JPH0389943A - Preparation of catalyst for purifying exhaust - Google Patents

Preparation of catalyst for purifying exhaust

Info

Publication number
JPH0389943A
JPH0389943A JP1097896A JP9789689A JPH0389943A JP H0389943 A JPH0389943 A JP H0389943A JP 1097896 A JP1097896 A JP 1097896A JP 9789689 A JP9789689 A JP 9789689A JP H0389943 A JPH0389943 A JP H0389943A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
complex salt
copper
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1097896A
Other languages
Japanese (ja)
Inventor
Kazunobu Ishibashi
一伸 石橋
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1097896A priority Critical patent/JPH0389943A/en
Publication of JPH0389943A publication Critical patent/JPH0389943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst capable of efficiently purifying HC, CO and NOX in exhaust even in the atmosphere contg. excess oxygen by utilizing copper complex salt or noble metallic complex salt as a template in the case of synthesizing zeolite. CONSTITUTION:Copper complex salt or noble metallic complex salt utilized as a template is mixed with silicon compd. and aluminum compd. This mixture is calcined to synthesize zeolite. Thereafter zeolite is carried on a refractory carrier and a catalyst is produced. As the complex salt of copper or noble metal e.g. Pt, Rh, Ir and Pd, such complex salt is shown that an inorganic or organic ligand e.g. ammonia, amine, diamine, carboxylic acid, EDTA and heterocyclic compd., etc., are coordinated to the above-mentioned metal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車などの車両に用いる排気浄化用触媒の製
造方法、特に詳しくは空燃比がリーン側となる酸素過剰
雰囲気に耘いても排気中のHe、 CO及びNOx f
高率に浄化できる触媒の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an exhaust purification catalyst used in vehicles such as automobiles, and more specifically, the present invention relates to a method for manufacturing an exhaust purification catalyst used in vehicles such as automobiles, and more particularly, the present invention relates to a method for manufacturing an exhaust purification catalyst for use in vehicles such as automobiles, and more specifically, the present invention relates to a method for manufacturing an exhaust purifying catalyst for use in vehicles such as automobiles. He, CO and NOx f
The present invention relates to a method for producing a catalyst that can be purified at a high rate.

〔従来の技術〕[Conventional technology]

自動車の排気浄化用触媒として、−酸化炭素(CO)及
び炭化水素(HC)の酸化と、窒素酸化物(NOx)の
還元金同時に行う触媒が汎用されている。このような触
媒は基本的にはコージェライト等の耐火性担体にγ−ア
ルミナスラリーを塗布、焼成した後、Pd、 Pt、 
Rh等の金属又はその混合物を担持させたものである。
Catalysts that simultaneously oxidize carbon oxides (CO) and hydrocarbons (HC) and reduce nitrogen oxides (NOx) are widely used as exhaust purifying catalysts for automobiles. Basically, such catalysts are prepared by coating a γ-alumina slurry on a refractory support such as cordierite, firing it, and then adding Pd, Pt,
It supports a metal such as Rh or a mixture thereof.

ところで前記のような触媒は、エンジンの設定空燃比に
よりて浄化特性が大きく左右され、希薄混合気つ1り空
燃比が大きいリーン側では燃焼後も酸素(02)の量が
多くなシ、酸化作用が活発に、還元作用が不活発になる
。この逆に。
By the way, the purification characteristics of the catalyst described above are greatly influenced by the set air-fuel ratio of the engine, and in the lean side where the air-fuel ratio is large, the amount of oxygen (02) is large even after combustion, and the oxidation The action becomes active and the reducing action becomes inactive. On the contrary.

空燃比の小さいリッチ側では酸化作用が不活発に、還元
作用が活発になる。この酸化と還元のバランスがとれる
理論空燃比(A/f”= 14.6 )付近で触媒は最
も有効に働く。
On the rich side where the air-fuel ratio is small, oxidation is inactive and reduction is active. The catalyst works most effectively near the stoichiometric air-fuel ratio (A/f''=14.6), where oxidation and reduction are balanced.

従って触媒を用いる排気浄化装置乞取付けた自動車では
、排気系の酸素濃産金検出して、混合気を理論空燃比付
近に保つようフィードバック制御が行なわれている。
Therefore, in automobiles equipped with exhaust purification devices using catalysts, feedback control is performed to detect oxygen-enriched metal in the exhaust system and maintain the air-fuel mixture near the stoichiometric air-fuel ratio.

