JPH03109557A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH03109557A
JPH03109557A JP24845389A JP24845389A JPH03109557A JP H03109557 A JPH03109557 A JP H03109557A JP 24845389 A JP24845389 A JP 24845389A JP 24845389 A JP24845389 A JP 24845389A JP H03109557 A JPH03109557 A JP H03109557A
Authority
JP
Japan
Prior art keywords
photoreceptor
layer
charge
group
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24845389A
Other languages
Japanese (ja)
Inventor
Yoshinobu Sugata
好信 菅田
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24845389A priority Critical patent/JPH03109557A/en
Publication of JPH03109557A publication Critical patent/JPH03109557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance red color reproduction performance by using a material of a mixture of a specified compound and another specified compound. CONSTITUTION:The electrophotographic sensitive body is formed by laminating on a conductive substrate 1 a photosensitive layer 4 composed of an electric charge generating layer 2 and a charge transfer layer 3. The red color reproduction performance can be enhanced by incorporating a mixture of at least one of the bisazo compounds represented by formula I in which R1 is halogen, alkyl, or alkoxy; R2 is optionally substituted alkyl; R3 is H, cyano, carbamoyl, or and R4 is H, halogen, nitro, alkyl, or alkoxy, and at least one of the bisazo compound represented by formula II.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子写真用感光体に関し、詳しくは有機材料
を含む電荷発生層、電荷輸送層を備えてなり、電子写真
方式の複写機などに用いられる積層型電子写真用感光体
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, it is equipped with a charge generation layer and a charge transport layer containing an organic material, and is suitable for use in electrophotographic copying machines, etc. The present invention relates to a laminated electrophotographic photoreceptor that is used.

〔従来の技術〕[Conventional technology]

従来より電子写真用感光体(以下感光体とも称する)の
感光材料としてはセレンまたはセレン合金などの無機光
導電性物質、酸化亜鉛あるいは硫化カドミウムなどの無
機光導電性物質を樹脂結着剤中に分散させたもの、ポI
JN−ビニルカルバゾールまたはポリビニルアントラセ
ンなどの有機光導電性物質、フタロシアニン化合物ある
いはビスアゾ化合物などの有機光導電性物質を樹脂結着
剤中に分散させたものや真空蒸着させたものなどが利用
されている。
Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) include inorganic photoconductive substances such as selenium or selenium alloys, or inorganic photoconductive substances such as zinc oxide or cadmium sulfide in a resin binder. Dispersed, Po I
Organic photoconductive substances such as JN-vinylcarbazole or polyvinylanthracene, phthalocyanine compounds, or bisazo compounds dispersed in a resin binder or vacuum-deposited are used. .

また感光体には暗所で表面電荷を保持する機能、光を受
容して電荷を発生する機能、同じく光を受容して電荷を
輸送する機能とが必要であるが、つの層でこれらの機能
をあわせもったいわゆる単層型感光体と、主として電荷
発生に寄与する層と暗所での表面電荷と光受容時の電荷
輸送に寄与する層とに機能分離した層を積層したいわゆ
る積層型感光体がある。
The photoreceptor also needs to have the function of retaining surface charge in the dark, the function of receiving light and generating charge, and the function of receiving light and transporting charge, but these functions can be achieved in three layers. The so-called single-layer type photoreceptor has both a so-called single-layer type photoreceptor, and the so-called laminated type photoreceptor that has two functionally separated layers: a layer that mainly contributes to charge generation, a layer that contributes to surface charge in the dark, and a layer that contributes to charge transport during light reception. I have a body.

これらの感光体を用いた電子写真法による画像形成には
、例えばカールソン方式が適用される。
For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors.

この方式での画像形成は暗所での感光体へのコロナ放電
による帯電、帯電された感光体表面上への露光による原
稿の文字や絵などの静電潜像の形成、形成された静電潜
像のトナーによる現像、現像されたトナー像の紙などの
支持体への転写、定着により行われ、トナー像転写後の
感光体には除電。
Image formation in this method involves charging the photoconductor in a dark place by corona discharge, forming electrostatic latent images such as letters and pictures on the document by exposing the surface of the charged photoconductor, and This is done by developing a latent image with toner, transferring the developed toner image to a support such as paper, and fixing it. After the toner image is transferred, the photoreceptor is charged.

残留トナーの除去、光除電などを行った後、再使用に供
される。
After residual toner is removed and static electricity is removed, it is reused.

