JPH0389251A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0389251A
JPH0389251A JP22573189A JP22573189A JPH0389251A JP H0389251 A JPH0389251 A JP H0389251A JP 22573189 A JP22573189 A JP 22573189A JP 22573189 A JP22573189 A JP 22573189A JP H0389251 A JPH0389251 A JP H0389251A
Authority
JP
Japan
Prior art keywords
photoreceptor
charge
group
formula
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22573189A
Other languages
Japanese (ja)
Inventor
Yoshinobu Sugata
好信 菅田
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22573189A priority Critical patent/JPH0389251A/en
Publication of JPH0389251A publication Critical patent/JPH0389251A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the red reproducibility of a photosensitive body by making the combination use of a specific bisazo compd. and specific perylene compd. as a charge generating material. CONSTITUTION:The photosensitive body is formed by successively or reverse- successively laminating a charge generating layer and a charge transfer layer on a conductive base body. The bisazo compd. expressed by formula I and the perylene compd. expressed by formula III are used for the charge generating material. In the formula, R1 denotes halogen, alkyl. etc., R2 denotes (substd.) alkyl; R3 denotes H, cyano,etc.; R4 denotes H, halogen, etc.; the more concrete example of the bisazo compd. of the formula includes the compd. of formula II, etc. The p-diethyl aminobenzaldehyde-diphenyl hydrazone for the charge transfer material, etc., is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子写真用感光体に関し、詳しくは有機材料
を含む電荷発生層、電荷輸送層からなる感光層を備え、
電子写真方式のプリンター、複写機などに用いられる積
層型電子写真用感光体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, the present invention relates to an electrophotographic photoreceptor, which includes a photoreceptor layer comprising a charge generation layer and a charge transport layer containing an organic material,
This invention relates to a laminated electrophotographic photoreceptor used in electrophotographic printers, copying machines, etc.

〔従来の技術〕[Conventional technology]

従来より電子写真用感光体(以下感光体とも称する)の
感光材料としてはセレンまたはセレン合金などの無機光
導電性物質、酸化亜鉛あるいは硫化カドミウムなどの無
機光導電性物質を樹脂結着剤中に分散させたもの、ポリ
−N−ビニールカルバゾールまたはポリビニールアント
ラセンなどの有機光導電性物質、フタロシアニン化合物
あるいはビスアゾ化合物などの有機光導電性物質を樹脂
結着剤中に9牧させたものや真空蒸着させたちのなどが
利用されている。また感光体には暗所で表面電荷を保持
する機能、光を受容して電荷を発生する機能、同じく光
を受容して電荷を輸送する機能とが必要であるが、一つ
の層でこれらの機能をあわせもったいわゆる単層型感光
体と、主として電荷発生に寄与する層と暗所での表面電
荷と光受容時の電荷輸送に寄与する層とに機能分離した
層を積層したいわゆる積層型感光体がある。これらの感
光体を用いた電子写真法による画像懲戒には、例えばカ
ールソン方式が適用される。この方式での画像懲戒は暗
所での感光体へのコロナ放電による帯電、帯電された感
光体表面上への露光による原稿の文字や絵などの静電潜
像の形成、形成された静電潜像のトナーによる現像、現
像されたトナー像の紙などの支持体への転写、定着によ
り行われ、トナー像転写後の感光体は除電、残留トナー
の除去、光除電などを行った後、再使用に供される。
Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) include inorganic photoconductive substances such as selenium or selenium alloys, or inorganic photoconductive substances such as zinc oxide or cadmium sulfide in a resin binder. dispersion, organic photoconductive substances such as poly-N-vinyl carbazole or polyvinyl anthracene, organic photoconductive substances such as phthalocyanine compounds or bisazo compounds in a resin binder, and vacuum evaporation. Sasetachino and others are used. In addition, a photoreceptor must have the function of retaining surface charge in the dark, the function of receiving light and generating charge, and the function of receiving light and transporting charge, but these functions can be achieved in one layer. A so-called single-layer type photoreceptor that has both functions, and a so-called laminated type that has two functionally separated layers: a layer that mainly contributes to charge generation, a layer that contributes to surface charge in the dark, and a layer that contributes to charge transport during light reception. There is a photoreceptor. For example, the Carlson method is applied to image correction by electrophotography using these photoreceptors. Image discipline in this method involves charging the photoconductor in a dark place by corona discharge, forming electrostatic latent images such as letters and pictures on the document by exposing the surface of the charged photoconductor, and This is done by developing a latent image with toner, transferring the developed toner image to a support such as paper, and fixing it. After the toner image has been transferred, the photoreceptor is subjected to static neutralization, removal of residual toner, photostatic static elimination, etc. Subject to reuse.

