount
bearing
rolling bearing
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1143353A
Other languages
Japanese (ja)
Inventor
Toru Takada
亨 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP1143353A priority Critical patent/JPH039116A/en
Publication of JPH039116A publication Critical patent/JPH039116A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/30Electric properties; Magnetic properties
    • F16C2202/36Piezoelectric

Landscapes

  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To perform optimum adjustments of the amount of preload by arranging electrostriction elements between a housing and a rolling bearing, and detecting the amount of preload to control voltages applied to the electrostriction elements. CONSTITUTION:A spacer sleeve 27 is inserted into a housing 11 against the end face of the front side of an outer ring 17a of a rear angular ball bearing 17 so that it can move in the axial direction. Plural cylindrical piezoelectric elements 29 are mounted between the other end face of the spacer sleeve 27 and the housing 11 in laminated state so as to generate an axial thrust. Lead wires 31 of the piezoelectric elements 29 are drawn out to the outside and connected to a DC amplifier 35. Further, a strain gage 37 is attached to the sleeve 27 in the direction where axial forces can be detected. Preload is given to the bearing 17 by extension of the piezoelectric element 29, and the strain gage 37 detects the amount of the preload to send a signal to an NC device 43. The NC device adjusts voltage applied to the piezoelectric elements 29 so that the preload reaches a specified amount of preload.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、工作機械の主軸、例えば研削盤の内研軸、マ
シニングセンタ、旋盤の主軸等に使用するころがり軸受
用自動予圧調整装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic preload adjustment device for a rolling bearing used in the main spindle of a machine tool, for example, the internal grinding shaft of a grinding machine, the main spindle of a machining center, or a lathe. be.

[従来技術] 一般に工作機械の主軸に使用される軸受はラジアル荷重
とスラスト荷重を受けるためアンギュラ−玉軸受又は円
錐ころ軸受等を用いて、これに予圧を付与して主軸の回
転精度や剛性を向上させている。しかしながら、予圧量
の設定が困難で、予圧量が大きすぎると高速回転時に軸
受の発熱が著しくなり、主軸の回転数の上昇と共に軸受
に多くの摩擦熱が発生し、この摩擦熱により主軸をはじ
め、軸受が膨張する。これが原因で主軸の軸受に強い押
圧が加わり、その結果さらに多量の摩擦熱が発生して悪
循環を引きおこし、工作機械の各部に複雑な熱歪が発生
して全体の精度を低下させる原因となる。又、主軸に振
動が発生したりあるいは最悪の場合には軸受の焼き付き
に至ることもある。
[Prior art] Bearings used for the main spindle of machine tools generally receive radial loads and thrust loads, so angular ball bearings or tapered roller bearings are used, and a preload is applied to them to improve the rotational accuracy and rigidity of the main spindle. Improving. However, it is difficult to set the amount of preload, and if the amount of preload is too large, the bearing will generate significant heat during high-speed rotation, and as the rotational speed of the main shaft increases, a lot of frictional heat will be generated in the bearing, and this frictional heat will affect the main shaft and other components. , the bearing expands. This causes strong pressure to be applied to the spindle bearing, which in turn generates even more frictional heat, creating a vicious cycle, causing complex thermal distortions in various parts of the machine tool, and reducing overall accuracy. . In addition, vibration may occur in the main shaft, or in the worst case, the bearing may seize.

今まではこの問題を解決するため油圧もしくはバネ圧を
利用した予圧調整装置が採用されていた。
Until now, preload adjustment devices using hydraulic pressure or spring pressure have been used to solve this problem.

【発明が解決しようとする課題] しかしながら、これらの方法では予圧量の制御に難点が
ある。そこで特開昭61−127922号に示されるよ
うに予圧手段として電歪素子を用い、軸受の温度変化を
検出して予圧調整を行う方法が提案されている。ところ
が、軸受の温度上昇が予圧に起因するものか、他の原因
によるものかの判断が困難であるだけでなく、運転条件
に応じた適切な予圧量を与える制御が困難である。さら
に電歪素子に与えられる電力と電歪素子の伸縮量の関係
にはばらつきがあるため、正確な予圧を与えることが困
難である等の問題点があった。
[Problems to be Solved by the Invention] However, these methods have a difficulty in controlling the amount of preload. Therefore, as shown in JP-A-61-127922, a method has been proposed in which an electrostrictive element is used as the preload means and the preload is adjusted by detecting temperature changes in the bearing. However, it is not only difficult to determine whether the temperature rise in the bearing is due to preload or other causes, but also difficult to control the bearing to provide an appropriate amount of preload depending on the operating conditions. Further, since there are variations in the relationship between the electric power applied to the electrostrictive element and the amount of expansion and contraction of the electrostrictive element, there have been problems such as difficulty in applying an accurate preload.

