JPH0390839A - Method and instrument for measuring turbidity - Google Patents
Method and instrument for measuring turbidityInfo
- Publication number
- JPH0390839A JPH0390839A JP1224653A JP22465389A JPH0390839A JP H0390839 A JPH0390839 A JP H0390839A JP 1224653 A JP1224653 A JP 1224653A JP 22465389 A JP22465389 A JP 22465389A JP H0390839 A JPH0390839 A JP H0390839A
- Authority
- JP
- Japan
- Prior art keywords
- water
- density
- calculated
- turbidity
- water pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 86
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 239000007787 solid Substances 0.000 claims description 18
- 238000000691 measurement method Methods 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 abstract description 6
- 238000009434 installation Methods 0.000 abstract description 5
- 239000013505 freshwater Substances 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 4
- 230000001133 acceleration Effects 0.000 abstract description 3
- 238000011109 contamination Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract 2
- 239000013049 sediment Substances 0.000 description 13
- 239000013078 crystal Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 101100220842 Schizosaccharomyces pombe (strain 972 / ATCC 24843) clp1 gene Proteins 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000025508 response to water Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Control Of Water Turbines (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、水の濁り具合をハ1定する濁度計測方法お
よび濁度計測装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a turbidity measuring method and a turbidity measuring device for determining the degree of turbidity of water.
(従来の技術)
周知のように、水力発電用・飲料水用などの貯水池には
、雨水とともに浮遊土砂が流入する。(Prior Art) As is well known, suspended sediment flows into reservoirs for hydroelectric power generation, drinking water, etc. along with rainwater.
ところが、水力発電所でそうした浮遊土砂がかなり多く
含まれた状態の濁水をそのまま取水すると、浮遊土砂は
水路や沈砂池に堆積して水流を妨げるばかりでなく、水
車や導管などを著しく損傷させることになる。However, when a hydroelectric power plant directly takes in turbid water that contains a considerable amount of suspended sediment, the suspended sediment not only accumulates in waterways and settling basins and obstructs water flow, but also seriously damages water turbines and conduits. become.
このため、現段階においては、水力発電所では、大雨な
どによる河川の流入土砂が増加した場合には、河川の流
量を参考にして取水量を制御することでその対策として
いる。For this reason, at present, hydroelectric power plants are taking countermeasures against increased sediment inflow into rivers due to heavy rain, etc. by controlling the amount of water intake by referring to the flow rate of the river.
しかしながら、河川の流量からは貯水池に流入する浮遊
土砂を正確に推定することができないので、実際には、
前述した浮遊土砂による水車の損傷などを防止する対策
としては極めて不十分であった。However, since it is not possible to accurately estimate suspended sediment flowing into a reservoir from the river flow rate, in reality,
This was extremely insufficient as a measure to prevent damage to water turbines caused by the aforementioned suspended sediment.
一方、飲料水用の貯水池においても、濁水の流入は貯水
池内の水を著しく汚染するので、その迅速な放流が望ま
れているが、この種の貯水池では、表層と深層との温度
差、浮遊土砂の濃度差があって、濁水の分布が正確に把
握できないので、発電所と同様にその対策に苦慮してい
るのが実状で(る。On the other hand, even in reservoirs for drinking water, the inflow of turbid water significantly pollutes the water in the reservoir, so prompt release is desired. Because there are differences in the concentration of soil and sand, and the distribution of turbid water cannot be accurately determined, the reality is that, like power plants, we are struggling to find countermeasures.
このような問題に対しては12例えば、貯水池(濁り具
合を、1jllJ定し、そのJIIJ定値に基づいて取
水−放流を制御すれば簡単に解決できるように思わする
が、従来から用いられている濁度計測方法お。It seems that such a problem can be easily solved by, for example, determining the degree of turbidity in a reservoir (1JllJ) and controlling the water intake and discharge based on that JIIJ fixed value, but this method has been used conventionally. Turbidity measurement method.