方、自動車に釦いては低燃比化も要請されて釦9、その
ためには通常走行時なるべく酸素過剰の混合気全燃焼さ
せればよいことが知られている。しかしそうすると空燃
比がリーン側の酸素過剰雰囲気となって、排気中の有害
成分のうちHC,Coは酸化除去できても、NOxは触
媒床に吸着した02によって活性金属との接触が妨げら
れるために、還元除去することが困難となる。
On the other hand, there is a demand for lower fuel ratios in automobiles, and it is known that in order to achieve this, it is sufficient to completely combust a mixture with as much oxygen as possible during normal driving. However, if this is done, the air-fuel ratio will be on the lean side, resulting in an oxygen-excess atmosphere, and although HC and Co among the harmful components in the exhaust can be removed by oxidation, NOx will be prevented from contacting active metals by the 02 adsorbed on the catalyst bed. Therefore, it becomes difficult to reduce and remove it.

このような欠点を改良するため、本出願人は%願昭62
−291258号に釦いて、遷移金属でイオン交換され
たゼオライトが耐火性担体上に担持されていることを特
徴とする排気浄化用触媒會提案した。
In order to improve these drawbacks, the applicant has filed a
In No. 291,258, they proposed a catalyst for exhaust gas purification characterized by a zeolite ion-exchanged with a transition metal supported on a refractory carrier.

上記の遷移金属としては、Cu、 Co、 Cr、 N
i。
The above transition metals include Cu, Co, Cr, N
i.

Fe・t Mnが好ましく、特にCuが好ましい。Fe·tMn is preferable, and Cu is particularly preferable.

ゼオライ11周知のように一般式二 xM2 /n −At203− ysi02で表わされ
る結晶性アルミノケイ酸で、M(n価の金属)、X、y
の違いによって、結晶構造中のトンネル構造(細孔径)
が異なり、多くの種類のものが市販されている。又、S
I4+の一部tA43+で置換しているため正電荷が不
足し、その不足を補うためNa+、に+等の陽イオン金
結晶内に保持する性質があるため、高い陽イオン交換能
金持っている。
Zeolite 11 As is well known, it is a crystalline aluminosilicate represented by the general formula 2xM2/n -At203-ysi02, and contains M (n-valent metal), X, y
Tunnel structure (pore size) in the crystal structure due to differences in
There are many different types available on the market. Also, S
Because part of I4+ is replaced with tA43+, there is a lack of positive charge, and to compensate for this lack, it has the property of retaining cations such as Na+ and Ni+ within the gold crystal, so it has a high cation exchange ability. .

セして又、ゼオライトは別名分子篩いと言われているよ
うに分子の大きさと並ぶ数A単位の細孔を有している。
Furthermore, zeolite has pores of several A units in size, which are comparable to the size of molecules, as is also called a molecular sieve.

そのためHCが細孔に選択的に取り込まれ、そこでHC
が酸点に吸着される。又、細孔中にはイオン交換により
導入された遷移金属の活性サイトが存在するため、そこ
にNOが吸着し17J、 C若しくはHCから生成した
活性なCOと反応を起こす。このため、リーン側にふ・
いてもNOxを効率よく除去することができる。
Therefore, HC is selectively taken into the pores, where HC
is adsorbed at acid sites. Furthermore, since active sites of transition metals introduced by ion exchange exist in the pores, NO is adsorbed there and reacts with active CO generated from 17J, C, or HC. For this reason, lean side
NOx can be removed efficiently even when

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、イオン交換で例えば銅を担持すると、ゼ
オンイトa孔内のみならずゼオライト粒子の表面にも銅
が付着する恐れがあり、銅が触媒製造時の熱処理やその
使用時の熱負荷などに伴って凝集し易く、これは活性や
耐久性低下の大きな原因となる。
However, when supporting copper, for example, through ion exchange, there is a risk that copper will adhere not only to the inside of the zeonite a pores but also to the surface of the zeolite particles. It tends to aggregate, which is a major cause of decreased activity and durability.