本発明は、上述した問題点を解決するためになされたも
のであり、適切な予圧量を軸受に与えることのできるこ
ろがり軸受用自動予圧調整装置を提供することを目的と
している。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an automatic preload adjustment device for a rolling bearing that can apply an appropriate amount of preload to the bearing.

[課題を解決するための手段] この目的を達成するために本発明のころがり軸受用自動
予圧調整装置は、ハウジングところがり軸受との間に配
置された電歪素子と、その電歪素子により与えられた予
圧量を検出するための予圧量検出手段と、その予圧量検
出手段により検出された予圧量に基いて前記電歪素子へ
の印加電圧若しくは電流壱制御する制御手段とを備えて
いる。
[Means for Solving the Problems] In order to achieve this object, the automatic preload adjustment device for a rolling bearing of the present invention includes an electrostrictive element disposed between the housing and the rolling bearing, and an electrostrictive element provided by the electrostrictive element. The electrostrictive element includes a preload amount detection means for detecting the preload amount detected by the preload amount detection means, and a control means for controlling the voltage or current applied to the electrostrictive element based on the preload amount detected by the preload amount detection means.

[作用] 上記の構成を有する本発明のころがり軸受用自動予圧調
整装置においては、電歪素子に所定の電圧若しくは電流
が印加されると、ころがり軸受に所定の予圧量が与えら
れ、その予圧量が予圧量検出手段により検出される。そ
の予圧量検出手段により検出された予圧量に基いて、制
御手段によって前記電歪素子への印加電圧若しくは電流
が制御され、予圧量が最適に調整される。
[Function] In the automatic preload adjustment device for a rolling bearing of the present invention having the above configuration, when a predetermined voltage or current is applied to the electrostrictive element, a predetermined amount of preload is applied to the rolling bearing, and the amount of preload is is detected by the preload amount detection means. Based on the preload amount detected by the preload amount detection means, the voltage or current applied to the electrostrictive element is controlled by the control means, and the preload amount is optimally adjusted.

[実施例〕 以下、本発明を具体化した一実施例を図面を参照して説
明する。
[Example] Hereinafter, an example embodying the present invention will be described with reference to the drawings.

第1図において工作機械の主軸1を支承する前部アンギ
ュラ玉軸受3,5のそれぞれの外輪3a。
In FIG. 1, outer rings 3a of front angular contact ball bearings 3 and 5 that support the main shaft 1 of a machine tool.

5aが間にスペーサースリーブ7をはさんで前蓋9に押
圧されてハウジング11に軸方向に固定されている。内
輪3b、5bが間にスペーサースリーブ13をはさんで
ロックナツト15によって主軸1に軸方向に固定されて
いる。
5a is pressed against the front cover 9 and fixed to the housing 11 in the axial direction with a spacer sleeve 7 in between. Inner rings 3b and 5b are axially fixed to main shaft 1 with a lock nut 15 with a spacer sleeve 13 in between.