原稿の複写においては原稿の画像濃度を忠実に再現した
複写画像が得られることが望ましいが、そのためには複
写機に使用する感光体の光感度が可視光全領域にわたっ
て均一であることが必要である。ところが感光体に使用
される光導電性物質の光感度は一般に光の波長によって
異なる。例えばフタロシアニン化合物では波長600n
m〜700nmの赤色光領域に吸収極大があり、従って
赤色光領域で非常に高い光感度を示す。また酸化亜鉛で
は波長370nm〜390nm領域に吸収極大があり、
近紫外領域で光感度が高い。
When copying an original, it is desirable to be able to obtain a copied image that faithfully reproduces the image density of the original, but to achieve this, it is necessary that the photosensitivity of the photoreceptor used in the copying machine be uniform over the entire visible light range. be. However, the photosensitivity of photoconductive materials used in photoreceptors generally differs depending on the wavelength of light. For example, for phthalocyanine compounds, the wavelength is 600n.
It has an absorption maximum in the red light region of m to 700 nm, and therefore exhibits very high photosensitivity in the red light region. In addition, zinc oxide has an absorption maximum in the wavelength range of 370 nm to 390 nm.
High photosensitivity in the near-ultraviolet region.

このような特定の光波長領域で非常に高い光感度を示す
ような光導電性物質を感光材料とした感光体を装着され
た複写機では原稿複写にあたって実用上問題が生じる。
In a copying machine equipped with a photoreceptor made of a photoconductive material that exhibits extremely high photosensitivity in a specific light wavelength range, practical problems arise when copying originals.

例えば、銅フタロシアニンを感光材料とする感光体を装
着された複写機においては、感光体を帯電し露光した場
合前述のごとく光波長600nm〜700nm領域に吸
収極大をもつので赤色光に高い光感度を示す。従って赤
色および青色の画像を有する原稿を介して露光をしたと
きには、複写画像において青色画像に比し赤色画像が再
現されにくい。このことは感光体が原稿上の赤色画像か
らの赤色反射光に強く感光してその部分の表面電位が原
稿の白色部分からの反射光に対する減衰と同程度に大き
く減衰し現像工程でトナーが付着しにくくなるからであ
る。感光材料として酸化亜鉛を使用した感光体を装着し
た複写機においては、白色光と青色光とが前記の銅フタ
ロシアニンにおける白色光と赤色光との関係と同等とな
り原稿の青色画像が複写画像上に再現されにくくなる。
For example, in a copying machine equipped with a photoreceptor made of copper phthalocyanine as a photosensitive material, when the photoreceptor is charged and exposed, the maximum absorption occurs in the light wavelength range of 600 nm to 700 nm, as described above, so it has high photosensitivity to red light. show. Therefore, when exposure is performed through an original having red and blue images, the red image is less likely to be reproduced in the copied image than the blue image. This means that the photoreceptor is strongly sensitive to the red reflected light from the red image on the original, and the surface potential of that area is greatly attenuated to the same extent as the attenuation of the reflected light from the white part of the original, and toner adheres during the development process. This is because it becomes difficult to do so. In a copying machine equipped with a photoconductor that uses zinc oxide as a photosensitive material, the relationship between white light and blue light is similar to the relationship between white light and red light in copper phthalocyanine, and the blue image of the original is displayed on the copied image. becomes difficult to reproduce.