木兄f3Aは前記従来技術にかける問題点を解決するた
めのものである。本発明の第1の目的はNOx浄化率が
高く耐久性に優れた排気浄化用触媒の製造方法全提供す
ることである。又、本発明の第2の目的は前記に加えて
更にHCやCOの浄化率金高めることもできり一ンNO
x触媒としてのみならず、三元触媒としても又使用し得
る排気浄化用触媒の製造方法全提供することである。
The Kinen f3A is intended to solve the problems of the prior art described above. The first object of the present invention is to provide a complete method for manufacturing an exhaust gas purification catalyst that has a high NOx purification rate and excellent durability. In addition to the above, the second object of the present invention is to further increase the purification rate of HC and CO.
An object of the present invention is to provide a complete method for producing an exhaust purification catalyst that can be used not only as an x-catalyst but also as a three-way catalyst.

〔課題金解決するための手段〕[Means for resolving issues]

すなわち本発明の排気浄化用触媒の製造方法は、珪素化
合物と、アルミニウム化合物と、テンプレートとして銅
錯塩又は貴金属錯塩とを混合し、焼成してゼオライト’
1合成し、しかる後該ゼオライト全耐火性担体上に担持
すること金%徴とする。
That is, the method for producing an exhaust purification catalyst of the present invention involves mixing a silicon compound, an aluminum compound, and a copper complex salt or a noble metal complex salt as a template, and baking the mixture to form a zeolite.
The zeolite is then synthesized and then supported on a refractory carrier.

ゼオライトには下記第1衣に示すように各種のものがあ
る。
There are various types of zeolites as shown in the first section below.

第1表 にもなゼオライトのスズパーケージ (Super cage)  入口と網目構造本発明の
方法に耘いて、合成する好ましいゼオライトとしては例
えばZSM−5及びフェリエライト(Ferrieri
 te)が挙げられる。zsM−sについては例えばジ
ー、ティー、ココティ口(G。
Super Cage Entrance and Network Structure of Zeolite (Table 1) Preferred zeolites to be synthesized using the method of the present invention include, for example, ZSM-5 and Ferrierite.
te). For zsM-s, for example, g, tea, cocoty mouth (G.

T、 Kokotailo)、ニス、 xル、 c+ 
−トン(S、 L。
T, Kokotailo), varnish, xle, c+
-ton (S, L.

LawLon)及びデイ−、エッチ、オルソン(D、)
i。
LawLon) and Day, H. Olson (D.)
i.

01 son ) ”ストラクチャーオブシンセテイソ
クゼオライトZSM−5(Structure of 
5yntheticzeolite ZSM−5)” 
ネイチャー (Nature)第272巻、  197
8年3月30日、第437頁に記載源れている。又、フ
ェリエライトについては例えばアール、グラムリ・ノチ
ーマイヤー(托。
01 son) “Structure of Synthesis Zeolite ZSM-5 (Structure of
5yntheticzeolite ZSM-5)”
Nature Volume 272, 197
Source: March 30, 1998, page 437. Also, regarding ferrierite, for example, Earl, Gramli Nochimeyer.

Graml ich−Meier) 、ダブリュー、エ
ム、マイヤー (W、 M、 Me i e r )及
びビー、グー。スミス(B、K。
Gramlich-Meier, W. M. Meier and B. Gu. Smith (B, K.

Sm1th)、 ”オンフォールツインザフレームワー
クストラクチャーオブゼオライトフエリエライ)  (
On  faults  in   the  fra
mework  5trucLureof zeoli
te ferrieriQ ”  ツアイトシュリフ)
  7ユA/クリスタログラフイー(Zei Lscb
rif Lfur Kristallo−graphi
e) ’I 69.201〜210(1984)並びに
シー、エル、キビイ(C,L。
Sm1th), ``Onfall Twin the Framework Structure of Zeolite Fuelierai) (
On faults in the fra
mework 5trucLureof zeoli
te ferrieriQ ” Zeitschrif)
7yuA/Crystalgraphy (Zei Lscb
rif Lfur Kristallo-graphi
e) 'I 69.201-210 (1984) and C, L. Kibii (C, L.

Kibby)、 x−、ジェー、ぺClツタ(A、 J
、Perro L ta)& 7Jエフ 、 イー 、
 −y ノV ス(B”、E、MassoLh) 。
Kibby), x-, J, PeCl ivy (A, J
, Perro Lta) & 7JF, E.
-yノVsu(B", E, MassoLh).

