JPH0390058A - Production of bis(4-allyloxy-3,5-dibromophenyl)sulfone - Google Patents

Production of bis(4-allyloxy-3,5-dibromophenyl)sulfone

Info

Publication number
JPH0390058A
JPH0390058A JP22439589A JP22439589A JPH0390058A JP H0390058 A JPH0390058 A JP H0390058A JP 22439589 A JP22439589 A JP 22439589A JP 22439589 A JP22439589 A JP 22439589A JP H0390058 A JPH0390058 A JP H0390058A
Authority
JP
Japan
Prior art keywords
tbs
reaction
sulfone
hydroxy
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22439589A
Other languages
Japanese (ja)
Inventor
Hideo Sakka
秀雄 属
Hisao Eguchi
久雄 江口
Masaji Kubo
久保 雅滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP22439589A priority Critical patent/JPH0390058A/en
Publication of JPH0390058A publication Critical patent/JPH0390058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain the title compound as a flame retardant without the need for any catalyst by reaction under specified conditions between bis (4-hydroxy-3, 5-dibromophenyl) sulfone and 4-allyloxy-4'-hydroxy-3,3',5,5'- tetrabromodiphenylsulfone. CONSTITUTION:In the presence of an alkali, using allyl chloride as allylating agent, (A) 1mol of bis (4-hydroxy-3,5-dibromophenyl) sulfone is incorporated with (B) 0.02-0.40 (pref. 0.05-0.30)mol of 4 allyloxy-4,-hydroxy-3,3',5,5' tetrabromodiphenylsulfone under normal or higher pressure at room temperature to 150 deg.C, thus obtaining the objective compound. The amount of the allylating agent to be used is >=1.0 molar times (pref. 1.25-1.50 molar times) based on the total of the hydroxyl groups in both the compounds A and B as raw materials. It is preferable that the amount of the alkali to be used be 1.0-1.50 molar times.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビス(4−アリルオキシ−3,5−ジプロモ
フェニル)スルホン(以下、TBS−BAと略記する)
を高収率かつ高純度で得るための製造法に関するもので
ある。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to bis(4-allyloxy-3,5-dipromophenyl)sulfone (hereinafter abbreviated as TBS-BA).
The present invention relates to a manufacturing method for obtaining the compound in high yield and purity.

TBS−BAは、ポリオレフィン樹脂等の難燃剤及び難
燃剤の中間体として有用なものであり、特にアリル基を
臭素化して得られるビス(3,5−ジブロモ−4−ジブ
ロモプロポキシフェニル)スルホン(以下、TBS−B
Pと略記する)は、ポリプロピレン等の難燃剤として極
めて有用であることが特公昭50−35103号、特公
昭50−23693号などに述べられている。
TBS-BA is useful as a flame retardant for polyolefin resins and as an intermediate for flame retardants, and is particularly useful as a bis(3,5-dibromo-4-dibromopropoxyphenyl) sulfone (hereinafter referred to as TBS-BA) obtained by brominating an allyl group. , TBS-B
It is stated in Japanese Patent Publication No. 35103/1983 and Japanese Patent Publication No. 23693/1983 that P (abbreviated as P) is extremely useful as a flame retardant for polypropylene and the like.

〔従来の技術〕[Conventional technology]

従来、アリル化剤としてアリルクロライドを用いてTB
S−BAを製造した場合、臭化物又はよう化物等の触媒
を添加しなければエーテル化速度は非常に遅(、TBS
−BAは殆ど生成しないことが知られている(特公昭6
0−39585号)。
Conventionally, allyl chloride was used as an allylating agent to produce TB.
When producing S-BA, the etherification rate is very slow unless a catalyst such as bromide or iodide is added (TBS
- It is known that almost no BA is produced (Tokuko Sho 6
No. 0-39585).