原稿の複写においては原稿の画像濃度を忠実に再現した
複写画像が得られることが望ましいが、そのためには複
写機に使用する感光体の光感度が可視光全領域にわたっ
て均一であることが8蒙である。
When copying an original, it is desirable to obtain a copied image that faithfully reproduces the image density of the original, but in order to achieve this, it is essential that the photosensitivity of the photoreceptor used in the copying machine be uniform over the entire visible light range. It is.

ところが、感光体に使用される光導電性物質の光感度は
一般に光の波長によって異なる。例えば、フタロシアニ
ン化合物では波長600nm〜700nmの赤色光領域
に吸収極大があり、従って赤色光領域で非常に高い光感
度を示す。また酸化亜鉛では波長370n+++〜39
0nm領域に吸収極大があり、近紫外領域で光感度が高
い。このような特定の光波長領域で非常に高い光感度を
示すような光導電性物質を感光材料とした感光体を装着
された複写機では原稿複写にあたって実用上問題が生じ
る。
However, the photosensitivity of photoconductive materials used in photoreceptors generally differs depending on the wavelength of light. For example, phthalocyanine compounds have an absorption maximum in the red light region with a wavelength of 600 nm to 700 nm, and therefore exhibit extremely high photosensitivity in the red light region. Also, for zinc oxide, the wavelength is 370n++~39
It has an absorption maximum in the 0 nm region and has high photosensitivity in the near ultraviolet region. In a copying machine equipped with a photoreceptor made of a photoconductive material that exhibits extremely high photosensitivity in a specific light wavelength range, practical problems arise when copying originals.

例えば、金銅フタロシアニンを感光材料とする感光体を
装着された複写機においては、感光体を帯電し露光した
場合、前述のごとく光波長600nm〜700nm領域
に吸収極大をもつので赤色光に高い光感度を示す。従っ
て赤色および青色の画像を有する原稿を介して露光をし
たときには、得られる複写画像において青色画像に比し
赤色画像が再現されにくい。このことは感光体が原稿上
の赤色画像からの赤色反射光に強く感光してこの部分の
表面電位が原稿の白色部分からの反射光に対する減衰と
同程度に大きく減衰し現像工程でトナーが付着しにくく
なるからである。
For example, in a copying machine equipped with a photoreceptor made of gold-copper phthalocyanine as a photosensitive material, when the photoreceptor is charged and exposed, the maximum absorption occurs in the light wavelength range of 600 nm to 700 nm, as described above, so the photoreceptor has high photosensitivity to red light. shows. Therefore, when exposure is performed through an original having red and blue images, the red image is less likely to be reproduced than the blue image in the resulting copied image. This means that the photoreceptor is strongly sensitive to the red reflected light from the red image on the original, and the surface potential of this area is greatly attenuated to the same extent as the attenuation of the reflected light from the white part of the original, and toner adheres during the development process. This is because it becomes difficult to do so.

感光材料として酸化亜鉛を使用した感光体を装着した複
写機においては、白色光と青色光とが前記の銅フタロシ
アニンにおける白色光と赤色光との関係と同等となり原
稿の青色画像が複写画像上に再現されにくくなる。
In a copying machine equipped with a photoconductor that uses zinc oxide as a photosensitive material, the relationship between white light and blue light is similar to the relationship between white light and red light in copper phthalocyanine, and the blue image of the original is displayed on the copied image. becomes difficult to reproduce.