また前記主軸1を支承する後部アンギュラ玉軸受17.
19のそれぞれの外輪17a、19aが間にスペーサー
スリーブ21をはさんで軸方向に移動可能にハウジング
11に挿入され、内輪17b、19bが間にスペーサー
スリーブ23をはさんでロックナツト25によって主軸
1に軸方向に固定されている。さらに、前記後部アンギ
ュラ玉軸受17の外輪17aの前側端面に接してスペー
サースリーブ27がハウジング11内で軸方向に移動可
能に取り付けられ、スペーサースリーブ27のもう一方
の端面とハウジング11との間には円筒状のピエゾ素子
29が複数個軸方向に積層されて取り付けられ軸方向に
推力を発生するように構成されている。ピエゾ素子29
のリード線31はそれぞれ並列に接続されてハウジング
11に設けられた配線孔33より外部に取り出され、駆
動用のDCアンプ35に接続されている。また、スペー
サースリーブ27には歪ゲージ37が第2図に示すよう
に軸方向に加えられた力を検出可能な方向に取り付けら
れ、そのリード線39は配線孔33より取り出されてア
ンプ41に接続されている。前記アンプ35.41はN
C装置43に接続され、各指令又は入力がなされる。
Also, a rear angular contact ball bearing 17 supporting the main shaft 1.
The outer rings 17a and 19a of the 19 are inserted into the housing 11 so as to be movable in the axial direction with a spacer sleeve 21 in between, and the inner rings 17b and 19b are connected to the main shaft 1 with a lock nut 25 with a spacer sleeve 23 in between. Fixed in the axial direction. Furthermore, a spacer sleeve 27 is attached movably in the axial direction within the housing 11 in contact with the front end surface of the outer ring 17a of the rear angular contact ball bearing 17, and between the other end surface of the spacer sleeve 27 and the housing 11. A plurality of cylindrical piezo elements 29 are stacked and attached in the axial direction, and are configured to generate thrust in the axial direction. Piezo element 29
The lead wires 31 are connected in parallel and taken out from a wiring hole 33 provided in the housing 11, and connected to a driving DC amplifier 35. Further, a strain gauge 37 is attached to the spacer sleeve 27 in a direction that can detect the force applied in the axial direction as shown in FIG. 2, and its lead wire 39 is taken out from the wiring hole 33 and connected to the amplifier 41. has been done. The amplifier 35.41 is N
It is connected to the C device 43, and each command or input is made.

本実施例は以上のように構成され、次にその作用を説明
する。
The present embodiment is constructed as described above, and its operation will be explained next.

ピエゾ素子29の伸長によって発生する軸方向の力は、
スペーサースリーブ27を介して後部アンギュラ玉軸受
17.19の外輪17a、f9gに伝わり、軸受に予圧
が与えられる。予圧量はスペーサースリーブ27に取り
付けられた歪ゲージ37により検出され、その信号がア
ンプ41に送られ、アンプ41からの信号はNC装置4
3に送られる。所定の予圧量に達していない場合はNC
装置43よりDCアンプ35に印加電圧を高める信号が
送られ、DCアンプ35からそれに応じた印加電圧がピ
エゾ素子29に加えられ、ピエゾ素子29が伸長して予
圧量が増す。逆に予圧量が大きい場合には、NC装置4
3よりDCアンプ35に印加電圧を低める信号が送られ
、DCアンプ35からピエゾ素子29に加えられる印加
電圧は低下する。
The axial force generated by the expansion of the piezo element 29 is
The pressure is transmitted to the outer rings 17a and f9g of the rear angular contact ball bearings 17.19 via the spacer sleeve 27, and preload is applied to the bearings. The amount of preload is detected by the strain gauge 37 attached to the spacer sleeve 27, and its signal is sent to the amplifier 41, and the signal from the amplifier 41 is sent to the NC device 4.
Sent to 3. NC if the specified preload amount has not been reached.
A signal to increase the applied voltage is sent from the device 43 to the DC amplifier 35, and a corresponding applied voltage is applied from the DC amplifier 35 to the piezo element 29, causing the piezo element 29 to expand and increase the amount of preload. Conversely, if the preload amount is large, the NC device 4
3 sends a signal to lower the applied voltage to the DC amplifier 35, and the applied voltage applied from the DC amplifier 35 to the piezo element 29 is lowered.

さらには温度センサー45が後部アンギュラ玉軸受17
の外輪17a近傍に取り付けられて軸受の温度信号をN
C装置43に送っている。従って軸受の温度上昇を監視
しながら、加工状況に応じて予圧量の制御を行い、軸受
温度が上昇した場合、予圧量を低下させる様にする制御
も可能である。
Furthermore, the temperature sensor 45 is mounted on the rear angular ball bearing 17.
The temperature signal of the bearing is N
It is sent to C device 43. Therefore, it is also possible to control the amount of preload according to the machining situation while monitoring the temperature rise of the bearing, and to reduce the amount of preload when the bearing temperature rises.