この製造法は、ビス(4−ヒドロキシ−3,5−ジプロ
モフェニル)スルホン(以下、TBSと略記する)を、
アルカリと共にアルコール、水等の溶媒中に溶解し、つ
いで臭化物又はよう化物等の触媒を添加し、そしてアリ
ルクロライドを一括して加えた後、加熱還流させてTB
S−BAを生成させる方法である。
This production method uses bis(4-hydroxy-3,5-dipromophenyl)sulfone (hereinafter abbreviated as TBS),
TB is dissolved together with an alkali in a solvent such as alcohol or water, then a catalyst such as bromide or iodide is added, and allyl chloride is added all at once, followed by heating under reflux.
This is a method of generating S-BA.

しかしながら、この方法では高価な臭化物又はよう化物
等の触媒を比較的多量に使用するため、経済性において
工業規模の製造プロセスとしては、必ずしも未だ満足出
来るものではなかった。
However, since this method uses a relatively large amount of an expensive catalyst such as bromide or iodide, it has not always been economically satisfactory as an industrial-scale production process.

そこで、本発明者らはこの様な従来技術において触媒を
添加しなければエーテル化速度が非常に遅いといった問
題を解消すべく、反応速度の向上方法について検討を行
った結果、反応溶媒として水に可溶な特定の有機溶剤を
一定の濃度範囲で混合した均一水溶液を用いると、著し
い反応加速が見られ、副反応が抑制されてTBS−BA
の収率が向上することを見出だし、先に特許出願した。
Therefore, in order to solve the problem that the etherification rate is very slow in the conventional technology without adding a catalyst, the present inventors investigated ways to improve the reaction rate, and found that water was used as the reaction solvent. When a homogeneous aqueous solution containing a specific soluble organic solvent in a certain concentration range is used, a remarkable reaction acceleration is observed, side reactions are suppressed, and TBS-BA
They discovered that the yield of the new method was improved and filed a patent application earlier.

しかし、該方法でTBS−BAを85%以上の収率で得
るためには、反応時間が24時間以上必要であり、工業
的な製造法とするにはさらに反応時間の短縮が望まれて
いた。
However, in order to obtain TBS-BA with a yield of 85% or more using this method, a reaction time of 24 hours or more is required, and further shortening of the reaction time has been desired in order to make it an industrial production method. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、触媒の添加を必要としないで高収率か
つ高純度にTBS−BAを製造する工業的な方法を提供
することにある。
An object of the present invention is to provide an industrial method for producing TBS-BA in high yield and purity without requiring the addition of a catalyst.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、この様な従来技術において反応時間の短
縮化を0指して、反応速度の向上方法について鋭意検討
を行った。その結果、TBSをアルカリの存在下、アリ
ルクロライドを用いてアリルエーテル化させる方法に於
いて、反応中間体である4−アリルオキシ−4゛−ヒド
ロキシ−3゜3−5.5”−テトラブロモジフェニルス
ルホン(以下、TBS−MAと略記する)をTBSに対
して一定の範囲で添加してアリル化反応を行うと、著し
い反応加速が見られ、短時間のうちに高い収率が遠戚出
来るだけでなく、さらに高純度なTBS−BAが得られ
ることを見出だし、本発明を完成するに至った。
The present inventors focused on shortening the reaction time in such conventional techniques, and conducted intensive studies on methods for improving the reaction rate. As a result, in the allyl etherification method of TBS using allyl chloride in the presence of an alkali, the reaction intermediate 4-allyloxy-4゛-hydroxy-3゜3-5.5''-tetrabromodiphenyl When allylation reaction is carried out by adding sulfone (hereinafter abbreviated as TBS-MA) to TBS in a certain range, a remarkable reaction acceleration is observed, and a high yield can be achieved in a short period of time. However, the present inventors have discovered that even higher purity TBS-BA can be obtained, and have completed the present invention.

