JPH0389201A - Multilayered light interference film - Google Patents

Multilayered light interference film

Info

Publication number
JPH0389201A
JPH0389201A JP22567089A JP22567089A JPH0389201A JP H0389201 A JPH0389201 A JP H0389201A JP 22567089 A JP22567089 A JP 22567089A JP 22567089 A JP22567089 A JP 22567089A JP H0389201 A JPH0389201 A JP H0389201A
Authority
JP
Japan
Prior art keywords
refractive index
index layer
film
visible light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22567089A
Other languages
Japanese (ja)
Other versions
JP2696758B2 (en
Inventor
Masahiro Oishi
大石 正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP1225670A priority Critical patent/JP2696758B2/en
Publication of JPH0389201A publication Critical patent/JPH0389201A/en
Application granted granted Critical
Publication of JP2696758B2 publication Critical patent/JP2696758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

PURPOSE:To greatly improve the heat resistance and weatherability of the multilayerd light interference films by specifying the respective compsn. rations of the zinc sulfide forming high-refractive index layers and the magnesium fluoride forming low-refractive index layers. CONSTITUTION:The multilayerd light interference films (visible light reflecting IR transmission films) formed by alternately laminating the high-refractive index layers 2H consisting of the zinc sulfide and the low-refractive index layers 21 consisting of the magnesium fluoride on the surface of a base body (reflecting mirror 1) are constituted by specifying the compsn. ratio of the zinc element and sulfur element constituting the zinc sulfide to >=0.60 and <=0.90. The heat resistance and weatherability are improved in such constitution and the compsn. ratio of the magnesium element and fluorine element constituting the magnesium fluoride from >=0.60 to <=0.90, the film hardly peel even after long-term use. These films withstand severe conditions.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は耐熱性と耐候性とを向上した多層光干渉膜に関
する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a multilayer optical interference film with improved heat resistance and weather resistance.

(従来の技術) 従来、反射鏡付きハロゲン電球はガラス製反射鏡の内面
に可視光反射赤外線透過膜を形成し、かつ反射鏡内にハ
ロゲン電球を配設したもので、ハロゲン電球から放射さ
れた光のうち可視光を可視光反射赤外線透過膜で反射し
て前方に投射し、赤外線は可視光反射赤外線透過膜を透
過して後方に向かうようにしたものである。この結果、
この反射鏡付きハロゲン電球は赤外線の少ない可視光い
わゆる冷光を放射し、投光器、店舗照明あるいは医療照
明などに多用されている。
(Prior art) Conventionally, a halogen light bulb with a reflector has a visible light reflecting and infrared transmitting film formed on the inner surface of a glass reflector, and a halogen bulb is placed inside the reflector. Of the light, visible light is reflected by a visible light reflective infrared transmitting film and projected forward, and infrared light is transmitted through the visible light reflective infrared transmitting film and directed backward. As a result,
This halogen light bulb with a reflector emits visible light, so-called cold light, with little infrared rays, and is often used in floodlights, store lighting, medical lighting, etc.

しかして、上記可視光反射赤外線透過膜は反射鏡面に硫
化亜鉛(ZnS)などからなる高屈折率層とふっ化マグ
ネシウム(MgFz ) tシリカ(SiOz)などか
らなる低屈折率層とをたとえば15〜25層交互積層し
てなるもので、光の干渉により可視光を反射し、赤外線
を透過するものである。
Therefore, the above-mentioned visible light reflective infrared transmitting film has a high refractive index layer made of zinc sulfide (ZnS) or the like and a low refractive index layer made of magnesium fluoride (MgFz) silica (SiOz) or the like on the reflective mirror surface. It is made up of 25 layers laminated alternately and reflects visible light and transmits infrared rays through optical interference.

また、電子式複写機やファクシミリなどの露光用光源と
して、石英製管形バルブの中心線に沿ってフィラメント
を配設し、かつバルブ外面に可視光透過赤外線反射膜を
形成したハロゲン電球が用いられている。このものはフ
ィラメントから放射された光のうち可視光は可視光透過
赤外線反射膜を透過して外界に放射し、赤外線は可視光
透過赤外線反射膜で反射してフィラメントに帰還してこ
れを加熱して効率を向上したことによって、赤外線の少
ない可視光いわゆる冷光を放射し、かつ発光効率の高い
利点がある。
In addition, halogen light bulbs are used as light sources for exposure in electronic copiers, facsimile machines, etc., with a filament arranged along the center line of a quartz tube-shaped bulb and a visible light-transmissive infrared reflective film formed on the outer surface of the bulb. ing. Of the light emitted from the filament, visible light passes through a visible light transmitting infrared reflective film and is radiated to the outside world, and infrared light is reflected by the visible light transmitting infrared reflective film and returns to the filament, where it is heated. By improving efficiency, it emits visible light with less infrared rays, so-called cold light, and has the advantage of high luminous efficiency.