この欠点を除去するための、光導電性物質に適当な色素
を添加して感光材料とすることは知られている。例えば
、単層型感光体の光導電性物質中に色素を添加した例と
しては、β型フタロシアニンに光波長400nm〜60
0nm lご吸収極大を有する色素を分散し含有させる
ことが特開昭53−37423号公報に開示されており
、また積層型感光体の電荷輸送層中に色素を添加した例
としては、フタロシアニン化合物を含む電荷発生層の光
投射側に配置された電荷輸送層中に赤色光領域に光の吸
収極大をもつ色素を分散して含有させることが特開昭5
7−14848号公報に開示されている。また光導電性
物質としての酸化亜鉛にフルオレッセインなどを分散し
て含有させた例が井上英−監訳「電子写真」224〜2
25頁(I973年共立出版刊)〔原著R,M、 5c
haffert著rB1ectrophotograp
hy」(I965年Focal Press刊)〕に記
載されている。
In order to eliminate this drawback, it is known to add a suitable dye to a photoconductive substance to produce a photosensitive material. For example, as an example of adding a dye to the photoconductive material of a single-layer photoconductor, β-type phthalocyanine has a light wavelength of 400 nm to 60 nm.
JP-A No. 53-37423 discloses that a dye having an absorption maximum of 0 nm l is dispersed and contained, and examples of adding a dye to the charge transport layer of a laminated photoreceptor include phthalocyanine compounds. It was disclosed in Japanese Patent Application Laid-Open No. 5 (1973) that a dye having a light absorption maximum in the red light region is dispersed and contained in a charge transport layer disposed on the light projection side of a charge generation layer containing
It is disclosed in Japanese Patent No. 7-14848. Another example of dispersing and containing fluorescein etc. in zinc oxide as a photoconductive substance is "Electronic Photography" 224-2, edited and translated by Hide Inoue.
25 pages (published by Kyoritsu Shuppan in 1973) [Original author R, M, 5c
rB1 electrophotograph by haffert
hy” (published by Focal Press in 1965)].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これら公知の方法では、比較的電気抵抗の低い
色素が光導電層全域に、あるいは表面電位を保持すべき
電荷輸送層全域に分散し含有されるために2、感光体と
して表面電位が低くなるという欠点があった。さらに、
複写機において必然的に行われる感光体の繰り返し使用
にあたって感光体の耐久性が劣るという欠点があるが、
その原因は主として含有された色素が徐々に劣化してい
くことにある。色素劣化の主原因は帯電、転写ならびに
除電の各工程で発生するオゾンおよび露光ならびに光除
電工程での光によって色素が分解することに起因する。
However, in these known methods, because a dye with relatively low electrical resistance is dispersed and contained throughout the photoconductive layer or the charge transport layer that is supposed to maintain a surface potential, the surface potential of the photoreceptor is low. There was a drawback. moreover,
Although it has the disadvantage that the photoreceptor has poor durability due to the repeated use of the photoreceptor that is inevitably carried out in copying machines,
The main reason for this is that the pigment contained gradually deteriorates. The main cause of dye deterioration is that the dye is decomposed by ozone generated during the charging, transfer, and static elimination steps, and by light during exposure and photostatic elimination steps.

色素が経時的に分解していくにつれて、感光材料への色
素添加の効果が減少していき、感光体の光波長感度の均
一性が悪化していく。また、分解した色素は分散含有し
ている感光材料に不純物として悪影響をおよぼし、感光
体の表面電位および光感度の低下と残留電位の増大をひ
きおこす。色素を含有する層が感光体の表面にくる構造
では表面からの色素のオゾンによる分解が進みやすく、
また感光材料中に色素が分散して含有されている場合に
は色素の分解生成物の影響が分散された感光体材料全域
に直接およぶので好ましくない。
As the dye decomposes over time, the effect of adding the dye to the photosensitive material decreases, and the uniformity of the light wavelength sensitivity of the photoreceptor deteriorates. Further, the decomposed dye adversely affects the photosensitive material in which it is dispersed as an impurity, causing a decrease in the surface potential and photosensitivity of the photoreceptor and an increase in the residual potential. In a structure in which the dye-containing layer is on the surface of the photoreceptor, the dye from the surface is easily decomposed by ozone.
Further, if the dye is dispersed and contained in the photosensitive material, this is not preferable because the effects of the decomposition products of the dye will directly affect the entire area of the photosensitive material in which the dye is dispersed.

この発明は、有機材料が電荷発生物質、電荷輸送物質と
して含まれる感光層を備えた感光体において、前記の欠
点を除去し、赤色再現性の優れた複写機用電子写真用感
光体を提供することを課題とする。
The present invention provides an electrophotographic photoreceptor for copying machines that eliminates the above-mentioned drawbacks and has excellent red reproducibility in a photoreceptor equipped with a photoreceptor layer containing an organic material as a charge-generating substance and a charge-transporting substance. That is the issue.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、この発明によれば、導電性基体上に有機
材料を含んでなる電荷発生層および電荷輸送層を備えた
電子写真用感光体において、電荷発生物質として下記一
般式(I)で示されるビスアゾ化合物のうちの少なくと
も一種に、下記式(II)で示されるビスアゾ化合物を
混合して用いた電子写真用感光体とすることによって解
決される。
According to the present invention, the above problem can be solved by using the following general formula (I) as a charge generation substance in an electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer comprising an organic material on a conductive substrate. The problem can be solved by preparing an electrophotographic photoreceptor using a bisazo compound represented by the following formula (II) mixed with at least one of the bisazo compounds shown below.

〔式(I)中、R4はハロゲン原子、アルキル基。[In formula (I), R4 is a halogen atom or an alkyl group.

アルコキシ基のうちのいずれかを表し、 R2は置換さ
れても良いアルキル基を表し、R3は水素原子、シアノ
基、カルバモイル基、カルボキシル基、エステル基、ア
シル基のうちのいずれかを表し、R4は水素原子、 ハ
ロゲン原子、ニトロ基。
Represents any alkoxy group, R2 represents an optionally substituted alkyl group, R3 represents any one of a hydrogen atom, a cyano group, a carbamoyl group, a carboxyl group, an ester group, and an acyl group, R4 are hydrogen atoms, halogen atoms, and nitro groups.