すなわち、本発明の要旨は、TBSを、アルカリの存在
下、アリルクロライドを用いてアリルエーテル化する方
法に於いて、TBS−MAをTBS1モルに対して0.
02〜0.40モルの範囲で添加して反応することを特
徴とするTBS−BAを製造する方法にある。
That is, the gist of the present invention is to provide a method for allyl etherifying TBS using allyl chloride in the presence of an alkali, in which TBS-MA is added in an amount of 0.0% to 1 mole of TBS.
0.02 to 0.40 mol of TBS-BA is added and reacted.

以下その詳細について説明する。The details will be explained below.

〔作用〕[Effect]

本発明の方法は、次の反応式を用いて説明することが出
来る。
The method of the present invention can be explained using the following reaction formula.

アリルクロライドをアリル化剤として用いた場合、上述
した様にNaBr、K1等の触媒の添加を行わずとも、
反応溶媒として水に可溶な特定の有機溶剤を一定の濃度
範囲で混合した均一水溶液を用いれば、エーテル化の速
度が加速され、TBS−BAの収率が向上するが、工業
的に見れば未だ反応時間が長ずざるといった問題を有し
ている。
When allyl chloride is used as an allylating agent, as mentioned above, even without adding a catalyst such as NaBr or K1,
If a homogeneous aqueous solution containing a specific water-soluble organic solvent in a certain concentration range is used as the reaction solvent, the rate of etherification will be accelerated and the yield of TBS-BA will be improved, but from an industrial perspective, There is still a problem that the reaction time is not long.

しかしながら、TBS−MAをTBSに対して一定の範
囲で添加して反応するという本発明の方法では、さらに
エーテル化速度が促進され、従来の方法よりも短い反応
時間でTBS−BAを高収率で得ることが出来る。
However, in the method of the present invention in which TBS-MA is added to TBS in a certain range and the reaction is carried out, the etherification rate is further accelerated, and TBS-BA can be produced in high yield in a shorter reaction time than in the conventional method. You can get it at

この理由としては、必ずしも明確ではないが、反応の初
期から反応中間体であるTBS−MAが一定の範囲の量
だけ反応系中に存在する場合、TBSアルカリ塩の有機
溶媒への溶解度が著しく向上し、TBSとアリルクロラ
イドの反応性がより加速されるためと考えられる。一方
、TBS−MAが一定の範囲の量よりも多い場合では、
TBS−MAのみが有機溶媒に溶は込み、TBSアルカ
リ塩の有機溶媒への溶解を阻害するため、反応が遅くな
る。
The reason for this is not necessarily clear, but if the reaction intermediate TBS-MA is present in the reaction system in a certain amount from the beginning of the reaction, the solubility of the TBS alkali salt in the organic solvent increases significantly. However, this is considered to be because the reactivity between TBS and allyl chloride is further accelerated. On the other hand, when TBS-MA is larger than a certain range,
Only TBS-MA dissolves in the organic solvent and inhibits the TBS alkali salt from dissolving in the organic solvent, which slows down the reaction.

本発明の方法で使用されるTBS−MAの添加量は、T
BS1モルに対して0.02〜0.40モルであり、好
ましくは0.05〜0.30モルであるのが良<、0.
02モル以下では反応速度の格別の向上は認められない
。また、0.40モル以上の場合は、逆に反応速度の低
下が認められるため、好ましくない。
The amount of TBS-MA used in the method of the present invention is T
It is preferably 0.02 to 0.40 mol, preferably 0.05 to 0.30 mol, per 1 mol of BS.
If the amount is less than 0.02 mol, no particular improvement in reaction rate will be observed. On the other hand, if the amount is 0.40 mol or more, a decrease in the reaction rate is observed, which is not preferable.

本発明の方法で使用されるアリルクロライドの使用量は
、TBS及びT B S−MAに含まれる水酸基を合計
した値に対して1.0倍モル以上であり、好ましくは1
.25〜1.50倍モルである。
The amount of allyl chloride used in the method of the present invention is 1.0 times the mole or more, preferably 1.0 times the mole or more of the total value of hydroxyl groups contained in TBS and TBS-MA.
.. It is 25 to 1.50 times the mole.