この欠点を除去するために、光導電性物質に適当な色素
を添加して感光材料とすることは知られている。例えば
単層型感光体の光導電性物質中に色素を添加した例とし
てはβ型フタロシアニンに光波長400nm〜600n
mに吸収極大を有する色素を分散し含有させることが特
開昭53−37423号公報に開示されており、また積
層型感光体の電荷輸送層中に色素を添加した例としては
、フタロシアニン化合物を含む電荷発生層の光投射側に
配置された電荷輸送層中に赤色光領域に光の吸収極大を
もつ色素を分散して含有させることが特開昭57−14
848号公報に開示されている。また光導電性物質とし
ての酸化亜鉛にフルオレッセインなどを分散して含有さ
せた例が井上英−監訳「電子写真」224〜225頁(
1973年共立出版刊)〔原著R,M、 5chaff
ert著rBlectrophotography J
 (1965年Focal Press刊)〕に記載さ
れている。
In order to eliminate this drawback, it is known to add a suitable dye to a photoconductive substance to produce a photosensitive material. For example, as an example of adding a dye to the photoconductive material of a single-layer photoconductor, β-type phthalocyanine has a light wavelength of 400 nm to 600 nm.
Japanese Unexamined Patent Publication No. 53-37423 discloses dispersing and containing a dye having an absorption maximum at m. Japanese Patent Laid-Open No. 57-14 discloses that a dye having a light absorption maximum in the red light region is dispersed and contained in a charge transport layer disposed on the light projection side of the charge generation layer.
It is disclosed in Japanese Patent No. 848. In addition, an example of dispersing fluorescein and the like in zinc oxide as a photoconductive substance is given in "Electronic Photography", edited and translated by Hide Inoue, pages 224-225 (
Published by Kyoritsu Shuppan in 1973) [Original author R, M, 5chaff
ertauthorBlectrophotography J
(published by Focal Press in 1965)].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしこれら公知の方法では、比較的電気抵抗の低い色
素が感光層全域に、あるいは表面電位を保持すべき電荷
輸送層全域に分散し含有されるために感光体として表面
電位が低くなるという欠点があった。さらに複写機にお
いて必然的に行われる感光体の繰り返し使用にあたって
感光体の耐久性が劣るという欠点があるが、その原因は
主として含有された色素が徐々に劣化していくことにあ
る。色素劣化の主原因は帯電、転写ならびに除電の各工
程で発生するオゾンおよび露光ならびに光除電工程での
光によって色素が分解することに起因する。色素が経時
的に分解していくにつれて、感光材料への色素添加の効
果が減少していき、感光体の光波長感度の均一性が悪化
していく。また、分解した色素は分散含有している感光
材料に不純物として悪影響をおよぼし、感光体の表面電
位および光感度の低下と残留電位の増大をひきおこす。
However, these known methods have the disadvantage that the photoreceptor has a low surface potential because the dye, which has relatively low electrical resistance, is dispersed and contained throughout the photosensitive layer or the charge transport layer that is supposed to maintain the surface potential. there were. Furthermore, there is a drawback in that the durability of the photoreceptor is poor due to repeated use of the photoreceptor, which is inevitably carried out in copying machines, and this is mainly due to the gradual deterioration of the dye contained therein. The main cause of dye deterioration is that the dye is decomposed by ozone generated during the charging, transfer, and static elimination steps, and by light during exposure and photostatic elimination steps. As the dye decomposes over time, the effect of adding the dye to the photosensitive material decreases, and the uniformity of the light wavelength sensitivity of the photoreceptor deteriorates. Further, the decomposed dye adversely affects the photosensitive material in which it is dispersed as an impurity, causing a decrease in the surface potential and photosensitivity of the photoreceptor and an increase in the residual potential.

色素を含有する層が感光体の表面にくる構造では表面か
らの色素のオゾンによる分解が進みやすく、また感光材
料中に色素が分散して含有されている場合には色素の分
解生成物の影響が分散された感光体材料全域に直接およ
ぶので好ましくない。
If the dye-containing layer is on the surface of the photoreceptor, the dye from the surface is likely to be decomposed by ozone, and if the dye is dispersed in the photosensitive material, the effects of the decomposition products of the dye may occur. This is not preferable because it directly covers the entire area of the photoreceptor material in which it is dispersed.

この発明は、有機材料が電荷発生物質、電荷輸送物質と
して含まれる感光体に於いて、前記の欠点を除去し、赤
色再現性の優れた電子写真用感光体を提供することを課
題とする。
An object of the present invention is to eliminate the above-mentioned drawbacks in a photoreceptor containing an organic material as a charge-generating substance and a charge-transporting substance, and to provide an electrophotographic photoreceptor with excellent red reproducibility.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、この発明によれば、導電性基体上に有機
材料からなる電荷発生層および電荷輸送層を備えた電子
写真用感光体において、電荷発生層の電荷発生材料が下
記−数式〔I〕で示されるビスアゾ化合物のうちの少な
くとも一種と、下記式〔II〕で示されるペリレン化合
物との混合材料である電子写真用感光体とすることによ
って解決される。
The above problem can be solved according to the present invention in an electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer made of an organic material on a conductive substrate, in which the charge generation material of the charge generation layer has the following formula [I The problem can be solved by providing an electrophotographic photoreceptor that is a mixed material of at least one of the bisazo compounds represented by the following formula [II] and a perylene compound represented by the following formula [II].

(式(1)中、R1はハロゲン原子、アルキル基。(In formula (1), R1 is a halogen atom or an alkyl group.

アルコキシ基、 R2は置換されても良いアルキル基、
R5は水素原子、 シアノ基、カルバモイル基。
an alkoxy group, R2 is an optionally substituted alkyl group,
R5 is a hydrogen atom, a cyano group, or a carbamoyl group.

カルボ゛キシル基、エステル基、 アシル基% R4は
水素原子、ハロゲン原子、ニトロ基、アルキル基。
Carboxyl group, ester group, acyl group % R4 is a hydrogen atom, a halogen atom, a nitro group, an alkyl group.

アルコキシ基を表す。) この発明に用いる一般式(1)で示される化合物の具体
例を例示すると次の通りである。
Represents an alkoxy group. ) Specific examples of the compound represented by the general formula (1) used in this invention are as follows.

