JPH0390574A - Coated sintered hard alloy for wear-resistant tool - Google Patents
Coated sintered hard alloy for wear-resistant toolInfo
- Publication number
- JPH0390574A JPH0390574A JP1224640A JP22464089A JPH0390574A JP H0390574 A JPH0390574 A JP H0390574A JP 1224640 A JP1224640 A JP 1224640A JP 22464089 A JP22464089 A JP 22464089A JP H0390574 A JPH0390574 A JP H0390574A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- hardness
- coated
- cemented carbide
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 46
- 239000000956 alloy Substances 0.000 title claims abstract description 46
- 239000011230 binding agent Substances 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 6
- 230000007423 decrease Effects 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 238000009826 distribution Methods 0.000 abstract description 10
- 229910000997 High-speed steel Inorganic materials 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 10
- 239000012071 phase Substances 0.000 description 9
- 229910000531 Co alloy Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- RZJQYRCNDBMIAG-UHFFFAOYSA-N [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] Chemical class [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] RZJQYRCNDBMIAG-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- -1 iron group metals Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野]
本発明は、耐摩工具用被覆超硬合金に関し、例えば耐摩
耗性のパンチ、ヘッダ等の冷間鍛造工具、温熱鍛造工具
に用いるソリッド工具等の靭性と耐摩耗性を兼ね備えた
工具に適用することのできる上記被覆超硬合金に関する
ものである。Detailed Description of the Invention "Field of Industrial Application" The present invention relates to coated cemented carbide for wear-resistant tools, such as cold forging tools such as wear-resistant punches and headers, solid tools used for hot forging tools, etc. The present invention relates to the above-mentioned coated cemented carbide that can be applied to tools that have both toughness and wear resistance.
[従来の技術]
従来、上記のような耐摩、耐衝撃用工具として、WC−
coo系合金用いられてきた。[Prior Art] Conventionally, WC-
Coo-based alloys have been used.
このW C−Co系合金では、WCの粒度やC。In this W C-Co alloy, the particle size of WC and C.
の晴の組合わせによって、耐摩耗性又は靭性の向上を図
ってきた。We have attempted to improve wear resistance or toughness by combining these characteristics.
「発明が解決しようとする課題」
しかし、耐摩耗性と靭性とは相反する性質故に、上記の
W C−G o系合金において、高靭性を付与するため
にGoを増加させると、必然的に耐摩耗性が低下してし
まうという欠点があった。"Problem to be Solved by the Invention" However, since wear resistance and toughness are contradictory properties, increasing Go in the above W C-Go alloy to impart high toughness inevitably results in This had the disadvantage that wear resistance decreased.
このようなことから、W C−Co系合金表面にTiC
、TiN 等を被覆し、被覆の耐摩耗性を向上させた被
覆超硬合金も検討されてきた。しかし、この被覆合金で
は、合金強度の大幅な低下を生じ、その用途は制限され
ていた。For this reason, TiC on the surface of the W C-Co alloy
Coated cemented carbide coated with , TiN, etc. to improve the wear resistance of the coating has also been studied. However, this coated alloy suffers from a significant decrease in alloy strength, limiting its use.
本発明は、耐摩耗性と靭性の両者を兼ね備えたソリッド
工具等用に使用できる耐摩工具用被覆超硬合金を提供す
ることを目的とする。An object of the present invention is to provide a coated cemented carbide for wear-resistant tools that has both wear resistance and toughness and can be used for solid tools and the like.
[課題を解決するための手段]
本発明は、母材とするWCとCo等の鉄族金属からなる
WC−鉄族金属系超硬合金をその表面近傍の硬度分布を
変えた複合構造とし、これにTi化合物または酸化アル
ミニウムを被覆することにより、上記目的を達成するも
のである。[Means for Solving the Problems] The present invention provides a composite structure in which the hardness distribution near the surface of a WC-iron group metal cemented carbide made of WC as a base material and an iron group metal such as Co is changed, The above object is achieved by coating this with a Ti compound or aluminum oxide.