1.50倍モル以上加えても反応速度の向上は認められ
ない。
Even if 1.50 times the mole or more is added, no improvement in the reaction rate is observed.

本発明の方法において使用される反応溶媒には、水に可
溶な有機溶剤を25〜60容量%の濃度範囲で混合した
均一水溶液を用いる。水に可溶な有機溶剤とは、炭素数
1〜3の1価低級アルコール類又は炭素数2〜5のエー
テル類であり、具体的には、メタノール、エタノール、
n−プロパツール、イソプロパツール、ジオキサン、T
HF、メチルセロソルブ、エチルセロソルブ等が例示で
きる。これらの中でも、水−イソプロパツール及び水−
ジオキサン混合溶媒系は反応性の高さ等により、特に好
ましいものである。
The reaction solvent used in the method of the present invention is a homogeneous aqueous solution prepared by mixing a water-soluble organic solvent in a concentration range of 25 to 60% by volume. Water-soluble organic solvents are monovalent lower alcohols having 1 to 3 carbon atoms or ethers having 2 to 5 carbon atoms, and specifically include methanol, ethanol,
n-propanol, isopropanol, dioxane, T
Examples include HF, methyl cellosolve, and ethyl cellosolve. Among these, water-isopropanol and water-
A dioxane mixed solvent system is particularly preferred due to its high reactivity.

これら反応溶媒中のTBSo′)基質濃度については、
格別の限定はないが、通常、約15〜35重量%程度の
ものを用いる。
Regarding the TBSo′) substrate concentration in these reaction solvents,
There is no particular limitation, but usually about 15 to 35% by weight is used.

本発明の方法において使用されるアルカリとしては、ア
ルカリ金属の水酸化物、炭酸塩、炭酸水素塩が挙げられ
、具体的には水酸化ナトリウム。
The alkali used in the method of the present invention includes alkali metal hydroxides, carbonates, and hydrogen carbonates, and specifically sodium hydroxide.

水酸化カリウム、炭酸ナトリウム、炭酸カリウム。Potassium hydroxide, sodium carbonate, potassium carbonate.

炭酸水素ナトリウム、炭酸水素カリウム等を挙げること
が出来る。
Examples include sodium hydrogen carbonate and potassium hydrogen carbonate.

このアルカリの使用量については、TBS及びTBS−
MAに含まれる水酸基を合計した値に対して1.0倍モ
ル以上であり、好ましくは1.0〜1.50倍モルであ
る。1.50倍モル以上加えても反応速度の格別の向上
は認められない。
Regarding the usage amount of this alkali, TBS and TBS-
The amount is 1.0 times or more by mole or more, preferably 1.0 to 1.50 times by mole, relative to the total value of hydroxyl groups contained in MA. Even if 1.50 times the mole or more is added, no particular improvement in the reaction rate is observed.

尚、アルカリの使用量がTBS及びTBS−MAに含ま
れる水酸基を合計した値に対して1.1倍モル以下の場
合、反応途中にTBS及びTBS−MAが析出しやすく
なり、その結果、それらがTBS−BAの結晶に取り込
まれ、純度低下を起こしやすくなるため、反応の途中に
アルカリを若干追加することが必要となる。
In addition, if the amount of alkali used is less than 1.1 times the mole of the total value of hydroxyl groups contained in TBS and TBS-MA, TBS and TBS-MA tend to precipitate during the reaction, and as a result, they is incorporated into the TBS-BA crystals and tends to cause a decrease in purity, so it is necessary to add a small amount of alkali during the reaction.

反応は、通常、常圧下もしくは加圧下において室温から
150℃の範囲で行われる。常圧下での反応では、反応
速度を高めるために、反応液の還流温度で実施すること
が望ましい。反応時間は、反応温度にも依存し、−概に
は決められないが、通常、1時間から30時間程度であ
る。
The reaction is usually carried out at a temperature ranging from room temperature to 150° C. under normal pressure or increased pressure. In the reaction under normal pressure, it is desirable to carry out the reaction at the reflux temperature of the reaction solution in order to increase the reaction rate. The reaction time depends on the reaction temperature and cannot be determined generally, but is usually about 1 hour to 30 hours.