〔作用〕[Effect]

前記の材料を用いることにより、赤色再現性の優れた感
光体を得ることが可能となる。
By using the above materials, it is possible to obtain a photoreceptor with excellent red color reproducibility.

〔実施例〕〔Example〕

以下、本発明の実、施例について、図面を参照しながら
°説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図および第2図は本発明の感光体のそれぞれ異なる
実施例を示す概念的断面図で、lは導電性基体、2は電
荷発生層、3は電荷輸送層、4は感光層、5は表面被覆
層であり、感光層は電荷発生層と電荷輸送層とに分離し
た機能分離型である。
1 and 2 are conceptual cross-sectional views showing different embodiments of the photoreceptor of the present invention, in which l is a conductive substrate, 2 is a charge generation layer, 3 is a charge transport layer, 4 is a photosensitive layer, and 5 is a surface coating layer, and the photosensitive layer is of a functionally separated type consisting of a charge generation layer and a charge transport layer.

第1図の感光層は電荷発生層、電荷輸送層の順に積層さ
れ、第2図の感光層は第1図と逆に電荷輸送層、電荷発
生層の順に積層されている。
The photosensitive layer in FIG. 1 has a charge generation layer and a charge transport layer laminated in this order, and the photosensitive layer in FIG. 2 has a charge transport layer and a charge generation layer laminated in that order, contrary to FIG.

導電性基体lは感光体の電極としての役目と同時に他の
各層の支持体となっており、円筒状、板状、フィルム状
のいずれでも良く、材質的にはアルミニウム、ステンレ
ス鋼、ニッケルナトノ金属、あるいはガラス、樹脂など
の上に導電処理をほどこしたものでも良い。
The conductive substrate 1 serves as an electrode for the photoreceptor and at the same time serves as a support for the other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, nickel nanometal, etc. Alternatively, it may be made of glass, resin, or the like and subjected to conductive treatment.

電荷発生層2は有機光導電性物質を真空蒸着するか、ま
たは有機光導電性物質の粒子を樹脂バインダー(結着剤
〉中に分散させた材料を塗布して形成され、光を受容し
て電荷を発生する。また、その電荷発生効率が高いこと
と同時に発生した電荷の電荷輸送層3への注入性が重要
で電場依存性が少なく低電場でも注入の良いことが望ま
しい。
The charge generating layer 2 is formed by vacuum-depositing an organic photoconductive substance or by coating a material in which particles of an organic photoconductive substance are dispersed in a resin binder, and is capable of receiving light. In addition, it is important that the charge generation efficiency is high and that the generated charges are injected into the charge transport layer 3, and it is desirable that the charge is less dependent on the electric field and can be injected even in a low electric field.

電荷発生層は電荷発生機能を有すればよいので、その膜
厚は電荷発生物質の光吸収係数より決まり一般的には5
μm以下であり、好適には1μm以下である。電荷発生
層は電荷発生物質を主体としてこれに電荷輸送物質など
を添加して使用することも可能である。樹脂バインダー
としては、ポリカーボネート、ポリエステル、ポリアミ
ド、ポリウレタン、エポキシ、シリコン樹脂、メタクリ
ル酸エステルの重合体および共重合体などを適宜組み合
わせて使用することが可能である。
Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5.
It is 1 μm or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and a charge transport substance or the like may be added thereto. As the resin binder, polycarbonate, polyester, polyamide, polyurethane, epoxy, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used in appropriate combinations.

電荷輸送層3は樹脂バインダー中に有機電荷輸送物質を
分散させた材料からなる塗膜であり、暗所では絶縁体層
として感光体の電荷を保持し、光受容時には電荷発生層
から注入される電荷を輸送する機能を発揮する。樹脂バ
インダーとしては、ポリカーボネート、ポリエステル、
ポリアミド。
The charge transport layer 3 is a coating film made of a material in which an organic charge transport substance is dispersed in a resin binder, and in the dark, it serves as an insulating layer to retain the charge on the photoreceptor, and when receiving light, it is injected from the charge generation layer. Demonstrates the function of transporting electric charge. As a resin binder, polycarbonate, polyester,
polyamide.

ポリウレタン、エポキシ、シリコン樹脂、メタクリル酸
エステルの重合体および共重合体などが用いられるが、
機械的、化学的および電気的安定性、密着性などのほか
に電荷輸送物質との相溶性が重要である。
Polyurethane, epoxy, silicone resin, methacrylic acid ester polymers and copolymers are used, but
In addition to mechanical, chemical and electrical stability, adhesion, etc., compatibility with the charge transport substance is important.