即ち、本発明はWCを硬質相とし鉄族金属を結合相とし
てなる超硬合金であって、該合金表面から10〜100
0μmの間に存在する硬度低下層の硬さが、合金内部の
硬さに対し0.5倍から0゜9倍である超硬合金を母材
とし、且つ該超硬合金表面にT iC,T iN、 T
iCN、 AQ20sから選ばれる1種以上を被覆し
てなることを特徴とする耐摩工具用被覆超硬合金である
。That is, the present invention provides a cemented carbide comprising WC as a hard phase and an iron group metal as a binder phase, which
The base material is a cemented carbide in which the hardness of the hardness reducing layer existing between 0 μm is 0.5 to 0.9 times the hardness inside the alloy, and the surface of the cemented carbide is coated with TiC, T iN, T
This coated cemented carbide for wear-resistant tools is characterized by being coated with one or more types selected from iCN and AQ20s.
本発明においては、当該超硬合金の硬さが、表面から上
記硬度低下層まで緩やかに低下していることが、特に好
ましい。In the present invention, it is particularly preferable that the hardness of the cemented carbide decreases gradually from the surface to the hardness decreasing layer.
[作用]
本発明に係る超硬合金は、合金表面から10〜1000
μmの間に存在する硬度低下層によって、靭性が付与さ
れる。該硬度低下層は結合相の存在割合が、合金内部の
結合相存在割合に比し大きくなっており、結合相富化層
である。該硬度低下層が10μmより表面側に存在する
と、摩耗の進行を加速して、耐摩耗性を低下させる。ま
た1000μmを越えた合金内部であると、靭性向上の
効果を付与しにくい。[Function] The cemented carbide according to the present invention has a thickness of 10 to 1000 from the alloy surface.
Toughness is imparted by the hardness-reducing layer present between μm. The hardness reducing layer is a binder phase-enriched layer in which the proportion of the binder phase is larger than the proportion of the binder phase inside the alloy. When the hardness reducing layer is present on the surface side with a thickness of 10 μm or more, the progress of wear is accelerated and the wear resistance is reduced. Moreover, if the inside of the alloy exceeds 1000 μm, it is difficult to impart the effect of improving toughness.
該硬度低下層の硬さは、合金内部の硬さに対し0.5倍
〜0.9倍であることが好ましい。0.5倍未満では表
面近傍で塑性流動を生じて、耐摩耗性の低下や被加工品
の加工制度の低下につながる。The hardness of the hardness reducing layer is preferably 0.5 to 0.9 times the hardness inside the alloy. If it is less than 0.5 times, plastic flow occurs near the surface, leading to a decrease in wear resistance and a decrease in processing precision of the workpiece.
一方、0.9 倍を越えると、靭性向上に結びつかな
くなる。また、係る構造によって、合金表面に圧縮応力
が生じ、疲労強度の向上の効果も生じる。On the other hand, if it exceeds 0.9 times, it will not lead to improvement in toughness. Moreover, such a structure generates compressive stress on the alloy surface, which also produces the effect of improving fatigue strength.
第1図に本発明に係る超硬合金の具体例A、B。FIG. 1 shows specific examples A and B of the cemented carbide according to the present invention.
Cの合金表面側からの硬度分布を示す。図から分かるよ
うに表面から一定距離のところで硬度が最小(min、
)となるピークを有し、該ピーク以遠では急速に硬度が
上昇する点にこの合金の硬度分布の特徴がある。したが
って、本発明の硬度低下層とはこのピークを含み、合金
内部の硬度に対する硬度の比が0.5〜0.9に低下し
た領域をいう。The hardness distribution from the alloy surface side of C is shown. As can be seen from the figure, the hardness is at a minimum (min,
), and the hardness distribution of this alloy is characterized by a rapid increase in hardness beyond this peak. Therefore, the hardness reducing layer of the present invention refers to a region including this peak and in which the ratio of hardness to the hardness inside the alloy is reduced to 0.5 to 0.9.
一方、耐摩耗性は、合金表面にTiC、TiNT t
CN 、 A Q t O3から選ばれる1種以上の被
覆を形成することにより、確保される。被覆材料として
T ic 、 T iN 、 T iCN 、 A(
lxosを使用するのは、これらはいずれも硬度が高い
からである。被覆厚みは、耐摩耗性、靭性及び耐剥離性
等を考慮して、0.5〜5μm程度とすることが好まし
い。これらの被覆の2種以上を組合わせる場合は、A
Q、O、は靭性が低いため厚さ1μm以下の被覆とし、
その下層にTiC、TiN 、 T1CNを被覆するこ
とが好ましい。On the other hand, wear resistance is improved by TiC, TiNT t on the alloy surface.