本実施例においては、電歪素子29を円筒状の形状とし
たので、軸受に均一に予圧を与えることができる。
In this embodiment, since the electrostrictive element 29 has a cylindrical shape, it is possible to uniformly apply preload to the bearing.

また、予圧量を検出する歪ゲージをスペーサースリーブ
に取付けたので、軸受の精度、剛性に影響を及ぼすこと
なく予圧量の検出を行うことができる。
Furthermore, since the strain gauge for detecting the amount of preload is attached to the spacer sleeve, the amount of preload can be detected without affecting the accuracy and rigidity of the bearing.

[発明の効果] 以上詳述したことから明らかなように、本発明によれば
、電歪素子の伸縮作用を用いて所定の予圧量を軸受に与
え、その予圧量を検出して電歪素子に与える印加電圧を
フィードバック制御しているため、予め定められた予圧
量の正確な制御ができる等の効果を有する。
[Effects of the Invention] As is clear from the detailed description above, according to the present invention, a predetermined amount of preload is applied to the bearing using the expansion and contraction action of the electrostrictive element, and the amount of preload is detected and the electrostrictive element Since the applied voltage is feedback-controlled, the predetermined amount of preload can be accurately controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明を具体化した実施例を示すも
ので、第1図は主軸軸受部の断面図、第2図はスペーサ
ースリーブへの歪ゲージの取り付は状態を拡大して示す
説明図である。 図中、3,5は前部アンギュラ玉軸受、17゜19は後
部アンギュラ玉軸受、27はスペーサースリーブ、29
はピエゾ素子、37は歪ゲージである。
Figures 1 and 2 show an embodiment embodying the present invention. Figure 1 is a sectional view of the main shaft bearing, and Figure 2 is an enlarged view of how the strain gauge is attached to the spacer sleeve. FIG. In the figure, 3 and 5 are front angular contact ball bearings, 17°19 is a rear angular contact ball bearing, 27 is a spacer sleeve, 29
is a piezo element, and 37 is a strain gauge.

Claims (1)

【特許請求の範囲】 1、一軸線を中心に回転可能な回転軸(1)を支承する
ころがり軸受に予圧を与え、その予圧量を自動的に調整
するころがり軸受用自動予圧調整装置において、 ハウジング(11)と前記ころがり軸受との間に配置さ
れ、印加される電圧若しくは電流に応じて変位されて所
定の予圧量を与えるための電歪素子(29)と、 その電歪素子(29)により与えられた予圧量を検出す
るための予圧量検出手段(37)と、その予圧量検出手
段(37)により検出された予圧量に基いて前記電歪素
子(29)への印加電圧若しくは電流を制御する制御手
段(43)とを備えていることを特徴とするころがり軸
受用自動予圧調整装置。
[Claims] 1. An automatic preload adjustment device for a rolling bearing that applies preload to a rolling bearing that supports a rotating shaft (1) rotatable about one axis and automatically adjusts the amount of preload, comprising: a housing; (11) and an electrostrictive element (29) disposed between the rolling bearing and displaced in accordance with applied voltage or current to provide a predetermined amount of preload; A preload amount detection means (37) for detecting the given preload amount, and a voltage or current applied to the electrostrictive element (29) based on the preload amount detected by the preload amount detection means (37). An automatic preload adjustment device for a rolling bearing, characterized in that it is equipped with a control means (43) for controlling.
JP1143353A 1989-06-06 1989-06-06 Automatic preload adjusting device for rolling bearing Pending JPH039116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143353A JPH039116A (en) 1989-06-06 1989-06-06 Automatic preload adjusting device for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143353A JPH039116A (en) 1989-06-06 1989-06-06 Automatic preload adjusting device for rolling bearing

Publications (1)

Publication Number Publication Date
JPH039116A true JPH039116A (en) 1991-01-17

Family

ID=15336814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143353A Pending JPH039116A (en) 1989-06-06 1989-06-06 Automatic preload adjusting device for rolling bearing

Country Status (1)