電荷輸送層の膜厚は実用的に有効な表面電位を維持する
ためには3〜30μmの範囲が好ましくより好適には5
〜20μmである。
The thickness of the charge transport layer is preferably in the range of 3 to 30 μm in order to maintain a practically effective surface potential, and more preferably in the range of 5 to 30 μm.
~20 μm.

表面被覆層5は機械的ストレスに対する耐久性に優れ、
さらに化学的に安定な物質で構成され、暗所ではコロナ
放電の電荷を受容して保持する機能を有しており、かつ
電荷発生層が感応する光を透過する性能を有し、露光時
に光を透過し、電荷発生層に到達させ、発生した電荷の
注入を受けて表面電荷を中和消滅させることが必要であ
る。また1、被覆材料は前述の通り電荷発生物質の光の
吸収極大の波長領域においてできるだけ透明であること
が望ましい。
The surface coating layer 5 has excellent durability against mechanical stress,
Furthermore, it is composed of a chemically stable substance, has the function of accepting and retaining the charge of corona discharge in the dark, and has the ability to transmit the light to which the charge generation layer is sensitive, so that it is not exposed to light when exposed to light. It is necessary for the light to pass through, reach the charge generation layer, and receive the injection of the generated charges to neutralize and eliminate the surface charges. Further, 1. As mentioned above, it is desirable that the coating material be as transparent as possible in the wavelength range of maximum light absorption of the charge generating substance.

表面被覆層の被覆材料としては変成シリコン樹脂として
、アクリル変成シリコン樹脂、エポキシ変成シリコン樹
脂、アルキッド変成シリコン樹脂。
As the coating material for the surface coating layer, modified silicone resins include acrylic modified silicone resin, epoxy modified silicone resin, and alkyd modified silicone resin.

ポリエステル変成シリコン樹脂、ウレタン変成シリコン
樹脂など、また、ハードコート剤としてのシリコン樹脂
などが適用できる。これら変成シリコン樹脂は単独で使
用可能であるが、より耐久性を向上させる目的でSin
、、 Tin2.  InaO!1Zr02を主成分と
する被膜を懲戒できる金属アルコキシ化合物の縮合物と
の混合材料が好適である。
Polyester modified silicone resin, urethane modified silicone resin, and silicone resin as a hard coating agent can be used. These modified silicone resins can be used alone, but in order to improve durability,
,, Tin2. InaO! A mixed material with a condensate of a metal alkoxy compound that can form a coating mainly composed of 1Zr02 is suitable.

被覆層自体の膜厚は被覆層の配合組成にも依存するが、
繰り返し連続使用したとき残留電位が増大するなどの悪
影響が出ない範囲で任意に設定できる。
The thickness of the coating layer itself depends on the composition of the coating layer, but
It can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 電荷発生物質として前記化合物No、I−1で示される
ビスアゾ化合物5重量部と、前記式(n)で示されるペ
リレン化合物5重量部、結着剤樹脂としてジアリルフタ
レート樹脂(商品名ダップに:大阪ソーダ製)10重量
部とを、メチルエチルケトン1500重量部と混合し、
3時間混合機により混練を行い塗布液を調製し電荷発生
層用の塗液を作製した。次に、電荷輸送物質としてp−
ジエチルアミノベンズアルデヒド−ジフェニルヒドラゾ
ン(ABPH)1重量部、結着剤樹脂としてポリカーボ
ネート樹脂(商品名 パンライトL−1225:帝人化
或製)1重量部とを、ジクロロメタン6重量部に溶解し
電荷輸送層用の塗液を作製した。
Example 1 5 parts by weight of the bisazo compound represented by Compound No. I-1 as a charge generating substance, 5 parts by weight of a perylene compound represented by the formula (n), and diallyl phthalate resin (trade name DAP) as a binder resin. 10 parts by weight (made by Osaka Soda) and 1500 parts by weight of methyl ethyl ketone,
A coating solution was prepared by kneading with a mixer for 3 hours, and a coating solution for the charge generation layer was prepared. Next, p-
1 part by weight of diethylaminobenzaldehyde-diphenylhydrazone (ABPH) and 1 part by weight of polycarbonate resin (trade name: Panlite L-1225, manufactured by Teijin Chemical Co., Ltd.) as a binder resin were dissolved in 6 parts by weight of dichloromethane to form a charge transport layer. A coating liquid was prepared.

次に、アルミニウムを蒸着したポリエステルフィルム上
に電荷発生層(1μm)、電荷輸送層(16μm)の順
にそれぞれ調製した塗液を塗布し、第1図に示した構成
の負帯電用の感光体を作製した。
Next, a charge generation layer (1 μm) and a charge transport layer (16 μm) were coated with the prepared coating liquids in this order on a polyester film on which aluminum was vapor-deposited, and a negatively charged photoreceptor having the configuration shown in FIG. Created.