アルキル基、アルコキシ基のうちのいずれかを表す。〕 この発明に用いる一般式(I)で示される化合物の具体
例を例示すると次の通りである。
Represents either an alkyl group or an alkoxy group. ] Specific examples of the compound represented by the general formula (I) used in this invention are as follows.

〔作用〕[Effect]

電荷発生物質として、前記の一般式(I)で示される化
合物のうちの少なくとも一種および前記式(旧の化合物
を混合した材料を用いることにより、赤色再現性の優れ
た感光体を得ることが可能となる。
By using a material containing a mixture of at least one of the compounds represented by the above general formula (I) and the compound of the above formula (former formula) as a charge generating substance, it is possible to obtain a photoreceptor with excellent red reproducibility. becomes.

〔実施例〕〔Example〕

以下、この発明の実施例について、図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図はこの発明の感光体のそれぞれ異な
る実施例を示す概念的断面図で、lは導電性基体、2は
電荷発生層、3は電荷輸送層、4は感光層、5は表面被
覆層であり、感光層は電荷発生層と電荷輸送層とに分離
した機能分離型である。第1図の感光層は電荷発生層、
電荷輸送層の順に積層され、第2図の感光層は第1図と
逆に電荷輸送層、電荷発生層の順に積層されている。第
2図に示した構成の感光体の場合には電荷発生層を、保
護するために表面被覆層5を設けるのが一般的である。
1 and 2 are conceptual cross-sectional views showing different embodiments of the photoreceptor of the present invention, in which l is a conductive substrate, 2 is a charge generation layer, 3 is a charge transport layer, 4 is a photosensitive layer, and 5 is a surface coating layer, and the photosensitive layer is of a functionally separated type consisting of a charge generation layer and a charge transport layer. The photosensitive layer in FIG. 1 is a charge generation layer,
A charge transport layer is laminated in this order, and the photosensitive layer shown in FIG. 2 has a charge transport layer and a charge generation layer laminated in that order, contrary to FIG. 1. In the case of a photoreceptor having the structure shown in FIG. 2, a surface coating layer 5 is generally provided to protect the charge generation layer.

導電性基体1は感光体の電極としての役目と同時に他の
各層の支持体となっており、円筒状、板状、フィルム状
のいずれでも良く、材質的にはアルミニウム、ステンレ
ス鋼、ニッケルなどの金属、あるいはガラス、!!を脂
などの上に導電処理をほどこしたものでも良い。
The conductive substrate 1 serves as an electrode for the photoreceptor and at the same time serves as a support for the other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, nickel, etc. Metal or glass! ! It may also be made of fat or the like with conductive treatment applied.

電荷発生層2は前記一般式(I)で示される化合物のう
ちの少なくとも一種と前記式(TI)で示される化合物
とを混合して樹脂バインダー(結着剤)中に分散させた
材料を塗布して形成され、光を受容して電荷を発生する
。その電荷発生効率は高く、また発生した電荷の電荷輸
送層3あるいは表面被覆層5への注入性も電場依存性が
少なく低電場でも良好である。
The charge generation layer 2 is formed by applying a material in which at least one of the compounds represented by the general formula (I) and the compound represented by the formula (TI) are mixed and dispersed in a resin binder (binder). It is formed by absorbing light and generating an electric charge. The charge generation efficiency is high, and the injection property of the generated charges into the charge transport layer 3 or the surface coating layer 5 is less dependent on the electric field and is good even in a low electric field.

電荷発生層は電荷発生機能を有すればよいので、その膜
厚は電荷発生物質の光吸収係数より決まり一般的には5
μm以下であり、好適には1μm以下である。電荷発生
層は電荷発生物質を主体としてこれに電荷輸送物質など
を添加して使用することも可能である。樹脂バインダー
としては、ポリカーボネート、ポリエステル、ポリアミ
ド、ポリウレタン、エポキシ、シリコン樹脂、メタクリ
ル酸エステルの重合体および共重合体などを適宜組み合
わせて使用することが可能である。
Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5.
It is 1 μm or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and a charge transport substance or the like may be added thereto. As the resin binder, polycarbonate, polyester, polyamide, polyurethane, epoxy, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used in appropriate combinations.