本発明の方法において得られるTBS−BAの結晶を含
む反応液は、濾過を行い、水洗を行った後、乾燥して製
品を得る。得られたTBS−BAの結晶は、高純度なも
の−であり、そのまま特別な精製工程なしでポリオレフ
ィン樹脂等の難燃剤及びポリプロピレン等の難燃剤とし
て極めて有用であるTBS−BPの原料に使用出来る。
The reaction solution containing TBS-BA crystals obtained in the method of the present invention is filtered, washed with water, and then dried to obtain a product. The obtained TBS-BA crystals are of high purity and can be used as a raw material for TBS-BP, which is extremely useful as a flame retardant for polyolefin resins and polypropylene, without any special purification process. .

〔発明の効果〕 以上の説明から明らかなように本発明によれば、反応中
間体であるT B S−MAをTBSに対して一定の範
囲で添加することにより、従来の方法よりも短い反応時
間で高純度なTBS−BAを高収率で得られるという極
めて有用な技術を示すもである。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, by adding TBS-MA, which is a reaction intermediate, to TBS within a certain range, the reaction is shorter than that of the conventional method. This shows an extremely useful technique that allows highly purified TBS-BA to be obtained in high yield in a short period of time.

〔実施例〕〔Example〕

以下実施例により本発明をさらに詳細に説明するが、本
発明はこれらに限定されるものではない。
The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto.

〈実施例1) 温度計、攪拌翼及び冷却管を有する容Q300−の四ツ
ロフラスコに、イソプロピルアルコール87mj、水1
30−.NaOH9,Ig (227−■1)を仕込み
、更にTBS56.6g (100gaol)及びT 
B S−MA 9.7 g (16Iol)を加えて溶
解した。
<Example 1> 87 mj of isopropyl alcohol and 1 ml of water were placed in a 300-capacity four-bottle flask equipped with a thermometer, stirring blade, and cooling tube.
30-. Prepared NaOH9, Ig (227-■1), and further added TBS56.6g (100gaol) and T
9.7 g (16 Iol) of BS-MA was added and dissolved.

T B S−MAの仕込み量は、TBS1モルに対して
0.16モルに相当する。また、水溶媒中のイソプロピ
ルアルコール濃度は40容量%に相当する。
The amount of TBS-MA charged was equivalent to 0.16 mol per 1 mol of TBS. Further, the concentration of isopropyl alcohol in the water solvent corresponds to 40% by volume.

次に、アリルクロライド22.2g (290mmol
)を−括して加え、還流温度まで加熱昇温を行い、15
時間反応した。
Next, 22.2 g (290 mmol) of allyl chloride
) was added in batches, heated to reflux temperature, and heated to reflux temperature.
Time reacted.

尚、反応を開始して8時間目にNaOH1,6g (4
0m5ol)を追加した。
8 hours after starting the reaction, 1.6 g of NaOH (4
0 m5 ol) was added.

反応終了後、室温まで冷却し、析出している結晶を濾別
し、さらに水洗を行った後、乾燥させて白色の針状結晶
のTBS−BA66、Ogを得た。
After the reaction was completed, the mixture was cooled to room temperature, the precipitated crystals were filtered off, washed with water, and dried to obtain white needle-like crystals of TBS-BA66, Og.

この単離されたTBS−BAの結晶及び上記の濾液につ
いて、液体クロマトグラフィーによる分析を行ったとこ
ろ、TBS転化率は100%、TBS−BAの単離結晶
収率は、仕込みのTBSとT B S−MAを合計した
量に対して85.7%、単離結晶純度は100%であっ
た。
When this isolated TBS-BA crystal and the above filtrate were analyzed by liquid chromatography, the TBS conversion rate was 100%, and the isolated crystal yield of TBS-BA was the same as that of the charged TBS and TBS. The purity of the isolated crystal was 100%, which was 85.7% based on the total amount of S-MA.