そして、上述の可視光透過赤外線反射膜は上述の可視光
反射赤外線透過膜と同様バルブ外面に硫化亜鉛などから
なる高屈折率層とふり化マグネシウム、シリカなどから
なる低屈折率層とを15〜21層交互積層してなるもの
で、層の厚さを変えたことにより可視光を透・過し赤外
線を反射するものである。
The above-mentioned visible light-transmitting infrared-reflecting film has a high refractive index layer made of zinc sulfide or the like and a low-refractive index layer made of magnesium fluoride, silica, etc. on the outer surface of the bulb, similar to the visible light-reflecting infrared-transmitting film described above. It is made up of 21 alternately laminated layers, and by changing the thickness of the layers, it transmits visible light and reflects infrared rays.

このように、可視光反射赤外線透過膜と可視光透過赤外
線反射膜とは同じ構成で、たんに層の厚さを変えること
により、光の干渉を利用して所望の波長域の光を透過し
、所望の波長域の光を反射するものである。そこで、こ
のような可視光反射赤外線透過膜と可視光透過赤外線反
射膜とを総合して多層光干渉膜と称する。
In this way, the visible light-reflecting, infrared-transmitting film and the visible-light-transmitting, infrared-reflecting film have the same structure, and by simply changing the layer thickness, light in the desired wavelength range can be transmitted using light interference. , which reflects light in a desired wavelength range. Therefore, such a visible light-reflecting, infrared-transmitting film and a visible-light-transmitting, infrared-reflecting film are collectively referred to as a multilayer optical interference film.

(発明が解決しようとする課題) 上述のZnS/MgFi交互層光干渉膜やZnS/Si
n、交互層光干渉膜を形成した反射鏡付ハロゲン電球は
ランプ点灯による熱負荷や高温多湿の雰囲気によって剥
離しやすい欠点がある。そこで、このような条件に対す
る耐熱性と耐候性とを第1表に示す条件下で光干渉膜が
剥離するまでの時間によって評価した、この結果を第1
表に示した。
(Problem to be solved by the invention) The above-mentioned ZnS/MgFi alternating layer optical interference film and ZnS/Si
n. A halogen lamp with a reflector on which an alternating layer optical interference film is formed has the disadvantage that it is easily peeled off due to the heat load caused by lighting the lamp or a high temperature and humid atmosphere. Therefore, the heat resistance and weather resistance under such conditions were evaluated by the time taken until the optical interference film peeled off under the conditions shown in Table 1.
Shown in the table.

第1表 この表から明らかなとおり、ZnS/MgF、系光干渉
膜は耐候性は良いが耐熱性に劣るため、比較的熱負荷が
低く長寿命形のハロゲン電球に適する。また、Zns/
Sin、系干渉膜は耐熱性は良いが耐候性に劣るため、
熱負荷が高く、短寿命の光源たとえば高出力短寿命のハ
ロゲン電球に適する。このため、化、高効率化および長
寿命化が要求され、耐熱性と耐候性を高いレベルで同時
に満足する多層光干渉膜が求められるようになった。
Table 1 As is clear from this table, ZnS/MgF-based optical interference films have good weather resistance but poor heat resistance, so they are suitable for long-life halogen light bulbs with relatively low heat load. Also, Zns/
Sin-based interference films have good heat resistance but poor weather resistance.
Suitable for light sources with high heat load and short life, such as high output and short life halogen bulbs. For this reason, there has been a demand for a multilayer optical interference film that simultaneously satisfies high levels of heat resistance and weather resistance.