電荷輸送層3は樹脂バインダー中に有機電荷輸送物質を
分散させた材料からなる塗膜であり、暗所では絶縁体層
として感光体の電荷を保持し、光受容時には電荷発生層
から注入される電荷を輸送する機能を発揮する。樹脂バ
インダーとしては、ポリカーボネート、ポリエステル、
ポリアミド。
The charge transport layer 3 is a coating film made of a material in which an organic charge transport substance is dispersed in a resin binder, and in the dark, it serves as an insulating layer to retain the charge on the photoreceptor, and when receiving light, it is injected from the charge generation layer. Demonstrates the function of transporting electric charge. As a resin binder, polycarbonate, polyester,
polyamide.

ポリウレタン、エポキシ、シリコン樹脂、メタクリル酸
エステルの重合体および共重合体などが用いられるが、
機械的、化学的および電気的安定性、密着性などのほか
に電荷輸送物質との相溶性が重要である。
Polyurethane, epoxy, silicone resin, methacrylic acid ester polymers and copolymers are used, but
In addition to mechanical, chemical and electrical stability, adhesion, etc., compatibility with the charge transport substance is important.

電荷輸送層の膜厚は実用的に有効な表面電位を維持する
ためには3μm〜30μmの範囲が好ましく、より好適
には5μm〜20μmである。
In order to maintain a practically effective surface potential, the thickness of the charge transport layer is preferably in the range of 3 μm to 30 μm, more preferably 5 μm to 20 μm.

表面被覆層5は機械的ストレスに対する耐久性に優れ、
さらに化学的に安定な物質で構成され、暗所ではコロナ
放電の電荷を受容して保持する機能を有しており、かつ
電荷発生層が感応する光を透過する性能を有し、露光時
に光を透過し、電荷発生層に到達させ、発生した電荷の
注入を受けて表面電荷を中和消滅させることが必要であ
る。また、表面被覆層の被覆材料は前述の通り電荷発生
物質の光の吸収極大の波長領域においてできるだけ透明
であることが望ましい。
The surface coating layer 5 has excellent durability against mechanical stress,
Furthermore, it is composed of a chemically stable substance, has the function of accepting and retaining the charge of corona discharge in the dark, and has the ability to transmit the light to which the charge generation layer is sensitive, so that it is not exposed to light when exposed to light. It is necessary for the light to pass through, reach the charge generation layer, and receive the injection of the generated charges to neutralize and eliminate the surface charges. Furthermore, as described above, it is desirable that the coating material of the surface coating layer be as transparent as possible in the wavelength range of maximum light absorption of the charge generating substance.

表面被覆層の被覆材料としては変成シリコン樹脂として
、アクリル変成シリコン樹脂、エポキシ変成シリコン樹
脂、アルキッド変成シリコン樹脂。
As the coating material for the surface coating layer, modified silicone resins include acrylic modified silicone resin, epoxy modified silicone resin, and alkyd modified silicone resin.

ポリエステル変成シリコン樹脂、ウレタン変成シリコン
樹脂など、また、ハードコート剤としてのシリコン樹脂
などが適用できる。これら変成シリコン樹脂は単独で使
用可能であるが、より耐久性を向上させる目的で310
2. T+Ot、 In、0. Zr0iを主成分とす
る被膜を形成できる金属アルコキシ化合物の縮合物との
混合材料が好適である。
Polyester modified silicone resin, urethane modified silicone resin, and silicone resin as a hard coating agent can be used. Although these modified silicone resins can be used alone, 310%
2. T+Ot, In, 0. A mixed material with a condensate of a metal alkoxy compound that can form a film containing ZrOi as a main component is suitable.

表面被覆層自体の膜厚は被覆材料の配合組成にも依存す
るが、繰り返し連続使用したとき残留電位が増大するな
どの悪影響が出ない範囲で任意に設定できる。
Although the thickness of the surface coating layer itself depends on the composition of the coating material, it can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when repeatedly and continuously used.

以下、この発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 電荷発生物質として前記化合物Ha I −1で示され
るビスアゾ化合物5重量部と、前記式(II)で示され
るビスアゾ化合物5重量部と、結着剤樹脂としてのジア
リルフタレート樹脂(商品名ダツツに:大阪ソーダ製)
10重量部とを、メチルエチルケトン1500重1部と
混合し、3時間混合機により混練を行い塗布液を調製し
電荷発生層用の塗液を作製した。次に、電荷輸送物質と
してp−ジエチルアミノベンズアルデヒド−ジフェニル
ヒドラゾン(A B P H)  1重量部と、結着剤
樹脂としてのポリカーボネート樹脂(商品名パンライト
L−1225:帝人化成製)11壷部とを、ジクロロメ
タン6重量部に溶解し電荷輸送層用の塗液を作製した。
Example 1 5 parts by weight of a bisazo compound represented by the above compound Ha I-1 as a charge generating substance, 5 parts by weight of a bisazo compound represented by the above formula (II), and diallyl phthalate resin (trade name) as a binder resin. For the needlefish: Made by Osaka Soda)
10 parts by weight of methyl ethyl ketone were mixed with 1 part by weight of 1,500 parts by weight of methyl ethyl ketone, and kneaded for 3 hours using a mixer to prepare a coating solution.A coating solution for the charge generation layer was prepared. Next, 1 part by weight of p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH) as a charge transport substance, 11 parts of polycarbonate resin (trade name Panlite L-1225, manufactured by Teijin Kasei) as a binder resin, and was dissolved in 6 parts by weight of dichloromethane to prepare a coating liquid for a charge transport layer.