尚、濾液中には反応中間体であるT B S−MAのみ
が溶解しており、目的物であるTBS−BAはほとんど
溶解していなかった。
In addition, only the reaction intermediate TBS-MA was dissolved in the filtrate, and the target product TBS-BA was hardly dissolved.

この反応条件及び結果を表1に示す。The reaction conditions and results are shown in Table 1.

(実施例2〜5〉 実施例1に準じて、300rR1の四ツロフラスコに表
1に示した組成で原料を仕込み、表1の反応条件で反応
を行った。実施例1と同様の後処理を、実施し、TBS
−BAを得た。得られた結果を表1に示す。
(Examples 2 to 5) According to Example 1, raw materials with the composition shown in Table 1 were charged into a 300rR1 Yotsuro flask, and the reaction was carried out under the reaction conditions shown in Table 1.The same post-treatment as in Example 1 was carried out. ,implemented,TBS
- BA was obtained. The results obtained are shown in Table 1.

(比較例1〉 温度計、攪拌翼及び冷却管を有する容量30〇−の四ツ
ロフラスコに、イソプロピルアルコール87−9水13
0rd、NaOH10,Og (2501dol)を仕
込み、さらにTBS56.6g(100m5ol)を加
えて溶解した。
(Comparative Example 1) In a 300-capacity four-glass flask equipped with a thermometer, stirring blade, and cooling tube, 87-9 parts of isopropyl alcohol and 13 parts of water were added.
0rd, NaOH 10,0g (2501 dol) was added, and TBS 56.6 g (100 ml 5 ol) was further added and dissolved.

水溶媒中のイソプロピルアルコール濃度は40容量%に
相当する。
The isopropyl alcohol concentration in the water medium corresponds to 40% by volume.

次に、アリルクロライド19.1g (250mmol
)を−括して加え、還流温度まで加熱昇温を行い、15
時間反応した。
Next, 19.1 g (250 mmol) of allyl chloride
) was added in batches, heated to reflux temperature, and heated to reflux temperature.
Time reacted.

反応終了後、室温まで冷却し、析出している結晶を濾別
し、さらに水洗を行った後、乾燥させて白色の針状結晶
のTBS−BA4g、6gを得た。
After the reaction was completed, the mixture was cooled to room temperature, the precipitated crystals were filtered off, washed with water, and dried to obtain 4 and 6 g of TBS-BA as white needle-like crystals.

この単離されたTBS−BAの結晶及び上記の濾液につ
いて、液体クロマトグラフィーによる分析を行ったとこ
ろ、TBS転化率は100%、TBS−BAの単離結晶
収率は75.2%、単離結晶純度は100%であった。
When this isolated TBS-BA crystal and the above filtrate were analyzed by liquid chromatography, the TBS conversion rate was 100%, the isolated crystal yield of TBS-BA was 75.2%, and the isolated TBS-BA crystal yield was 75.2%. Crystal purity was 100%.

尚、濾液中には反応中間体であるTBS−MAのみが溶
解しており、目的物であるTBS−BAはほとんど溶解
していなかった。
In addition, only TBS-MA, which is a reaction intermediate, was dissolved in the filtrate, and TBS-BA, which was a target product, was hardly dissolved.

この反応条件及び結果を表1に示す。The reaction conditions and results are shown in Table 1.

(比較例2.3) 比較例1に準じて、300rdの四ツロフラスコに表1
に示した組成で原料を仕込み、表1の反応条件で反応を
行った。比較例1と同様の後処理を、実施し、TBS−
BAを得た。得られた結果を表1に示す。
(Comparative Example 2.3) According to Comparative Example 1, Table 1 was added to a 300rd Yotsuro flask.
The raw materials were charged with the composition shown in Table 1, and the reaction was carried out under the reaction conditions shown in Table 1. The same post-treatment as in Comparative Example 1 was carried out, and TBS-
Obtained BA. The results obtained are shown in Table 1.