び濁度計OI装置には、特に、前述した如き用途1適用
する際に以下に説明する技術的課題があっ〕(発明が解
決しようとする課題)
すなわち、従来から提供されている濁度計DJ’置とし
ては、現場から採取した試料水中に含ま4ている浮遊土
砂を濾紙や遠心分離機で分離し、5離された浮遊土砂を
衡量して、室内試験により3度を求める方法と、試料水
に光線を投射し、そ6透過光ないしは散乱光の強度を測
定して、濁度シ求める方法とがある。The turbidity meter OI device has the following technical problems, particularly when applied to Application 1 as described above (problem to be solved by the invention). For DJ'ing, the suspended sediment contained in sample water taken from the site is separated using filter paper or a centrifuge, the separated suspended sediment is weighed, and the temperature is determined by a laboratory test. One method is to project a light beam onto the sample water and measure the intensity of the transmitted light or scattered light to determine the turbidity.
しかしながら、前者の濁度測定方法では、玉石に浮遊土
砂量を測定できるが、現位置でのリアツタイムでの測定
ができないので、前述した貯水ンの取水ないしは放水制
御に採用することができノい。However, although the former turbidity measurement method can measure the amount of suspended sediment on cobblestones, it cannot be measured in real time at the current location, so it cannot be used for the water intake or water discharge control described above.
一方、後者の濁度測定方法では、現位置でリアルタイム
に測定することができるが、水中に設置したままにして
おくと、土砂の堆積や付着などがあって、長時間の連続
測定では、これらの除去が必要になり、測定機器の保守
、管理が面倒な上に、浮遊土砂の色彩によって測定誤差
が大きく、しかも、測定レンジが狭く、多量の浮遊土砂
が含まれた濁度の測定には不向きであった。On the other hand, with the latter method of measuring turbidity, it is possible to measure in real time at the current location, but if the turbidity is left underwater, there will be sediment accumulation and adhesion. The maintenance and management of the measuring equipment is troublesome, and the color of suspended sediment causes large measurement errors.Moreover, the measurement range is narrow, making it difficult to measure turbidity that contains a large amount of suspended sediment. It was not suitable.
この発明は、このような従来の問題点に鑑みてなされた
ものであり、その目的とするところは、現位置でのリア
ルタイムでの連続測定および広範囲に亘る測定が、容易
な保守、管理の下に行える濁度計測方法および濁度計測
装置を提供することにある。This invention was made in view of these conventional problems, and its purpose is to enable continuous measurement at the current location in real time and measurement over a wide range under easy maintenance and management. An object of the present invention is to provide a turbidity measuring method and a turbidity measuring device that can be used to measure turbidity.
(課題を解決するための手段)
上記目的を達成するために、本発明にかかる濁度計測方
法は、測定対象位置の深度、水圧、水温をそれぞれ測定
し、これらの各測定値と標準水密度とから浮遊物質の混
入による密度増加量を求め、この密度増加量の大きさに
より濁度を決定することを特徴とする。(Means for Solving the Problems) In order to achieve the above object, the turbidity measurement method according to the present invention measures the depth, water pressure, and water temperature at the measurement target position, and uses these measured values and standard water density. The method is characterized in that the amount of increase in density due to the mixing of suspended solids is determined from the above, and the turbidity is determined based on the amount of increase in density.
また、本発明にかかる濁度計測装置は、低値の深度に設
置された水圧計と、水温を測定する温度計と、前記水圧
計の測定値と、前記温度計の測定値における標準水密度
とから浮遊物質の混入による密度増加量を演算する演算
装置とを有することを特徴とする。Further, the turbidity measuring device according to the present invention includes a water pressure gauge installed at a low depth, a thermometer for measuring water temperature, a measured value of the water pressure gauge, and a standard water density in the measured value of the thermometer. and an arithmetic device that calculates the amount of increase in density due to the mixing of suspended solids.
(発明の作用効果〉
上記構成の濁度計測方法および装置によれば、水中に水
圧計と温度計とを設置し、これらの測定値と標準水密度
とから浮遊物質の混入による密度増加量を演算して、水
の濁り具合を求めるので、現位置でのリアルタイムでの
連続測定が可能になる。(Operations and Effects of the Invention) According to the turbidity measuring method and device configured as described above, a water pressure gauge and a thermometer are installed in water, and the amount of increase in density due to the mixing of suspended solids is calculated from these measured values and the standard water density. Since the degree of turbidity of the water is determined by calculation, continuous measurement in real time at the current location is possible.