Country Link
JP (1) JPH039116A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750124A2 (en) * 1995-06-21 1996-12-27 The Torrington Company Preload adjustment apparatus and method
EP1134443A3 (en) * 2000-03-15 2003-01-02 Umbra Cuscinetti S.p.A. A device for measuring and adjusting preloading on bearings
WO2005003579A1 (en) * 2003-06-26 2005-01-13 Honeywell International Inc. Piezodynamic preload adjustment system
DE102005027082A1 (en) * 2005-06-11 2006-12-14 Daimlerchrysler Ag Bearing device for e.g. differential gear in motor vehicle, has fastening device with intermediate unit, which enables change of axial pre-stressing of roller bearings through load-sensitive change of its thickness measurement
DE102010019677A1 (en) * 2009-09-24 2011-09-29 Jens Mehnert Method and apparatus for conditioning bearing systems for shafts
JP2012147666A (en) * 2012-03-02 2012-08-02 Nsk Ltd Shaft direction micromotion mechanism with rolling mechanism and positioning device using the same
WO2012174762A1 (en) * 2011-06-20 2012-12-27 西安交通大学 Non-uniform-distribution pretightening-force-controllable high-speed main shaft based on piezoelectric actuator and control method thereof
US10293481B1 (en) 2016-12-14 2019-05-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Relative deflection detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750124A2 (en) * 1995-06-21 1996-12-27 The Torrington Company Preload adjustment apparatus and method
EP0750124A3 (en) * 1995-06-21 1998-06-03 The Torrington Company Preload adjustment apparatus and method
EP1134443A3 (en) * 2000-03-15 2003-01-02 Umbra Cuscinetti S.p.A. A device for measuring and adjusting preloading on bearings
WO2005003579A1 (en) * 2003-06-26 2005-01-13 Honeywell International Inc. Piezodynamic preload adjustment system
DE102005027082A1 (en) * 2005-06-11 2006-12-14 Daimlerchrysler Ag Bearing device for e.g. differential gear in motor vehicle, has fastening device with intermediate unit, which enables change of axial pre-stressing of roller bearings through load-sensitive change of its thickness measurement
DE102010019677A1 (en) * 2009-09-24 2011-09-29 Jens Mehnert Method and apparatus for conditioning bearing systems for shafts
WO2012174762A1 (en) * 2011-06-20 2012-12-27 西安交通大学 Non-uniform-distribution pretightening-force-controllable high-speed main shaft based on piezoelectric actuator and control method thereof
JP2012147666A (en) * 2012-03-02 2012-08-02 Nsk Ltd Shaft direction micromotion mechanism with rolling mechanism and positioning device using the same
US10293481B1 (en) 2016-12-14 2019-05-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Relative deflection detector

Similar Documents

Publication Publication Date Title
KR0159916B1 (en) Workpiece holder for rotary grinding machines for grinding semiconductor wafers and method of positioning the workpiece holder
US6446339B2 (en) Preloading method for preload-adjustable rolling bearing
US6394657B1 (en) Preloading method for preload-adjustable rolling bearing and manufacture of the same
JP2696853B2 (en) Honing equipment
JPH02276938A (en) Equipment for adjusting axial preload of roller bearing or spindle nut
CN108620948B (en) Detection compensation control system for air static pressure main shaft
US8900034B2 (en) Machine tool and machining method
GB2123218A (en) System for controlling the torque of an auxiliary drive
US20020076127A1 (en) Active piezoelectric spindle bearing preload adjustment mechanism
JPH039116A (en) Automatic preload adjusting device for rolling bearing
JPH01222851A (en) Method for detecting thrust force of main spindle of machine tool
CN108856739B (en) Control device, system, method and device for automatically adjusting pre-tightening force of main shaft system
US5820272A (en) Bearing structure for a rotating shaft
JP5209446B2 (en) Tailstock control device
JPH0825106A (en) Pre-load adjusting device for bearing
JPH0835520A (en) Preload adjusting device for main shaft bearing
GB2279999A (en) Preloaded ball bearing
JP2509747Y2 (en) Variable preload spindle unit
JPH09108903A (en) Pre-load variable spindle
JPH0533772Y2 (en)
JP2001207324A (en) Godet
JP4201553B2 (en) Material guide device and automatic lathe
KR100198362B1 (en) Device for automatic pre-loading on a bearing
JPH0488206A (en) Pre-load device for bearing
KR101404797B1 (en) Apparatus for bearing preloads in spindle assembly