(比較例4) 温度計、攪拌翼及び冷却管を有する容量300−の四ツ
ロフラスコに、イソプロピルアルコール87m、水13
0rd、NaOH6,9g (173maol)を仕込
み、さらにTBS36.8g (65I1mol)及び
TBS−MA21.2g (35msol)を加えて溶
解した。
(Comparative Example 4) 87 ml of isopropyl alcohol and 13 ml of water were placed in a 300-capacity four-bottle flask equipped with a thermometer, stirring blade, and cooling tube.
0rd, 6.9 g (173 maol) of NaOH was charged, and 36.8 g (65I 1 mol) of TBS and 21.2 g (35 msol) of TBS-MA were added and dissolved.

T B S−MAの仕込み量は、TBS1モルに対して
0854モルに相当する。また、水溶媒中のイソプロピ
ルアルコール濃度は40容量%に相当する。
The amount of TBS-MA charged was equivalent to 0854 mol per 1 mol of TBS. Further, the concentration of isopropyl alcohol in the water solvent corresponds to 40% by volume.

次に、アリルクロライド15.8g (206gaol
)を−括して加え、還流温度まで加熱昇温を行い、15
時間反応した。
Next, 15.8 g of allyl chloride (206 gaol
) was added in batches, heated to reflux temperature, and heated to reflux temperature.
Time reacted.

尚、反応を開始して8時間目にNaOH1,3g (3
3■ol)を追加した。
8 hours after starting the reaction, 1.3 g of NaOH (3
3■ol) was added.

反応終了後、室温まで冷却し、析出している結晶を濾別
し、さらに水洗を行った後、乾燥させて白色の針状結晶
のTBS−BA46.8gを得た。
After the reaction was completed, the mixture was cooled to room temperature, precipitated crystals were filtered off, washed with water, and dried to obtain 46.8 g of white needle-like crystals of TBS-BA.

この単離されたTBS−BAの結晶及び上記の濾液につ
いて、液体クロマトグラフィーによる分析を行ったとこ
ろ、TBS転化率は100%、TBS−BAの単離結晶
収率は、仕込みのTBSとT B S−MAを合計した
量に対して72.4%、単離結晶純度は100%であっ
た。
When this isolated TBS-BA crystal and the above filtrate were analyzed by liquid chromatography, the TBS conversion rate was 100%, and the isolated crystal yield of TBS-BA was the same as that of the charged TBS and TBS. The purity of the isolated crystal was 100%, which was 72.4% based on the total amount of S-MA.

尚、濾液中には反応中間体であるTBS−MAのみが溶
解しており、目的物であるTBS−BAはほとんど溶解
していなかった。
In addition, only TBS-MA, which is a reaction intermediate, was dissolved in the filtrate, and TBS-BA, which was a target product, was hardly dissolved.

この反応条件及び結果を表1に示す。The reaction conditions and results are shown in Table 1.

(比較例5.6) 比較例1に準じて、300−の四ツロフラスコに表1に
示した組成で原料を仕込み、表1の反応条件で反応を行
った。比較例1と同様の後処理を、実施し、TBS−B
Aを得た。得られた結果を表1に示す。
(Comparative Example 5.6) According to Comparative Example 1, raw materials having the compositions shown in Table 1 were charged into a 300-meter Yotsuya flask, and a reaction was carried out under the reaction conditions shown in Table 1. The same post-treatment as in Comparative Example 1 was carried out, and TBS-B
I got an A. The results obtained are shown in Table 1.