また、水圧計は、一般に、液密構造になっているので、
浮遊土砂の堆積、付着による影響がなく、保守、管理も
ほとんど必要にならない。In addition, water pressure gauges generally have a liquid-tight structure, so
There is no influence from the accumulation or adhesion of suspended sediment, and almost no maintenance or management is required.
さらに、水圧計は各種の測定レンジを有するものがある
ので、測定対象水に含まれている浮遊物質の量に応じて
これを適宜選択することにより、広範囲の濁度を測定す
ることができる。Furthermore, since some water pressure gauges have various measurement ranges, turbidity can be measured over a wide range by appropriately selecting one according to the amount of suspended solids contained in the water to be measured.
(実施例)
以下、この発明の好適な実施例について添付図面を参照
にして詳細に説明する。(Embodiments) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
まず、本発明の具体的な実施例を説明する前に、本発明
の測定方法の原理について説明する。First, before describing specific examples of the present invention, the principle of the measuring method of the present invention will be explained.
第1図は、本発明の測定方法の原理説明図であって、同
図において、水深り点の水圧をP、とすると、同点にお
ける流水の単位重量:γ は次の式%式%
一方、流水の密度ρ は、重力加速度をgとす■
ると次の式で示される。FIG. 1 is an explanatory diagram of the principle of the measuring method of the present invention. In the figure, when the water pressure at the water depth point is P, the unit weight of flowing water at the same point: γ is expressed by the following formula % formula % On the other hand, The density ρ of flowing water is expressed by the following formula, where g is the gravitational acceleration.
ρ −γ 7g・・・・・・■
v v
いま、流水の密度ρ に対して、浮遊物質の混人による
増加分をΔρとし、流水と同温度における清水の密度を
ρ、とすると
Δρ−ρ −ρ・・・・・・・■
v v
となり、水深り、水圧P、水温がそれぞれ解れば、これ
らの値から浮遊物質の混入による流水密度の増加分Δρ
が演算でき、増加分Δρの大きさにより流水の濁り具合
を定量的に測定できることになる。ρ −γ 7g・・・・・・■ v v Now, let Δρ be the increase in suspended solids due to mixing with the density ρ of flowing water, and let ρ be the density of fresh water at the same temperature as the flowing water, then Δρ− ρ −ρ・・・・・・■ v v If the water depth, water pressure P, and water temperature are known, then from these values, the increase in flowing water density due to the mixing of suspended matter Δρ
can be calculated, and the degree of turbidity of the flowing water can be quantitatively measured based on the size of the increase Δρ.
一方、浮遊物質の粒子密度をp とすると、流水単位体
積中の浮遊物質f1mは以下の式で示される。On the other hand, when the particle density of suspended solids is p, the suspended solids f1m in a unit volume of flowing water is expressed by the following formula.
m■ρ ×V
S S
−ρ × (ρ −ρ 、)XV/(ρ −ρ、
)s v v
s w−ρ
×Δρ/(ρ −ρ5 )・・・・・・■S
S v■ =
単位体積の流水において浮遊物質の占める体積
V二単位体積
ここで、浮遊物質粒子密度ρ は、同一測定地点ではほ
ぼ一定であると考えられるため、流水単位体積中の浮遊
物質量mは、浮遊物質混入による流水密度増加分Δρと
強い一次の正の相関関係があることになり、上記■式は
次のように近似できる。m■ρ ×V S S −ρ × (ρ −ρ ,)XV/(ρ −ρ,
)s v v
s w−ρ
×Δρ/(ρ −ρ5)・・・・・・■S
S v■ =
Volume occupied by suspended solids in a unit volume of flowing water V2 Unit volume Here, since the suspended solid particle density ρ is considered to be approximately constant at the same measurement point, the amount of suspended solids m in a unit volume of flowing water is There is a strong first-order positive correlation with the flow water density increase Δρ due to contamination, and the above equation (2) can be approximated as follows.
m−kX Δρ・・・・・・■
これにより、例えば、本発明の測定により得られるΔρ
と、現地採水による浮遊物質量分析結果とを比較してk
を設定するか、あるいは、浮遊粒子物質密度を実際に測
定してkを設定しておけば、Δρから流水の単位体積中
の浮遊物質質量mを求めることもできる。m-kX Δρ・・・■■ Thereby, for example, Δρ obtained by the measurement of the present invention
and the results of suspended solids analysis obtained from on-site water sampling.