コンポジション アンドキャタリテイ・νクプロパティ
ーズ オブ シンセテイツク フェリ エ ラ イ ト
 (Composition  and  Catal
yticProperties of 5ynthet
ic FerrieriLe)”ジャナル オプ キャ
タリシス(Journal ofcaLalysis)
 35.256〜272(1974)に記載されている
Composition and Catal Properties of Synthesis
yticProperties of 5ynthet
ic FerrieriLe)”Journal ofcaLalysis
35.256-272 (1974).

上記ゼオライトのうち、ZSM−5はその他のゼオライ
トと比較して、8i02/At203比が大きく酸強度
が高い:酸素10員環である:結晶水が非常に少なく疎
水性で弱酸点が少ない等の特徴を有するものであシ、最
も好ましい。
Among the above zeolites, compared to other zeolites, ZSM-5 has a large 8i02/At203 ratio and high acid strength; it has a 10-membered oxygen ring; it has very little crystal water, is hydrophobic, and has few weak acid sites. It is most preferable to have the following characteristics.

珪素化合物やアルミニウム化合jp!:Jは、前記ゼオ
ライ)k製造するために通常使用されるものであってよ
く、5102やA、t203f含む化合物又は組成物例
えばシリカゾルやアルミン酸ナトリウムであってよい。
Silicon compounds and aluminum compounds jp! :J may be one commonly used for producing the above zeolite), and may be a compound or composition containing 5102, A, or t203f, such as silica sol or sodium aluminate.

珪素化合物及びアルミニウムの比率は目的とするゼオラ
イトに応じて決定する。
The ratio of silicon compound and aluminum is determined depending on the desired zeolite.

テンプレート(LemplaLe)としての銅又は貴金
属例えばP L、 Rh、 Ir、 Pdの錯塩として
は、前記金属に無機又は、有機の配位子例えば、アンモ
ニア、アミン、ジアミン、カルボン酸、エチレンジアミ
ン四酢酸(edta)、複素環式化合物等が配位した錯
塩が挙げられる。これらの各種錯塩のうちから、ゼオラ
イト合成条件や取シ扱い性、入手性、性状(溶解度など
)等を考慮して適するものを選ぶ。又、テングレートの
比率は最終的にゼオライトに担持させる銅又は貴金属の
量に応じて決定する。
Complex salts of copper or noble metals such as PL, Rh, Ir, Pd as templates may be prepared by combining said metal with inorganic or organic ligands such as ammonia, amines, diamines, carboxylic acids, ethylenediaminetetraacetic acid (edta). ), complex salts coordinated with heterocyclic compounds, etc. Among these various complex salts, a suitable one is selected in consideration of zeolite synthesis conditions, ease of handling, availability, properties (solubility, etc.), etc. Further, the ratio of the tensile rate is ultimately determined depending on the amount of copper or noble metal supported on the zeolite.

ゼオライトの合成は通常水中で各成分を混合し、オート
クレーブ中で反応させ、水洗、乾燥後、約500℃で焼
成することによシ行なう。混合条件やオートクレーブ処
理条件は適宜選択する。
Zeolite is usually synthesized by mixing each component in water, reacting in an autoclave, washing with water, drying, and then calcining at about 500°C. Mixing conditions and autoclave treatment conditions are selected as appropriate.

本発明の方法に使用する耐火性担体は例えばコージェラ
イト等のセラミックス担体、金属担体等が挙げられる。
Examples of the refractory carrier used in the method of the present invention include ceramic carriers such as cordierite, metal carriers, and the like.

耐火性担体へのゼオライトの盈布量、耐火性担体の大き
さや形状等の性状は触媒に要求される特性に応じて選択
する。
The amount of zeolite spread on the refractory carrier, the size and shape of the refractory carrier, and other properties are selected depending on the characteristics required of the catalyst.

〔作用〕[Effect]

テンプレートとして銅錯塩又は貴金属錯塩會使用すると
、ゼオライト合成の初期段階で銅錯塩又は資金錯塩が核
となり、いわゆる鋳型反応によ5Si−0のケージが形
成される。次いで焼成段階で配位子が消滅する過程で銅
又は貴金属がゼオライト格子又は細孔内の有効なサイト
に組み込1れる。このときの銅又は貴金属とゼオライト
格子間の化学結合は、イオン交換による静電的な結合よ
り強くなり、銅又は貴金属の遊動が防止できる。更に、
銅又は貴金属がゼオライトの細孔内の有効なサイトに多
く組み込1れることにより、シンタリングが起りにくく
、熱安定性が向上する。
When a copper complex salt or a noble metal complex salt is used as a template, the copper complex salt or noble metal complex salt becomes a nucleus in the initial stage of zeolite synthesis, and a cage of 5Si-0 is formed by a so-called template reaction. The copper or noble metal is then incorporated into available sites within the zeolite lattice or pores during the calcination step, during which the ligands disappear. At this time, the chemical bond between the copper or noble metal and the zeolite lattice is stronger than the electrostatic bond due to ion exchange, and migration of the copper or noble metal can be prevented. Furthermore,
By incorporating a large amount of copper or precious metal into effective sites within the pores of the zeolite, sintering is less likely to occur and thermal stability is improved.