実施例2 実施例1の電荷発生物質を前記化合物No、I−1で示
されるビスアゾ化合物1重量部と、前記式〔II〕で示
されるペリレン化合物9重量部に変え、その他は実施例
1と同様にして感光体を作製した。
Example 2 The charge generating substance in Example 1 was changed to 1 part by weight of the bisazo compound represented by Compound No. I-1 and 9 parts by weight of the perylene compound represented by the formula [II], and the rest was the same as Example 1. A photoreceptor was produced in the same manner.

比較例1 実施例1の電荷発生物質を前記化合物No、I−1で示
されるビスアゾ化合物10重量部に変え、その他は実施
例1と同様にして感光体を作製した。
Comparative Example 1 A photoreceptor was produced in the same manner as in Example 1 except that the charge generating substance in Example 1 was changed to 10 parts by weight of the bisazo compound represented by Compound No. I-1.

このようにして得られた感光体の電子写真特性を川口電
機製静電記録紙試験装置 r S P−428Jを用い
て測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester RSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位V、(ボルト〉は暗所で−6,OkV
のコロナ放電を10秒間行って感光体表面を負帯電させ
たときの初期の表面電位であり、続いてコロナ放電を中
止した状態で2秒間暗所保持したときの表面電位V、(
ボルト)を測定し、さらに続いて感光体表面に照度2L
uxの白色光を照射してVdが半分になるまでの時間(
秒〉を求め半減衰露光量El/2 (Lux ・秒)と
した。また、2Luxの白色光を10秒間感光体表面に
照射したときの表面電位を残留電位Vr(ボルト〉とし
た。さらに550nmの単色光の半減衰露光量E 、、
、 (550)と650nmの単色光の半減衰露光量E
 l/2 (650)の比を赤色再現性El/。(65
0) / E I/□(550)とした。E 1/2 
(650) /E+/2 (550)の値が大きいほど
赤色再現性が良好である。
The surface potential V of the photoreceptor (volts) is -6, OkV in the dark.
This is the initial surface potential when the photoreceptor surface is negatively charged by performing corona discharge for 10 seconds, and the surface potential when the photoreceptor surface is then held in the dark for 2 seconds with corona discharge stopped, V, (
volts), and then apply an illuminance of 2L to the photoreceptor surface.
The time it takes for Vd to be halved after irradiating ux white light (
second> was determined and set as the half-attenuation exposure amount El/2 (Lux · second). In addition, the surface potential when the photoreceptor surface is irradiated with 2 Lux of white light for 10 seconds is defined as the residual potential Vr (volts).Furthermore, the half-attenuation exposure amount E of 550 nm monochromatic light is...
, (550) and half-attenuation exposure amount E of monochromatic light of 650 nm
Red color reproducibility El/2 (650) ratio. (65
0) / E I/□ (550). E 1/2
(650) /E+/2 The larger the value of (550), the better the red color reproducibility.

測定結果を第1表に示す。The measurement results are shown in Table 1.

第1表に見られるように、実施例1.2は比較例1に比
較して表面電位、残留電位、半減衰露光量はほぼ同等で
、赤色再現性は明らかに向上しており、この発明のビス
アゾ化合物にペリレン化合物を混合することによる優位
性は明らかである。
As shown in Table 1, Example 1.2 has almost the same surface potential, residual potential, and half-attenuation exposure dose as Comparative Example 1, and the red color reproducibility is clearly improved. The advantage of mixing a perylene compound with a bisazo compound is obvious.

実施例3 電荷発生物質として前記化合物No、I −1で示され
るビスアゾ化合物5重量部と、前記式(n)で示される
ペリレン化合物5重量部、結着剤樹脂としてジアリルフ
タレート樹脂(商品名 ダップに:大阪ソーダ製〉20
重量部とを、メチルエチルケトン3000重量部と混合
し、3時間混合機により混練を行い塗布液を調製し電荷
発生層用の塗液を作製した。次に、電荷輸送物質として
p−ジエチルアミノベンズアルデヒド−ジフェニルヒド
ラゾン(ABPH)2重量部、結着剤樹脂としてボリア
リレート樹脂(商品名 Uポリマー U−10OA=ユ
ニチカ製)3重量部とを、ジクロロメタン18重量部に
溶解し電荷輸送層用の塗液を作製した。次に、アルミニ
ウムを蒸着したポリエステルフィルム上に電荷輸送層(
17μm)、電荷発生層(1μm)の順にそれぞれ調製
した塗液を塗布し、第2図に示した構成の正帯電用の感
光体を作製した。ただし、この発明に直接関与しない表
面被覆層は設けなかった。
Example 3 5 parts by weight of the bisazo compound represented by Compound No. I-1 as the charge generating substance, 5 parts by weight of the perylene compound represented by the formula (n), and diallyl phthalate resin (trade name DAP) as the binder resin. To: Made by Osaka Soda〉20
parts by weight were mixed with 3,000 parts by weight of methyl ethyl ketone and kneaded for 3 hours using a mixer to prepare a coating solution, thereby preparing a coating solution for the charge generation layer. Next, 2 parts by weight of p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH) as a charge transport substance and 3 parts by weight of polyarylate resin (trade name U-polymer U-10OA manufactured by Unitika) as a binder resin were added to 18 parts by weight of dichloromethane. A coating liquid for a charge transport layer was prepared by dissolving the mixture in the following parts. Next, a charge transport layer (
A photoreceptor for positive charging having the configuration shown in FIG. 2 was prepared by applying the prepared coating liquids in the order of 17 μm) and a charge generation layer (1 μm). However, a surface coating layer not directly related to this invention was not provided.