Alternatively, by actually measuring the density of suspended particulate matter and setting k, the mass m of suspended matter in a unit volume of flowing water can be determined from Δρ.
第2図から第4図は、この発明にかかる濁度計測装置の
一実施例を示している。2 to 4 show an embodiment of the turbidity measuring device according to the present invention.
同図に示す濁度測定装置は、貯水池10の深度h1およ
びh2に設置された2つの水圧計12゜14と、水圧計
12.14の設置位置の水温を測定する2つの温度計1
6.18と、これらの各計器の出力が人力される演算装
置20とから構成されている。The turbidity measuring device shown in the figure includes two water pressure gauges 12.14 installed at depths h1 and h2 of the reservoir 10, and two thermometers 12 and 14 for measuring the water temperature at the installation positions of the water pressure gauges 12 and 14.
6.18, and an arithmetic unit 20 through which the outputs of these instruments are input manually.
第3図は、上記水圧計12.14の一例を示している。FIG. 3 shows an example of the water pressure gauge 12.14.
同図に示す水圧計12.14は、いわゆる水晶式の水圧
計であって、ケース22の下端にはフィルタが装着され
るとともに、ケース22内のほぼ中心には水晶センサー
26が内蔵されている。The water pressure gauges 12 and 14 shown in the figure are so-called crystal type water pressure gauges, and a filter is attached to the lower end of the case 22, and a crystal sensor 26 is built in approximately the center of the case 22. .
水晶センサー26の一端には、中心部に支点を持つ偏位
伝達部材28が一端側が固設され、この偏位伝達部材2
8の支点を挟んだ他端側には、−端が枠体30に固定さ
れた一対のベローズ32゜34が対向するように配置さ
れている。One end of a deflection transmitting member 28 having a fulcrum in the center is fixed to one end of the crystal sensor 26.
A pair of bellows 32 and 34 whose negative ends are fixed to the frame body 30 are arranged opposite to each other on the other end side with the fulcrum of the bellows 8 in between.
上部側のベローズ32は、大気解放チューブ36を介し
て大気に解放され、下部側のベローズ34は、水圧伝達
用チューブ38を介してフィルタ24に接続されている
。The bellows 32 on the upper side is released to the atmosphere via an atmosphere release tube 36, and the bellows 34 on the lower side is connected to the filter 24 via a water pressure transmission tube 38.
このように構成された水圧計12.14では、水深の変
化に伴なう水圧の変化は、水圧伝達チューブ38を介し
て下部側のベローズ34に伝達され、このときベローズ
34の下端が枠体30に固定されているのでその上端の
みが水圧に応じて伸縮し、この伸縮が偏位伝達部材28
を介して水晶センサー26に加えられ、水晶センサ26
に歪みが生じる。In the water pressure gauge 12.14 configured in this way, changes in water pressure due to changes in water depth are transmitted to the bellows 34 on the lower side via the water pressure transmission tube 38, and at this time, the lower end of the bellows 34 is connected to the frame body. 30, only its upper end expands and contracts in response to water pressure, and this expansion and contraction causes the deflection transmitting member 28 to expand and contract.
is added to the crystal sensor 26 via the crystal sensor 26
distortion occurs.
水晶センサー26に歪みが加えられると、その発振周波
数が変化するので、その周波数変化を水圧に換算する。When distortion is applied to the crystal sensor 26, its oscillation frequency changes, so the frequency change is converted into water pressure.