This is ensured by forming one or more types of coating selected from CN, AQtO3. T ic , T iN , T iCN , A(
lxos is used because all of these have high hardness. The coating thickness is preferably about 0.5 to 5 μm in consideration of wear resistance, toughness, peeling resistance, etc. When combining two or more of these coatings, A
Since Q and O have low toughness, they are coated with a thickness of 1 μm or less,
It is preferable to coat the lower layer with TiC, TiN, or T1CN.
本発明の超硬合金の結合相としてはCo、Ni。The binder phase of the cemented carbide of the present invention is Co and Ni.
C「等鉄族金属が挙げられ、特に好ましくはC。Examples include iron group metals such as C, and particularly preferred are C.
が挙げられる。また、該結合相はGoとNiの固溶体あ
るいはCoとNiおよび又はCrとの固溶体であっても
本発明の効果を生しる。can be mentioned. Further, the effects of the present invention can be obtained even if the bonded phase is a solid solution of Go and Ni or a solid solution of Co and Ni and/or Cr.
本発明の結合相の富化構造を達成する手段の1つとして
は、結合相量の異なる圧接体をラミネート構造として、
プレス、底形、焼結する方法を挙げることができる。高
温下では、物質の拡散移動によって緩やかな濃度分布が
生じるので、これに伴った緩やかな硬度分布ができる。One of the means for achieving the binder phase enriched structure of the present invention is to form a laminate structure of pressed bodies having different amounts of binder phase,
Examples include pressing, bottom shaping, and sintering. At high temperatures, a gradual concentration distribution occurs due to the diffusion and movement of substances, resulting in a gradual hardness distribution.
また別の手段として、同一組成の完粉を液相又は固相下
で脱炭処理や浸炭処理を繰り返す方法を挙げることがで
きる。Another method is to repeat decarburization or carburization of finished powder having the same composition in a liquid or solid phase.
TiC,TiN、T1CN、A、○、から選ばれる1種
以上の被覆は、通常の化学蒸着法CCVD法)や物理蒸
着法(PVD法)により行われる。The coating with one or more types selected from TiC, TiN, T1CN, A, and O is performed by an ordinary chemical vapor deposition method (CCVD method) or physical vapor deposition method (PVD method).
「実施例]
実施例I
中心部にW(、−25%Co結合相合金完粉、その周辺
に、^) 30%Go、B)35%Co、C)40%
Co合金完粉を装入後、さらにその外周に25%Co合
金完粉(以上いずれもWC粒度は3μm)を装入し、所
定のパンチ形状にプレス成形後、1360°Cで真空雰
囲気中で焼結した。そして各々の充てん量を変化させて
、第1表の如き構造となるように調整した。このように
して得られた合金を荷重500gでHv硬度を測定した
ところ、第1図及び第1表に示す如くなっていた。尚、
各合金の内部の硬度はいずれも800 kg/m−であ
った。"Example" Example I W (-25% Co binder phase alloy complete powder in the center, ^) 30% Go, B) 35% Co, C) 40%
After charging the Co alloy complete powder, 25% Co alloy complete powder (WC grain size in both cases is 3 μm) was charged around its outer periphery, and after press forming into a predetermined punch shape, it was heated at 1360°C in a vacuum atmosphere. Sintered. Then, by varying the filling amount of each, the structure was adjusted as shown in Table 1. When the Hv hardness of the thus obtained alloy was measured under a load of 500 g, the Hv hardness was as shown in FIG. 1 and Table 1. still,
The internal hardness of each alloy was 800 kg/m-.
第1表
この合金の表面にCVD法により3μm厚さのTiN
を被覆した。Table 1: A 3 μm thick layer of TiN was deposited on the surface of this alloy by CVD.
coated.