実施例4 実施例3の電荷発生物質を前記化合物No、 T−1で
示されるビスアゾ化合物1重量部と、前記式〔II〕で
示されるペリレン化合物9重量部に変え、その他は実施
例3と同様にして感光体を作製した。
Example 4 The charge generating substance in Example 3 was changed to 1 part by weight of the bisazo compound represented by Compound No. T-1 and 9 parts by weight of the perylene compound represented by the formula [II], and the rest was the same as Example 3. A photoreceptor was produced in the same manner.

比較例2 実施例3の電荷発生物質を前記化合物No、 I −1
で示されるビスアゾ化合物10重量部に変え、その他は
実施例3と同様にして感光体を作製した。
Comparative Example 2 The charge generating substance of Example 3 was used as the compound No. I-1.
A photoreceptor was produced in the same manner as in Example 3 except that 10 parts by weight of the bisazo compound represented by was used.

このようにして得られた感光体の電子写真特性を川口電
機製静電記録紙試験装置 rSP−428Jを用いて測
定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester rSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位V、(ボルト)は暗所で+6.0kV
のコロナ放電を10秒間行って感光体表面を正帯電させ
たときの初期の表面電位であり、続いてコロナ放電を中
止した状態で2秒間暗所保持したときの表面電位V、(
ボルト)を測定し、さらに続いて感光体表面に照度2L
uxの白色光を照射してVdが半分になるまでの時間(
秒)を求め半減衰露光量El、□(Lux・秒)とした
。また、2Luxの白色光を10秒間感光体表面に照射
したときの表面電位を残留電位V、(ボルト)とした。
The surface potential V, (volt) of the photoreceptor is +6.0kV in the dark.
This is the initial surface potential when corona discharge is performed for 10 seconds to positively charge the surface of the photoreceptor, and the surface potential when the photoconductor surface is then held in the dark for 2 seconds with corona discharge stopped is V, (
volts), and then apply an illuminance of 2L to the photoreceptor surface.
The time it takes for Vd to be halved after irradiating ux white light (
seconds) was determined and the half-attenuation exposure amount El, □ (Lux·seconds) was determined. Further, the surface potential when the surface of the photoreceptor was irradiated with 2 Lux of white light for 10 seconds was defined as the residual potential V (volt).

さらに550nmの単色光の半減衰露光量E 112 
(550)と650nmの単色光の半減衰露光量E l
/2(650)の比を赤色再現性El、□(650) 
/ E 1y−(550)とした。E l/2 (65
0) / E l72(550)の値が大きいほど赤色
再現性が良好である。
Furthermore, the half-attenuation exposure amount of monochromatic light of 550 nm E 112
(550) and half-attenuation exposure amount E l of monochromatic light of 650 nm
The ratio of /2 (650) is the red reproducibility El, □ (650)
/ E 1y-(550). E l/2 (65
0)/E 172(550), the better the red color reproducibility.

測定結果を第2表に示す。The measurement results are shown in Table 2.

第2表 第2表に見られるように、実施例3.4は比較例2に比
較して表面電位、残留電位、半減衰露光量はほぼ同等で
、赤色再現性は明らかに向上しており、この発明のビス
アゾ化合物にペリレン化合物を混合することによる優位
性は明らかである。
Table 2 As shown in Table 2, Example 3.4 has almost the same surface potential, residual potential, and half-attenuation exposure amount as Comparative Example 2, and the red color reproducibility is clearly improved. , the advantage of mixing a perylene compound with the bisazo compound of this invention is obvious.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、電荷発生物質として前記−数式(1
)で示されるビスアゾ化合物に、前記式(II)で示さ
れるペリレン化合物を混合して用いることにより、プリ
ンター用、複写機用などの電子写真用感光体として、正
帯電および負帯電においても赤色再現性の優れた感光体
を得ることができる。
According to this invention, as a charge generating substance, the above-mentioned formula (1
) By mixing the perylene compound represented by formula (II) with the bisazo compound represented by formula (II), red color can be reproduced even when positively charged and negatively charged as an electrophotographic photoreceptor for printers, copiers, etc. A photoreceptor with excellent properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明の感光体のそれぞれ異な
る実施例を示す概念的断面図である。 l 導電性基体、2 電荷発生層、3 電荷輸送層、4
 感光層、5−表面被覆層。 第 図 )ヨ 第 凶 〉表面被覆層
1 and 2 are conceptual sectional views showing different embodiments of the photoreceptor of the present invention. l conductive substrate, 2 charge generation layer, 3 charge transport layer, 4
Photosensitive layer, 5-surface coating layer. Diagram) The worst part: surface coating layer