このとき、上部側のベローズ32は、チューブ36を介
して大気に解放されているので、高気圧や低気圧による
大気圧力の変動を感知して、水面に加わる大気圧の変化
による水圧への影響を消去する。At this time, the bellows 32 on the upper side is open to the atmosphere via the tube 36, so it can sense changes in atmospheric pressure due to high pressure or low pressure, and prevent the influence of atmospheric pressure changes on the water surface on the water pressure. to erase.
一方、上記演算装置20は、水圧計12.14および温
度計16.18からの人力信号を、デジタル信号に変換
する変換器20aと、変換器20aからの信号を受けて
これを演算処理する演算器20bとから構成されている
。On the other hand, the arithmetic unit 20 includes a converter 20a that converts human power signals from the water pressure gauge 12.14 and the thermometer 16.18 into digital signals, and an arithmetic operator that receives and processes signals from the converter 20a. It is composed of a container 20b.
演算器20bで実行される処理手順の概要を第4図に示
しており、処理手順では、まず、ステップS1で水圧計
12.14の既知の設置深度hl。An outline of the processing procedure executed by the computing unit 20b is shown in FIG. 4. In the processing procedure, first, in step S1, the known installation depth hl of the water pressure gauge 12.14 is determined.
h2およびこれらの出力信号P1.P2および温度計1
6.18の出力信号Tl、T2が変換器20gを介して
取込まれる。h2 and these output signals P1. P2 and thermometer 1
6.18 output signals Tl, T2 are taken in via a converter 20g.
次いで、ステップS2で水圧計12と同14との設置位
置間の間隔l、および水圧差ΔP−P2−PLが計算さ
れ、ステテップS3でこれらの各計算値から前述した式
■に基づいて、流水の単位体積重量γ が演算される。Next, in step S2, the distance l between the installation positions of the water pressure gauges 12 and 14, and the water pressure difference ΔP-P2-PL are calculated, and in step S3, the flow rate is calculated based on the above-mentioned formula (2) from each of these calculated values. The unit volume weight γ of is calculated.
V
ステップS4では、T2℃における清水の密度ρ、が演
算されるとともに、γ を重力加速度gV
ν
で除して流水の密度ρ が計算される。V In step S4, the density of fresh water ρ at T2°C is calculated, and γ is expressed as the gravitational acceleration gV
ν
The density of flowing water, ρ, is calculated by dividing by .
ν
なお、この場合、清水の温度に対する密度変化は良く知
られているので、これ予め記憶させておいても良い。ν In this case, since the change in density of fresh water with respect to temperature is well known, it may be stored in advance.
続くステップS5では、前述した式■に基づいて、浮遊
物質混入による密度均加分Δρが演算され、処理手順が
終了する。In the subsequent step S5, the density uniformity Δρ due to the mixing of suspended substances is calculated based on the above-mentioned formula (2), and the processing procedure is completed.
ここで、例えば、現地採水により浮遊物質分析を行って
、前述した式■における定数kを予め設定しておけば、
ステップS5の結果に基づいて浮遊物質ff1mを求め
ることももちろん可能である。Here, for example, if the constant k in the above-mentioned formula (■) is set in advance by conducting suspended solids analysis using on-site water sampling, then
Of course, it is also possible to obtain the suspended solids ff1m based on the result of step S5.
さて、以上のように構成された本発明の濁度測定装置で
は、現位置でのリアルタイムでの連続測定が可能になる
。Now, with the turbidity measuring device of the present invention configured as described above, continuous measurement in real time at the current location is possible.
また、本発明者らの実験によると、浮遊物質量200
pp−前後の低濃度から敵方111plに亘る高濃度ま
での自動測定ができることが確認されている。In addition, according to experiments by the present inventors, the amount of suspended solids is 200
It has been confirmed that automatic measurement can be performed from low concentrations around pp- to high concentrations of 111 pl.
さらに、水圧計12.14は、水晶センサー26がカバ
ー22に内蔵されているので、水垢や浮遊物質の付着な
どの影響を受けないので、保守点検が殆ど不要であって
、管理が極めて簡単になる。Furthermore, since the water pressure gauge 12.14 has a crystal sensor 26 built into the cover 22, it is not affected by limescale or suspended matter, so there is almost no need for maintenance and inspection, making management extremely easy. Become.