〔実施例〕〔Example〕

以下の実施例及び比較例により、本発明を更に詳細に説
明する。な訃、本発明は下記実施例に限定されるもので
はない。
The present invention will be explained in more detail with reference to the following examples and comparative examples. However, the present invention is not limited to the following examples.

実施例1〜10 ゼオライトとしてZSM−5=i合或する場合の例を以
下に示す。
Examples 1 to 10 Examples in which the zeolite is ZSM-5=i are shown below.

以下の成分: )シリカゾル(30wt%5in2) II)  7 ルミ7 酸t トリウム(1,5Na2
0/AtzOs )水溶液 1ii )  純水 lv)  テンプレート水溶液(1mol/L)を、最
終的に608i(J2・A/!403−1.5Na20
−1. s(テングレート)・550 H2Oの組成比
となるように混合して、室温で20〜30分攪拌する。
The following ingredients: ) Silica sol (30wt%5in2) II) 7 Lumi7 acid t Thorium (1,5Na2
0/AtzOs) aqueous solution 1ii) Pure water lv) Template aqueous solution (1 mol/L) was finally 608i (J2・A/!403-1.5Na20
-1. The mixture is mixed so that the composition ratio becomes s (ten rate).550 H2O, and the mixture is stirred at room temperature for 20 to 30 minutes.

その後、オートクレーブ中で、190℃で60〜100
時間反応させ、水洗、乾燥後、約500℃で焼成する。
Then, in an autoclave at 190℃ for 60 to 100 minutes.
After reacting for a time, washing with water, drying, and baking at about 500°C.

上記によって合成したZSM−5粉末50部、シリカゾ
ル(10wL%5i02)70部、純水20部を混合し
攪拌してスラリーヲ得る。次いで、このスラリー全、直
径30陥、長さ50解のコシニライト質モノリステスト
ピースにウォッシュコートした(コート量:  120
f/l)。これを500℃で3時間焼成した。
50 parts of the ZSM-5 powder synthesized above, 70 parts of silica sol (10 wL% 5i02), and 20 parts of pure water are mixed and stirred to obtain a slurry. Next, this entire slurry was wash coated on a cosinilite monolith test piece with a diameter of 30 cavities and a length of 50 cavities (coating amount: 120 mm).
f/l). This was baked at 500°C for 3 hours.

テンプレートとして下記a)〜j): a)  (Cu(edLa))Brz edta:エチレンジアミン四酢酸 (Cu(NH3) 4 ) Brt (Cu(en)2 ) C4又は(cu(en)s )
en:エチレンジアミン t2 d) 〔C−4寓:)2)B・・ e)(Cu(イミダゾール)4 ) Br2■ f)  (PL(en)2 ) CA2又はCPL(e
n)3) ctsg)  (”’(NH3)4 ) C
4・l(,0又はCP t (NH3)6 ) C14
h)  (Rh(en)z 、) Ctz又は(Rh(
en)3 ) C13’)  (Rh(NH3)6)B
rs D  (Pd(NH4))Br2 全使用し、て触媒I〜X&得た。図は本発明の方法で得
た排気浄化用触媒1の斜視図である。
The following templates a) to j): a) (Cu(edLa)) Brz edta: ethylenediaminetetraacetic acid (Cu(NH3) 4 ) Brt (Cu(en)2 ) C4 or (cu(en)s )
en: Ethylenediamine t2 d) [C-4:) 2) B...e) (Cu (imidazole) 4) Br2 f) (PL(en)2) CA2 or CPL(e
n)3) ctsg) (''(NH3)4) C
4・l(,0 or CP t (NH3)6 ) C14
h) (Rh(en)z ,) Ctz or (Rh(
en)3) C13') (Rh(NH3)6)B
All of rs D (Pd(NH4))Br2 was used to obtain catalysts I to X&. The figure is a perspective view of an exhaust purification catalyst 1 obtained by the method of the present invention.