次に、アルミニウムを蒸着したポリエステルフィルム上
に電荷発生層(Iμm)、電荷輸送層(I6μm)の順
にそれぞれ調製した塗液を塗布し、第1図に示した構成
の負帯電用の感光体を作製した。
Next, a charge generation layer (I μm) and a charge transport layer (I 6 μm) were coated with the prepared coating liquids in this order on a polyester film on which aluminum was vapor-deposited, and a negatively charged photoreceptor having the configuration shown in FIG. Created.

実施例2 実施例1の電荷発生物質を前記化合物N[l I −1
で示されるビスアゾ化合物1重量部と、前記式(TI)
で示されるビスアゾ化合物9重量部とに変え、その他は
実施例1と同様にして感光体を作製した。
Example 2 The charge generating substance of Example 1 was converted into the compound N[l I −1
1 part by weight of a bisazo compound represented by the above formula (TI)
A photoreceptor was produced in the same manner as in Example 1 except that 9 parts by weight of the bisazo compound represented by was used.

比較例1 実施例1の電荷発生物質を前記化合物N(L I −1
で示されるビスアゾ化合物10重量部に変え、その他は
実施例1と同様にして感光体を作製した。
Comparative Example 1 The charge generating substance of Example 1 was converted into the compound N (L I -1
A photoreceptor was produced in the same manner as in Example 1 except that 10 parts by weight of the bisazo compound represented by was used.

このようにして得られた感光体の電子写真特性を、川口
電機製静電記録紙試験装置r S P−428Jを用い
て測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester rSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位VS(ボルト)は暗所で−5,QkV
のコロナ放電を10秒間行って感光体表面を負帯電させ
たときの初期の表面電位であり、続いてコロナ放電を中
止した状態で2秒間暗所保持したときの表面電位Va(
ボルト)を測定し、さらに続いて感光体表面に照度2 
luxの白色光を照射してVdが半分になるまでの時間
(秒)を求め半減衰露光量E l/2 (IIIX・秒
)とした。 また、21u×の白色光を10秒間感光体
表面に照射したときの表面電位を残、留電位V、(ボル
ト)とした。さらに550nmの単色光の半減衰露光量
E l/2(550)と650nmの単色光の半減衰露
光ffi E 1yz (650)とを測定しその比を
赤色再現性E l/2 (650) / E1/2 (
550)とした。
The surface potential VS (volt) of the photoreceptor is -5,QkV in the dark.
This is the initial surface potential when the photoreceptor surface is negatively charged by performing corona discharge for 10 seconds, and the surface potential Va (
volts), and then apply an illuminance of 2 to the surface of the photoreceptor.
The time (seconds) required for Vd to be halved after irradiation with white light of lux was determined, and the half-attenuation exposure amount E 1/2 (IIIX·seconds) was determined. Further, the surface potential when the surface of the photoreceptor was irradiated with 21 u× white light for 10 seconds was defined as the residual potential V (volt). Furthermore, the half-attenuation exposure amount E 1/2 (550) of monochromatic light of 550 nm and the half-attenuation exposure amount E 1yz (650) of monochromatic light of 650 nm are measured, and the ratio is calculated as the red color reproducibility E 1/2 (650) / E1/2 (
550).

El/□(650) / E 1/−(550)の値が
大きいほど赤色再現性が良好であることを示す。
The larger the value of El/□(650)/E1/-(550), the better the red color reproducibility.

測定した結果を第1表に示す。The measured results are shown in Table 1.

第1表に見られるように、実施例1および2は比較例1
に比較して表面電位、残留電位、半減衰露光量はほぼ同
等で、赤色再現性は明らかに向上しており、この発明の
前記一般式(I)で示されるビスアゾ化合物に、前記式
(II)で示されるビスアゾ化合物を混合して電荷発生
物質とすることによる優位性は明らかである。
As seen in Table 1, Examples 1 and 2 are compared to Comparative Example 1.
The surface potential, residual potential, and half-attenuation exposure amount are almost the same, and the red color reproducibility is clearly improved. ) The advantage of mixing the bisazo compound shown in ) as a charge generating substance is obvious.