!第5図は、この発明の他の実施例を示しており、同図
(A)は、水面から等間隔になるように多数の水圧計1
2a、b・・・・・・・・・nを配置した例であり、こ
のように水圧計を多数配置すると、貯水池などの表層か
ら深層まで連続して、深度毎に浮遊物質の分布状態を正
確に把握できる。! FIG. 5 shows another embodiment of the present invention, and FIG. 5(A) shows a large number of water pressure gauges 1 arranged at equal intervals from the water surface.
This is an example of arranging 2a, b...n, and when a large number of water pressure gauges are arranged in this way, it is possible to continuously measure the distribution of suspended solids at each depth, from the surface layer of a reservoir to the deep layer. Can be accurately grasped.
また、同図(B)は一対の水圧計1.2a、12b”を
所定の間隔で固定し、これを上下方向に移動させるよう
に構成している。Further, in FIG. 2B, a pair of water pressure gauges 1.2a and 12b'' are fixed at a predetermined interval and are configured to be moved in the vertical direction.
この構成によっても上記と同様に、任意の水深の浮遊物
質jl(濁度)を測定できる。With this configuration as well, suspended solids jl (turbidity) at any water depth can be measured in the same way as above.
さらに、同図(C)は、台船42に同図(B)の水圧計
12a−,12b〜を設置したものであり、この構成に
よれば、台船42を移動させることにより、任意の位置
で、任意の深度での風1度測定が可能になる。Furthermore, in FIG. 4(C), the water pressure gauges 12a-, 12b shown in FIG. This makes it possible to measure the wind at any depth.
第1図は本発明の計flp1方法の原理説明図、第2図
から第4図はこの発明にかかる濁度計測装置の一実施例
を示しており、第2図はその全体配置図、第3図は水圧
計の詳細図、第4図は演算装置のフローチャート図、第
5図は同計測装置の他の実施例を示す説明図である。
12.14・・・・・・水圧計
16.18・・・・・・温度計Fig. 1 is a diagram explaining the principle of the flp1 method of the present invention, Figs. 2 to 4 show an embodiment of the turbidity measuring device according to the present invention, and Fig. 2 is an overall layout diagram of the turbidity measuring device. FIG. 3 is a detailed view of the water pressure gauge, FIG. 4 is a flowchart of the arithmetic device, and FIG. 5 is an explanatory diagram showing another embodiment of the measuring device. 12.14... Water pressure gauge 16.18... Temperature gauge
Claims (2)
し、これらの各測定値と標準水密度とから浮遊物質の混
入による密度増加量を求め、この密度増加量の大きさに
より濁度を決定することを特徴とする濁度計測方法。(1) Measure the depth, water pressure, and water temperature at the measurement target location, calculate the amount of increase in density due to the mixing of suspended solids from each of these measured values and the standard water density, and calculate the turbidity based on the size of this increase in density. A turbidity measurement method characterized by determining.