比較例1 テングレートとしてk)TPA・OH(三リン酸)を使
用すること以外は、実施例1〜10と同様にしてZSM
−5粉末を合成し、同様にウォッシュコートしたテスト
ピースに0.02 mo l/l酢酸酢酸溶水溶液80
rrtl金用イオン交換法によ9鋼を担持(2,8s 
y/l) して、触媒X乞得た。
Comparative Example 1 ZSM was prepared in the same manner as Examples 1 to 10, except that k) TPA・OH (triphosphoric acid) was used as the tensile rate.
-5 powder was synthesized, and a 0.02 mol/l acetic acid acetic acid solution 80
9 steel supported by ion exchange method for rrtl gold (2,8s
y/l) and obtained catalyst X.

比較例2 0、02 mo ]、/を酢酸銅水溶液80−の代わり
に(10003mo 1/l (Rh(Nl(3)6)
 C12水溶液joOm’i用いること以外は、比較例
1と同様にしてロジウムを担持(Q、3V/l)して、
触媒Xllを得た。
Comparative Example 2 0,02 mo ], / was replaced with (10003 mo 1/l (Rh(Nl(3)6)
Rhodium was supported (Q, 3V/l) in the same manner as in Comparative Example 1 except for using the C12 aqueous solution joOm'i,
Catalyst Xll was obtained.

比較例3 ペンタシル型ゼオライト構造の銅シリケート(ZSM−
5のAtの代わりにCuが入りた構造)粉末50部、シ
リカゾル(20wL%5i02)35部、純水20部を
混合し攪拌してスラリーヲ得る。以下、実施例1〜10
と同様にして触媒X■を得た。
Comparative Example 3 Copper silicate with pentasil type zeolite structure (ZSM-
Structure containing Cu in place of At in 5) 50 parts of powder, 35 parts of silica sol (20 wL% 5i02), and 20 parts of pure water were mixed and stirred to obtain a slurry. Below, Examples 1 to 10
Catalyst X■ was obtained in the same manner as above.

く性能評価試験〉 試験1 触媒■〜■と触媒XI、XII[について下記条件:耐
久条件:入シガス温度800℃、 5V=60000h
−1A/F=22.時間=3h 評価条件:入りガス温度400℃、 5V=60000
h−IA/F=22 の下で初期活性及び耐久後の活性會評価した。
Performance evaluation test〉 Test 1 Catalysts ■~■ and catalysts
-1A/F=22. Time = 3h Evaluation conditions: Inlet gas temperature 400℃, 5V = 60000
The initial activity and the activity after durability were evaluated under h-IA/F=22.

結果を下記第1表に示す。The results are shown in Table 1 below.

第1表  初期活性及び耐久後の活性 第1衣に示すように、本発明の方法によって製造した触
媒l〜■はテングレートとして銅の錯体を用いるため、
銅が安定な状態で存在し、イオン交換法によって製造し
た触媒Xに比べて耐久後の活性が高い。又、銅シリケー
)k用いた触媒Xl1lは、銅がシンタリングすること
はないため耐久後の活性の低下ぽあ1り大きくはないが
、銅がシリケート格子内に入っているためNo浄化率が
あ1□よぐない。
Table 1: Initial activity and activity after durability As shown in the first column, catalysts 1 to 2 produced by the method of the present invention use a copper complex as a tensile rate.
Copper exists in a stable state, and the activity after durability is higher than that of Catalyst X produced by an ion exchange method. In addition, with the catalyst Xl1l using copper silicate, the decrease in activity after durability is not large because the copper does not sinter, but the No purification rate decreases because the copper is contained in the silicate lattice. A1□I don't know.

したがって、本発明の方法によって製造した触媒I〜■
は、銅イオン交換ゼオライト触媒Xと銅シリケート触媒
X■の弱点をそれぞれ補りてトリ、リーンNOx触媒と
して優れている。
Therefore, catalysts I~■ produced by the method of the present invention
Compensates for the weaknesses of copper ion exchange zeolite catalyst X and copper silicate catalyst X, respectively, and is excellent as a tri-lean NOx catalyst.