Claims (1)

【特許請求の範囲】[Claims] ビス(4−ヒドロキシ−3,5−ジプロモフェニル)ス
ルホンを、アルカリの存在下、アリルクロライドを用い
てアリルエーテル化する方法に於いて、4−アリルオキ
シ−4′−ヒドロキシ−3,3′、5,5′−テトラブ
ロモジフェニルスルホンをビス(4−ヒドロキシ−3,
5−ジプロモフェニル)スルホン1モルに対して0.0
2〜0.40モルの範囲で添加して反応することを特徴
とするビス(4−アリルオキシ−3,5−ジプロモフェ
ニル)スルホンを製造する方法。
In a method for allyl etherifying bis(4-hydroxy-3,5-dipromophenyl)sulfone using allyl chloride in the presence of an alkali, 4-allyloxy-4'-hydroxy-3,3', 5,5'-tetrabromodiphenyl sulfone was converted into bis(4-hydroxy-3,
0.0 per mole of 5-dipromophenyl)sulfone
A method for producing bis(4-allyloxy-3,5-dipromophenyl) sulfone, which comprises adding and reacting in an amount of 2 to 0.40 mol.
JP22439589A 1989-09-01 1989-09-01 Production of bis(4-allyloxy-3,5-dibromophenyl)sulfone Pending JPH0390058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22439589A JPH0390058A (en) 1989-09-01 1989-09-01 Production of bis(4-allyloxy-3,5-dibromophenyl)sulfone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22439589A JPH0390058A (en) 1989-09-01 1989-09-01 Production of bis(4-allyloxy-3,5-dibromophenyl)sulfone

Publications (1)

Publication Number Publication Date
JPH0390058A true JPH0390058A (en) 1991-04-16

Family

ID=16813081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22439589A Pending JPH0390058A (en) 1989-09-01 1989-09-01 Production of bis(4-allyloxy-3,5-dibromophenyl)sulfone

Country Status (1)

Country Link
JP (1) JPH0390058A (en)

Similar Documents

Publication Publication Date Title
JP2797024B2 (en) Sulfonium compound
JPH0390058A (en) Production of bis(4-allyloxy-3,5-dibromophenyl)sulfone
JPH06157389A (en) Preparation of beta-naphthyl benzyl ether
JP3986200B2 (en) Method for producing 3-cyanotetrahydrofuran
JP2000026350A (en) Production of 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane derivative
JPH08311025A (en) Production of 4-hydroxy-2-pyrrolidone
JPH0311051A (en) Preparation of bis(4-allyloxy-3,5-dibromophenyl)sulfone
JPS593982B2 (en) Method for producing carbonic acid monoester salts
KR930002964B1 (en) Process for producing salicylic acid derivatives
JP2913711B2 (en) Method for producing ditetraalkylammonium carbonate
KR940006531B1 (en) Process for preparation of pyridine derivatives
JPH03271267A (en) Production of bis(3,5-dibromo-4-(dibromopropoxy)phenyl) sulfone
JP2894366B2 (en) Method for producing deacetylcolchicine
JP3061315B2 (en) Method for producing dialkyl dicarbonate
JP2500316B2 (en) 1,4,5,8-Tetrakis (halogenomethyl) naphthalene derivative and method for producing the same
JP2798550B2 (en) Method for producing bisallyloxytetrabromobisphenol S
JP2928856B2 (en) Method for producing bis (4-allyloxy-3,5-dibromophenyl) sulfone
JPS58121284A (en) Preparation of amino peroxide
JPH0311052A (en) Preparation of bis(4-allyloxy-3,5-dibromophenyl)sulfone
JPH0952855A (en) Production of 9-fluorenylmethanols
JPS63208565A (en) Production of guanidine derivative
JPH0393768A (en) Production of bis(4-allyloxy-3,5-dibromophenyl)sulfone
KR850001474B1 (en) Process for the preparation of 1-phenyl-3(2,2-dialkoxy)ethyl-3,6-diazaheptane-4,7-dione derivation
JPS63310842A (en) Production of bis(beta-p-methoxyphenoxyethyl) ether
JPH0710809B2 (en) Method for producing dicarbonic acid dialkyl ester