当該被覆合金(本発明品)と、比較のために15%Co
合金(Hv硬度1050 kg/ll1m”、均一)及
び25%Co合金(同800 kg/mad”、均一)
の表面に上記と同様にCVD法により3μm厚さのTi
N を被覆した被覆合金(比較品)を用いて、S C
r (Cry) 21を、断面減少率(加工前後の素材
面積の変化率)58%、押出し長さ(押出し加工によっ
て変化させた長さ)10m+−で加工して、上記被覆合
金の寿命テストを行った。The coating alloy (product of the present invention) and 15% Co
Alloy (Hv hardness 1050 kg/ll1m", uniform) and 25% Co alloy (Hv hardness 800 kg/ll1m", uniform)
A 3 μm thick layer of Ti is deposited on the surface of the
Using a coated alloy coated with N (comparative product), S C
r (Cry) 21 was processed at a cross-sectional reduction rate (rate of change in material area before and after processing) of 58% and an extrusion length (length changed by extrusion processing) of 10 m + -, and a life test of the above-mentioned coating alloy was carried out. went.
この結果、本発明被覆合金A、B、Cは、各16万ケ、
17万ケ、20万ケのショットが可能であったが、比較
品のうち15%Co合金に被覆したものは0.8 万ケ
で欠損し、25%Co合金に被覆したものは3万ケで欠
損した。As a result, coating alloys A, B, and C of the present invention each contained 160,000 pieces,
It was possible to shoot 170,000 and 200,000 pieces, but among the comparison products, the one coated with 15% Co alloy broke off after 80,000 pieces, and the one coated with 25% Co alloy failed at 30,000 pieces. It was lost.
実施例2
実施例1の合金Aの組成において、硬度低下層の合金表
面からの距離を、D)50μm、E)500μm、F)
100Oumとして、それ以外の条件は実施例1と同様
にしてTiN 被覆合金を作製し、実施例1のテストを
行った。この結果、本発明の被覆合金り、E、Fは、各
々19万ケ、15万ケ、13万ケまでショットが可能で
あった。Example 2 In the composition of alloy A of Example 1, the distance from the alloy surface to the hardness reducing layer is D) 50 μm, E) 500 μm, F)
A TiN coated alloy was prepared in the same manner as in Example 1 except that the thickness was 100 Oum, and the test of Example 1 was conducted. As a result, the coating alloys E and F of the present invention could be shot up to 190,000, 150,000 and 130,000 shots, respectively.
「発明の効果1
以上詳述したように、本発明被覆合金においては、母材
合金の表面近傍で硬度分布を変え、更に母材合金表面に
硬度の高いTi化合物、酸化アルミニウム等の被覆を形
成することにより、耐摩耗性と靭性という相反する両性
質を、共に高度に付与することができる。Effects of the Invention 1 As detailed above, in the coated alloy of the present invention, the hardness distribution is changed near the surface of the base alloy, and a coating of a highly hard Ti compound, aluminum oxide, etc. is formed on the surface of the base alloy. By doing so, both contradictory properties of wear resistance and toughness can be imparted to a high degree.
この結果、W C−Co等鉄族金属系合金の耐摩、耐衝
撃用工具としての用途を、ハイス系合金と同等若しくは
それ以上に広げることができる。従って、本発明は耐摩
耗性と靭性の両者を兼ね備えたソリッド工具用の被覆超
硬合金として有益である。As a result, the use of iron group metal alloys such as W C-Co as wear-resistant and impact-resistant tools can be expanded to be equivalent to or more than that of high-speed steel alloys. Therefore, the present invention is useful as a coated cemented carbide for solid tools that has both wear resistance and toughness.
第1図は、実施例1で作製した本発明に係る超硬合金A
、B、Cの合金表面からの硬度分布を示した図面であり
、実線は合金A、破線は合金B、−点鎖線は合金Cの硬
度分布を示す。FIG. 1 shows the cemented carbide A according to the present invention produced in Example 1.
, B, and C from the alloy surface, where the solid line shows the hardness distribution of alloy A, the broken line shows the hardness distribution of alloy B, and the dashed line shows the hardness distribution of alloy C.