実施例3 電荷発生物質として前記化合物No、I −1で示され
るビスアゾ化合物を5重量部と、前記式(II)で示さ
れるビスアゾ化合物5重量部と、結着剤樹脂としてのジ
アリルフタレート樹脂(商品名ダツツに:大阪ソーダ製
)20重量部とを、メチルエチルケトン3000重量部
と混合し、3時間混合機により混練を行い塗布液を調製
し電荷発生層用の塗液を作製した。次に、電荷輸送物質
としてp−ジエチルアミノベンズアルデヒド−ジフェニ
ルヒドラゾン(A B P H)  2重量部と、結着
剤樹脂としてのボリアリレート樹脂(商品名Uポリマー
U−100A:ユニチカ製)3重量部とを、ジクロロメ
タン18重量部に溶解し電荷輸送層用の塗液を作製した
Example 3 5 parts by weight of the bisazo compound represented by the above compound No. I-1 as a charge generating substance, 5 parts by weight of the bisazo compound shown by the above formula (II), and diallyl phthalate resin ( 20 parts by weight of Datsutsu (trade name: manufactured by Osaka Soda) were mixed with 3,000 parts by weight of methyl ethyl ketone and kneaded for 3 hours using a mixer to prepare a coating solution.A coating solution for the charge generation layer was prepared. Next, 2 parts by weight of p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH) as a charge transport substance, and 3 parts by weight of polyarylate resin (trade name U Polymer U-100A, manufactured by Unitika) as a binder resin. was dissolved in 18 parts by weight of dichloromethane to prepare a coating liquid for a charge transport layer.

次に、アルミニウムを蒸着したポリエステルフィルム上
に電荷輸送層(I7μm)、電荷発生層(Iμm)の順
にそれぞれ調製した塗液を塗布し、さらに表面被覆層を
形成して、第2図に示した構成の正帯電用の感光体を作
製した。
Next, a charge transport layer (I 7 μm) and a charge generation layer (I μm) were coated on the polyester film on which aluminum had been vapor-deposited, respectively, with the prepared coating liquids in that order, and a surface coating layer was further formed, as shown in Figure 2. A photoconductor for positive charging with the following configuration was fabricated.

実施例4 実施例3の電荷発生物質を前記化合物No、 I −1
で示されるビスアゾ化合物1重量部と、前記式(II)
で示されるビスアゾ化合物9重量部に変え、その他は実
施例3と同様にして感光体を作製した。
Example 4 The charge generating substance of Example 3 was used as the compound No. I-1.
1 part by weight of a bisazo compound represented by the above formula (II)
A photoreceptor was produced in the same manner as in Example 3 except that 9 parts by weight of the bisazo compound represented by was used.

比較例2 実施例3の電荷発生物質を前記化合物NαI−1で示さ
れるビスアゾ化合物10重量部に変え、その他は実施例
3と同様にして感光体を作製した。
Comparative Example 2 A photoreceptor was produced in the same manner as in Example 3 except that the charge generating substance in Example 3 was changed to 10 parts by weight of the bisazo compound represented by the compound NαI-1.

このようにして得られた感光体の電子写真特性を、川口
電機製静電記録紙試験装置r S P−428Jを用い
、コロナ放電電圧を+5. QkVとしたこと以外は、
実施例1,2および比較例1の場合と同様にして測定し
た。
The electrophotographic properties of the photoreceptor thus obtained were evaluated using an electrostatic recording paper tester RSP-428J manufactured by Kawaguchi Electric, and the corona discharge voltage was +5. Other than setting it to QkV,
Measurements were made in the same manner as in Examples 1 and 2 and Comparative Example 1.

測定結果を第2表に示す。The measurement results are shown in Table 2.