試験2 触媒■〜Xと触媒1. Xl、 X[lについて下記条
件: 耐久条件二人りガス温度800℃、 5v=6oooo
h−1A/F = 14.6及び222時間=3h評価
条件:入りガス温度400℃、 5V−=60000h
−IA/F二14.6及び22 の下で耐久後の活性を評価した。結果を第2表に示す。
Test 2 Catalysts ■~X and Catalyst 1. The following conditions for Xl,
h-1A/F = 14.6 and 222 hours = 3h Evaluation conditions: Incoming gas temperature 400°C, 5V- = 60000h
The activity after durability was evaluated under -IA/F214.6 and 22. The results are shown in Table 2.

第2表 耐 久 後 の 活 性 第2表に示すように1本発明の方法によって製造した触
媒■〜Xはテンプレートとして貴金属の錯体を用いるた
め、貴金属が安定な状態で存在し、イオン交換法によっ
て製造した触媒X。
Table 2 Activity after durability As shown in Table 2, catalysts ① to Catalyst X.

刈に比べて広い空燃比の範囲にわたって耐久後の活性が
高い。
It has high activity after durability over a wide range of air-fuel ratios compared to mowing.

又1本発明の方法によって製造した触媒の間でも、テン
グレートの種類によシ活性が異なる。
Furthermore, among the catalysts produced by the method of the present invention, the activity differs depending on the type of tensile rate.

すなわち、触媒■〜Xと触媒Iとを比べると明らかなよ
うに、触媒■〜XはNOの浄化率が高いのみならず、H
CとCOの浄化率も又高い。
In other words, as is clear from comparing catalysts ■ to X with catalyst I, catalysts
The purification rate of C and CO is also high.

更に空燃比の変化による全体的な活性の変動も少ない。Furthermore, there is little variation in overall activity due to changes in air-fuel ratio.

それ故、銅−ゼオライド系の触媒I〜■では二元触媒と
しては使用できないが、貴金属−ゼオライド系の触媒■
〜Xであればリッチ側の雰囲気であっても劣化が少なく
、十分に三元触媒として使用し得る。したがって、本発
明の方法によって製造した貴金属−ゼオライド系の触媒
は、リーンNOx触媒としてのみならず、空燃比の幅広
い雰囲気での使用が可能である。
Therefore, copper-zeolide catalysts I~■ cannot be used as binary catalysts, but noble metal-zeolide catalysts I~■ cannot be used as binary catalysts.
~X, there is little deterioration even in a rich atmosphere and it can be used satisfactorily as a three-way catalyst. Therefore, the noble metal-zeolide catalyst produced by the method of the present invention can be used not only as a lean NOx catalyst but also in atmospheres with a wide range of air-fuel ratios.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の排気浄化用触媒の製造方法は、ゼ
オライトラ合成するにあたりテンプレートとして銅錯塩
又は貴金属錯塩を使用するため、ゼオライトの合成過程
でセオライト細孔内に銅又は貴金属金有効に分散させて
触媒種としたもの金得ることができる。このため触媒の
製造過程や使用時の熱的負荷による銅又は貴金属のシン
タリングが起らず、得られる触媒の活性及び耐久性が向
上した。
As mentioned above, the method for producing an exhaust purification catalyst of the present invention uses a copper complex salt or a noble metal complex salt as a template for zeolite synthesis, so that copper or noble metal gold is effectively dispersed in the zeolite pores during the zeolite synthesis process. By doing so, gold can be obtained as a catalytic species. Therefore, sintering of copper or precious metals due to thermal load during the manufacturing process or use of the catalyst does not occur, and the activity and durability of the resulting catalyst are improved.

又、テンプレートとして貴金属錯塩紫使用する場合には
、NOxに加えてtt C及びCOの浄化率が高くリー
ンNOx触媒としてはもちろん、A/F=13〜25程
度の幅広い雰囲気に釦いて高い活性を有する触媒を容易
に得ることができる。
In addition, when using precious metal complex salt purple as a template, it has a high purification rate of tt C and CO in addition to NOx, and can be used as a lean NOx catalyst, but also has high activity in a wide range of atmospheres with A/F = 13 to 25. A catalyst having the following properties can be easily obtained.

更に、本発明の方法は、テンプレートとして種々の錯塩
を使用することが可能であるので、各種の変法が可能で
あり、排気浄化用触媒に対する多岐にわたる要求に迅速
に対応することができる。
Furthermore, since the method of the present invention allows the use of various complex salts as templates, various modifications are possible, and the method can quickly respond to a wide variety of demands for exhaust purification catalysts.