Claims (2)
超硬合金であって、該合金表面から10〜1000μm
の間に存在する硬度低下層の硬さが、合金内部の硬さに
対し0.5倍から0.9倍である超硬合金を母材とし、
且つ該超硬合金表面にTiC、TiN、TiCN、Al
_2O_3から選ばれる1種以上を被覆してなることを
特徴とする耐摩工具用被覆超硬合金。(1) A cemented carbide made of WC as a hard phase and an iron group metal as a binder phase, which is 10 to 1000 μm from the alloy surface.
Using a cemented carbide as a base material, the hardness of the hardness reducing layer existing between the two is 0.5 to 0.9 times the hardness inside the alloy,
And TiC, TiN, TiCN, Al on the surface of the cemented carbide.
A coated cemented carbide for wear-resistant tools characterized by being coated with one or more selected from _2O_3.
層まで緩やかに低下していることを特徴とする請求項(
1)に記載の耐摩工具用被覆超硬合金。(2) Claim (2) characterized in that the hardness of the cemented carbide gradually decreases from the surface to the hardness decreasing layer.
The coated cemented carbide for wear-resistant tools according to item 1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1224640A JP2808714B2 (en) | 1989-09-01 | 1989-09-01 | Coated cemented carbide for wear-resistant tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1224640A JP2808714B2 (en) | 1989-09-01 | 1989-09-01 | Coated cemented carbide for wear-resistant tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0390574A true JPH0390574A (en) | 1991-04-16 |
JP2808714B2 JP2808714B2 (en) | 1998-10-08 |
Family
ID=16816884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1224640A Expired - Lifetime JP2808714B2 (en) | 1989-09-01 | 1989-09-01 | Coated cemented carbide for wear-resistant tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2808714B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5745827A (en) * | 1980-08-30 | 1982-03-16 | Toto Ltd | Reinforced plastic bath tub |
JPS63103071A (en) * | 1986-10-17 | 1988-05-07 | Hitachi Tool Eng Ltd | Surface coated sintered hard alloy |
-
1989
- 1989-09-01 JP JP1224640A patent/JP2808714B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5745827A (en) * | 1980-08-30 | 1982-03-16 | Toto Ltd | Reinforced plastic bath tub |
JPS63103071A (en) * | 1986-10-17 | 1988-05-07 | Hitachi Tool Eng Ltd | Surface coated sintered hard alloy |
Also Published As
Publication number | Publication date |
---|---|
JP2808714B2 (en) | 1998-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3811961A (en) | Boridized steel-bonded carbides | |
JPH02502736A (en) | cold work steel | |
JP2009061579A (en) | Coated cemented carbide cutting tool insert | |
JP2000225506A (en) | Cutting insert and manufacture thereof | |
EP0556788A2 (en) | Hard alloy | |
CN1224731C (en) | Cobalt based bonding phase material for refractory antistick tungsten carbide alloy | |
JP4357160B2 (en) | Sputtering target, hard coating using the same, and hard film coating member | |
CN103173671B (en) | Cemented carbide body and applications thereof | |
JP2004052094A (en) | Sputtering target, hard coating, and hard-coated member | |
JP2000234136A (en) | Cemented carbide, coated cemented carbide and production thereof | |
JPH0196084A (en) | Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool | |
JPH0390574A (en) | Coated sintered hard alloy for wear-resistant tool | |
JP2893886B2 (en) | Composite hard alloy material | |
JPH02209448A (en) | Sintered hard alloy containing composite area | |
JP5268771B2 (en) | Method for producing sputtering target, method for forming hard film using the same, and hard film coated member | |
JP6208863B2 (en) | Tungsten heat resistant alloy, friction stir welding tool, and manufacturing method | |
CN102766795A (en) | Non-magnetic die material and production method thereof | |
JPH10237650A (en) | Wc base cemented carbide and its production | |
JPH0382766A (en) | Coated sintered hard alloy for wear resistant tool | |
JP2855686B2 (en) | Cemented carbide for wear-resistant tools | |
JP2855687B2 (en) | Cemented carbide for wear-resistant tools | |
JPH05230589A (en) | Wc-based cemented carbide | |
JPS5914534B2 (en) | Tough cermet with a softened surface layer | |
JP2003001344A (en) | Mold for press forming | |
JPH05230587A (en) | Cermet |