る温度計と、前記水圧計の測定値と、前記温度計の測定
値における標準水密度とから浮遊物質の混入による密度
増加量を演算する演算装置とを有することを特徴とする
濁度計測装置。(2) A water pressure gauge installed at the existing depth, a thermometer that measures water temperature, and an increase in density due to the mixing of suspended solids based on the measured value of the water pressure gauge and the standard water density based on the measured value of the thermometer. A turbidity measuring device characterized by having a calculation device that calculates a quantity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1224653A JPH0612325B2 (en) | 1989-09-01 | 1989-09-01 | Method for measuring the degree of inclusion of suspended matter in water and its measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1224653A JPH0612325B2 (en) | 1989-09-01 | 1989-09-01 | Method for measuring the degree of inclusion of suspended matter in water and its measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0390839A true JPH0390839A (en) | 1991-04-16 |
JPH0612325B2 JPH0612325B2 (en) | 1994-02-16 |
Family
ID=16817096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1224653A Expired - Lifetime JPH0612325B2 (en) | 1989-09-01 | 1989-09-01 | Method for measuring the degree of inclusion of suspended matter in water and its measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0612325B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002286534A (en) * | 2001-03-28 | 2002-10-03 | Chubu Regional Bureau Ministry Of Land Infrastructure & Transport | Outflowing sediment observation system and device therefor |
CN103528922A (en) * | 2013-10-24 | 2014-01-22 | 中国水利水电科学研究院 | Method and device for measuring dynamic sediment volume concentration |
CN108469257A (en) * | 2018-06-25 | 2018-08-31 | 邢杰炜 | A kind of online suspended sediment measuring device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5737245A (en) * | 1980-08-15 | 1982-03-01 | Fuji Electric Co Ltd | Method of measuring specific gravity of dust contained in oil |
-
1989
- 1989-09-01 JP JP1224653A patent/JPH0612325B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5737245A (en) * | 1980-08-15 | 1982-03-01 | Fuji Electric Co Ltd | Method of measuring specific gravity of dust contained in oil |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002286534A (en) * | 2001-03-28 | 2002-10-03 | Chubu Regional Bureau Ministry Of Land Infrastructure & Transport | Outflowing sediment observation system and device therefor |
JP4721207B2 (en) * | 2001-03-28 | 2011-07-13 | 国土交通省中部地方整備局長 | Runoff sediment observation system, runoff sediment measurement device, and sediment separator |
CN103528922A (en) * | 2013-10-24 | 2014-01-22 | 中国水利水电科学研究院 | Method and device for measuring dynamic sediment volume concentration |
CN108469257A (en) * | 2018-06-25 | 2018-08-31 | 邢杰炜 | A kind of online suspended sediment measuring device |
CN108469257B (en) * | 2018-06-25 | 2024-03-22 | 邢杰炜 | Online suspended load sediment measurement device |
Also Published As
Publication number | Publication date |
---|---|
JPH0612325B2 (en) | 1994-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108254032A (en) | River ultrasonic wave time difference method method of calculating flux | |
Stone et al. | Evaluating velocity measurement techniques in shallow streams | |
Nord et al. | Applicability of acoustic Doppler devices for flow velocity measurements and discharge estimation in flows with sediment transport | |
US20010054308A1 (en) | Methods and apparatus for measuring suspended-substance concentrations | |
JPH0390839A (en) | Method and instrument for measuring turbidity | |
US5852240A (en) | Portable flow measuring device | |
CN213274397U (en) | River flow on-line monitoring and measuring system | |
KR200425372Y1 (en) | A flow measurements device for open channels utilizing the theory of inverted siphon | |
De Doncker et al. | Accuracy of discharge measurements in a vegetated river | |
TWI400434B (en) | Method and system for silt consistency measurement | |
JP2002267587A (en) | Device for measuring mixing concentration of suspended matter | |
SU1264045A1 (en) | Method of determining density of mud-laden torrent flow | |
JPS60259912A (en) | Flow measurement in branch pipe | |
CN102288509B (en) | Device for measuring sediment charge by continuously weighing mass of fixed-volume fluid | |
Talman | A design for a recording venturi and lifting vane flowmeter | |
JP2004069615A (en) | Volumetric flow rate measurement method and device | |
Mączałowski | Analysis and evaluation of the measurement system based on kama orifices for measuring the flow of sewage in the light of the water law requirements | |
SU1576658A1 (en) | Method of determining coefficient of speed resistance of deep water support member under laboratory conditions | |
SU1408232A1 (en) | Testing installation for gas small and microflow rate meters | |
WO2020209760A2 (en) | Method for measuring the mass of one of the components of a two-component substance with adjustment according to temperature, and a device for carrying out said method | |
Abduh | Measurement of discharge in open channels: A case study of laboratory discharge calibration model | |
SU116484A1 (en) | Sprinkler installation | |
SU664033A1 (en) | Flow rate determining method | |
Aguilar et al. | Laboratory evaluation of flow sensor technology for use in storm sewer measurements | |
CN117405353A (en) | Method for predicting two-dimensional flow velocity of water flow of river channel with floating vegetation |