【図面の簡単な説明】[Brief explanation of drawings]

区は本発明の方法金使用して製造した排気浄化用触媒の
一例の斜視−である。 図中、 1・・・排気浄化用触媒
The figure is a perspective view of an example of an exhaust purification catalyst manufactured using the method of the present invention. In the diagram, 1... Exhaust purification catalyst

Claims (1)

【特許請求の範囲】[Claims]  珪素化合物と、アルミニウム化合物と、テンプレート
として銅錯塩又は貴金属錯塩とを混合し、焼成してゼオ
ライトを合成し、しかる後該ゼオライトを耐火性担体上
に担持することを特徴とする排気浄化用触媒の製造方法
A catalyst for exhaust purification, characterized in that a silicon compound, an aluminum compound, and a copper complex salt or a noble metal complex salt as a template are mixed, fired to synthesize zeolite, and then the zeolite is supported on a refractory carrier. Production method.
JP1097896A 1989-04-18 1989-04-18 Preparation of catalyst for purifying exhaust Pending JPH0389943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097896A JPH0389943A (en) 1989-04-18 1989-04-18 Preparation of catalyst for purifying exhaust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097896A JPH0389943A (en) 1989-04-18 1989-04-18 Preparation of catalyst for purifying exhaust

Publications (1)

Publication Number Publication Date
JPH0389943A true JPH0389943A (en) 1991-04-15

Family

ID=14204510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097896A Pending JPH0389943A (en) 1989-04-18 1989-04-18 Preparation of catalyst for purifying exhaust

Country Status (1)

Country Link
JP (1) JPH0389943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312079A (en) * 1992-05-07 1993-11-22 Mitsubishi Electric Corp Intake air quantity controller of engine
US5358916A (en) * 1992-11-16 1994-10-25 N.E. Chemcat Corporation Catalyst for purifying exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312079A (en) * 1992-05-07 1993-11-22 Mitsubishi Electric Corp Intake air quantity controller of engine
US5358916A (en) * 1992-11-16 1994-10-25 N.E. Chemcat Corporation Catalyst for purifying exhaust gas

Similar Documents

Publication Publication Date Title
JP5584116B2 (en) Metal-doped zeolite and process for producing the same
US5017538A (en) Catalyst for purifying exhaust gas and a method of producing the same
US20150290632A1 (en) IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
JPH01130735A (en) Catalyst for purifying exhaust gas
JP2015205270A (en) Novel iron-containing aluminosilicate zeolites and methods of making and using the same
KR20120098892A (en) Process of direct copper exchange into na+ form of chabazite molecular sieve, and catalysts, systems and methods
BR112012014731B1 (en) process for the preparation of molecular sieves
KR20010098787A (en) A process and catalyst for reducing nitrogen oxides
JP5902682B2 (en) Copper-containing ZSM-34, OFF and / or ERI zeolitic materials for selective reduction of NOx
JP2013533804A (en) Copper-containing ZSM-34, OFF and / or ERI zeolitic materials for selective reduction of NOx
US20150231620A1 (en) IRON-ZEOLITE CHABAZITE CATALYST FOR USE IN NOx REDUCTION AND METHOD OF MAKING
EP3778017A1 (en) Integrated catalyst system for stoichiometric-burn natural gas vehicles and preparation method therefor
JPH07155614A (en) Production of exhaust gas purifying catalyst
JPH05220403A (en) Exhaust gas purifying catalyst
JPH0389943A (en) Preparation of catalyst for purifying exhaust
JPH02293050A (en) Catalyst for purification of exhaust gas
KR20130058987A (en) Copper-zeolite catalyst for simultaneous removal of carbon monooxide and nitrogen oxide and method for preparing thereof
CN114904570A (en) High-nitrogen selective ammonia oxidation catalyst applied to diesel engine and preparation method thereof
JPH04193347A (en) Catalyst for purification of exhaust gas
JPH09168724A (en) Removing method for nitrogen oxide
JPH02261545A (en) Production of catalyst for purification of exhaust gas
JP3141233B2 (en) Manufacturing method of exhaust gas purification catalyst
JPH0386213A (en) Method for catalytically decomposing nitrogen oxide
JP3300028B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3395221B2 (en) Nitrogen oxide removal method