Claims (1)

【特許請求の範囲】 1)導電性基体上に有機材料からなる電荷発生層、電荷
輸送層を備えた電子写真用感光体に於いて、電荷発生層
の電荷発生材料が下記一般式〔 I 〕で示されるビスア
ゾ化合物のうちの少なくとも一種と、下記式〔II〕で示
されるペリレン化合物との、混合材料であることを特徴
とする電子写真用感光体。 ▲数式、化学式、表等があります▼〔 I 〕 (式〔 I 〕中、R_1はハロゲン原子、アルキル基、
アルコキシ基、R_2は置換されても良いアルキル基、
R_3は水素原子、シアノ基、カルバモイル基、カルボ
キシル基、エステル基、アシル基、R_4は水素原子、
ハロゲン原子、ニトロ基、アルキル基、アルコキシ基を
表す。) ▲数式、化学式、表等があります▼〔II〕
[Claims] 1) In an electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer made of an organic material on a conductive substrate, the charge generation material of the charge generation layer has the following general formula [I] 1. A photoreceptor for electrophotography, characterized in that it is a mixed material of at least one bisazo compound represented by the following formula [II] and a perylene compound represented by the following formula [II]. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [I] (In the formula [I], R_1 is a halogen atom, an alkyl group,
an alkoxy group, R_2 is an optionally substituted alkyl group,
R_3 is a hydrogen atom, cyano group, carbamoyl group, carboxyl group, ester group, acyl group, R_4 is a hydrogen atom,
Represents a halogen atom, nitro group, alkyl group, or alkoxy group. ) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ [II]
JP22573189A 1989-08-31 1989-08-31 Electrophotographic sensitive body Pending JPH0389251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22573189A JPH0389251A (en) 1989-08-31 1989-08-31 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22573189A JPH0389251A (en) 1989-08-31 1989-08-31 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0389251A true JPH0389251A (en) 1991-04-15

Family

ID=16833943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22573189A Pending JPH0389251A (en) 1989-08-31 1989-08-31 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0389251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273773A (en) * 1992-01-22 1993-10-22 Mita Ind Co Ltd Electrophotogrqphic sensitive body
KR100462625B1 (en) * 2001-11-09 2004-12-23 삼성전자주식회사 Electrophotographic organophotoreceptor with new charge transport compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273773A (en) * 1992-01-22 1993-10-22 Mita Ind Co Ltd Electrophotogrqphic sensitive body
KR100462625B1 (en) * 2001-11-09 2004-12-23 삼성전자주식회사 Electrophotographic organophotoreceptor with new charge transport compounds

Similar Documents

Publication Publication Date Title
JPH0212258A (en) Electrophotographic sensitive body
JPH0389251A (en) Electrophotographic sensitive body
JPH03257459A (en) Electrophotographic sensitive body
JPH0237356A (en) Electrophotographic sensitive body
JPH03109557A (en) Electrophotographic sensitive body
JP3114394B2 (en) Electrophotographic photoreceptor
JP2666492B2 (en) Electrophotographic photoreceptor
JP2705278B2 (en) Electrophotographic photoreceptor
JP2917473B2 (en) Electrophotographic photoreceptor
JP3522436B2 (en) Electrophotographic photoreceptor
JPS63157159A (en) Electrophotographic sensitive body
JP2817811B2 (en) Electrophotographic photoreceptor
JPH03287170A (en) Electrophotographic sensitive body
JPH01307759A (en) Electrophotographic sensitive body
JPH03238465A (en) Electrophotographic sensitive body
JPH03102359A (en) Electrophotographic sensitive body
JPH06230592A (en) Electrophotogtaphic sensitive body
JPH0337655A (en) Electrophotographic sensitive body
JPH0756368A (en) Electrophotographic photoreceptor
JPS63235951A (en) Laminated electrophotographic sensitive body
JPH04294360A (en) Photosensitive material for electrophotography
JPH04171454A (en) Sensitized body for electrophotography
JPH03129357A (en) Electrophotographic sensitive body
JPS61129649A (en) Electrophotographic sensitive body
JPH03140964A (en) Electrophotographic sensitive body