第2表に見られるように、実施例3および4は比較例2
に比較して表面電位、残留電位、半減衰露光量はほぼ同
等で、赤色再現性は明らかに向上しており、この発明の
前記一般式(I)で示されるビスアゾ化合物に、前記式
(II)で示されるビスアゾ化合物を混合して電荷発生
物質とすることによる優位性は明らかである。
As seen in Table 2, Examples 3 and 4 are compared to Comparative Example 2.
The surface potential, residual potential, and half-attenuation exposure amount are almost the same, and the red color reproducibility is clearly improved. ) The advantage of mixing the bisazo compound shown in ) as a charge generating substance is obvious.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、電荷発生物質として前記一般式(I
)で示されるビスアゾ化合物に、前記式(旧で示される
ビスアゾ化合物を混合して用いることにより、複写機用
の電子写真用感光体として、正帯電および負帯電におい
ても赤色再現性の優れた感光体を得ることができる。
According to this invention, the charge generating substance is of the general formula (I
By mixing the bisazo compound represented by the above formula with the bisazo compound represented by formula You can get a body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明の感光体のそれぞれ異な
る実施例を示す概念的断面図である。 19.導電性基体、2 電荷発生層、3 電荷輸送層、
4 感光層、5 表面被覆層。 第 ] 図 第 図 5表面被覆層
1 and 2 are conceptual sectional views showing different embodiments of the photoreceptor of the present invention. 19. conductive substrate, 2 charge generation layer, 3 charge transport layer,
4 photosensitive layer, 5 surface coating layer. ] Figure Figure 5 Surface coating layer

Claims (1)

【特許請求の範囲】 1)導電性基体上に有機材料を含んでなる電荷発生層お
よび電荷輸送層を備えた電子写真用感光体において、電
荷発生物質として下記一般式( I )で示されるビスア
ゾ化合物のうちの少なくとも一種に、下記式(II)で示
されるビスアゾ化合物を混合して用いることを特徴とす
る電子写真用感光体。 ▲数式、化学式、表等があります▼・・・・・・( I
) 〔式( I )中、R_1はハロゲン原子、アルキル基、
アルコキシ基のうちのいずれかを表し、R_2は置換さ
れても良いアルキル基を表し、R_3は水素原子、シア
ノ基、カルバモイル基、カルボキシル基、エステル基、
アシル基のうちのいずれかを表し、R_4は水素原子、
ハロゲン原子、ニトロ基、アルキル基、アルコキシ基の
うちのいずれかを表す。〕 ▲数式、化学式、表等があります▼・・・・・・(II)
[Scope of Claims] 1) In an electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer comprising an organic material on a conductive substrate, a bisazo compound represented by the following general formula (I) is used as a charge generation substance. An electrophotographic photoreceptor characterized in that at least one of the compounds is mixed with a bisazo compound represented by the following formula (II). ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・( I
) [In formula (I), R_1 is a halogen atom, an alkyl group,
Represents any alkoxy group, R_2 represents an optionally substituted alkyl group, R_3 is a hydrogen atom, a cyano group, a carbamoyl group, a carboxyl group, an ester group,
Represents any of the acyl groups, R_4 is a hydrogen atom,
Represents any one of a halogen atom, nitro group, alkyl group, and alkoxy group. ] ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(II)
JP24845389A 1989-09-25 1989-09-25 Electrophotographic sensitive body Pending JPH03109557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24845389A JPH03109557A (en) 1989-09-25 1989-09-25 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24845389A JPH03109557A (en) 1989-09-25 1989-09-25 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH03109557A true JPH03109557A (en) 1991-05-09

Family

ID=17178360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24845389A Pending JPH03109557A (en) 1989-09-25 1989-09-25 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH03109557A (en)

Similar Documents

Publication Publication Date Title
JPH0212258A (en) Electrophotographic sensitive body
JPH01237555A (en) Electrophotographic sensitive body
JPH01102469A (en) Electrophotographic sensitive body
JPH03257459A (en) Electrophotographic sensitive body
JPH0389251A (en) Electrophotographic sensitive body
JPH03109557A (en) Electrophotographic sensitive body
JP3114394B2 (en) Electrophotographic photoreceptor
JP2666492B2 (en) Electrophotographic photoreceptor
JPH01273049A (en) Electrophotographic sensitive body
JP3173298B2 (en) Electrophotographic photoreceptor
JP2917473B2 (en) Electrophotographic photoreceptor
JP2705278B2 (en) Electrophotographic photoreceptor
JPS63157159A (en) Electrophotographic sensitive body
JPS62226156A (en) Electrophotographic sensitive body
JPH03102359A (en) Electrophotographic sensitive body
JPH01307759A (en) Electrophotographic sensitive body
JPH06230592A (en) Electrophotogtaphic sensitive body
JPH0524505B2 (en)
JPH0756368A (en) Electrophotographic photoreceptor
JPH04171454A (en) Sensitized body for electrophotography
JPH03287170A (en) Electrophotographic sensitive body
JPH03238465A (en) Electrophotographic sensitive body
JPS62153959A (en) Laminated type electrophotographic sensitive body
JP2002258500A (en) Electrophotographic receptor
JPH01107263A (en) Electrophotographic sensitive body