そこで、本発明の課題は多層光干渉膜の耐熱性と耐候性
とを同時に向上することである。
Therefore, an object of the present invention is to simultaneously improve the heat resistance and weather resistance of a multilayer optical interference film.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明はZnS/MgF、系多層光干渉膜の改良に関し
、請求項の第1は亜鉛元素(Zn)と硫黄元素(S)と
の組成比S/Znが0.60以上0.90以下であり、
かつマグネシウム元素(Ng)とふっ素元素(F)との
組成比F、/Mgが0.60以上0.90以下であるよ
うにして耐熱性と耐候性とを向上したものである。また
、請求項の第2は高屈折率層の層密度を0.96以上と
し、かつ低屈折率層の層密度を0.98以上にして耐熱
性と耐候性とを向上したものである。
(Means for Solving the Problems) The present invention relates to improvement of a ZnS/MgF-based multilayer optical interference film, and the first claim is that the composition ratio S/Zn of zinc element (Zn) and sulfur element (S) is 0.60 or more and 0.90 or less,
In addition, heat resistance and weather resistance are improved by setting the composition ratio F, /Mg of magnesium element (Ng) and fluorine element (F) to 0.60 or more and 0.90 or less. Moreover, the second aspect of the present invention is to improve heat resistance and weather resistance by setting the layer density of the high refractive index layer to 0.96 or more and the layer density of the low refractive index layer to 0.98 or more.

(作 用) 多層光干渉膜を構成する硫化亜鉛とふっ化マグネシウム
とは通常化学式ZnS、 MgF、で表わすが、現実の
各層を構成する物質は必ずしも上述の整数比になってい
るわけでなく、これを化学式で表すと、Zn5(1−X
) # MgFt (x−y> (0<z<l、Q<y
<l)の状態となっている。そこで、現実の層を構成す
る両元素の割合い、たとえば硫黄の原子数÷原子価を亜
鉛の原子数÷原子価で割って得た商を組成比という。
(Function) The zinc sulfide and magnesium fluoride that make up the multilayer optical interference film are usually represented by the chemical formulas ZnS and MgF, but the actual substances that make up each layer do not necessarily have the above-mentioned integer ratio; Expressing this in chemical formula, Zn5(1-X
) # MgFt (x-y>(0<z<l,Q<y
<l). Therefore, the ratio of the two elements that make up the actual layer, for example, the quotient obtained by dividing the number of atoms of sulfur divided by the number of atoms divided by the number of atoms divided by the valence of zinc, is called the composition ratio.

また、層密度とは層の密度(1aJ当りのη数)を層を
構成する物質本来の密度換言すればその物質の結晶体の
密度(lcj当りの子数)で割って得た商をいう。多層
光干渉膜においても高屈折率層と低屈折層との層密度が
1に近づくほど結晶構造がち密になって化学的にも物理
的にも安定する。
In addition, the layer density is the quotient obtained by dividing the density of the layer (the number of η per 1aJ) by the original density of the material that makes up the layer, or in other words, the density of the crystal of that material (the number of children per lcj). . Even in a multilayer optical interference film, as the layer density of the high refractive index layer and the low refractive layer approaches 1, the crystal structure becomes denser and becomes chemically and physically stable.

そして、各層の組成比の適正化と層密度の向上とを同時
に実施すれば得られた多層光干渉膜の耐熱性と耐候性と
は飛躍的に向上する。
If the composition ratio of each layer is optimized and the layer density is improved at the same time, the heat resistance and weather resistance of the resulting multilayer optical interference film will be dramatically improved.

(実施例) 以下、本発明の詳細を図示の各実施例によって説明する
。第1図は第1の実施例を適用してなる反射鏡付きハロ
ゲン電球を示し、ωは反射鏡、■はこの反射鏡(1)内
面に形成された多層光干渉膜の1種である可視光反射赤
外線透過膜、(3)は反射鏡のに取付けられたハロゲン
電球、■はこのハロゲン電球■を反射鏡のに固定する耐
熱性接着剤である。
(Examples) Hereinafter, details of the present invention will be explained with reference to each illustrated example. FIG. 1 shows a halogen light bulb with a reflector to which the first embodiment is applied, where ω is a reflector and ■ is a type of multilayer optical interference film formed on the inner surface of this reflector (1). A light-reflecting, infrared-transmitting film, (3) a halogen bulb attached to the reflector, and (2) a heat-resistant adhesive that fixes the halogen bulb (2) to the reflector.

上記反射鏡(1)は硬質ガラスからなり、内面が回転放
物面をなす反射部(11)の背後に筒形の口金部(12
)を一体に連設したものである。
The reflecting mirror (1) is made of hard glass and has a cylindrical base part (12) behind a reflecting part (11) whose inner surface forms a paraboloid of revolution.
) are arranged in series.

上記可視光反射赤外線透過膜■は第2図に模型的に拡大
して示すように、硫化亜鉛(ZnS)からなる高屈折率
層(2H)とふっ化マグネシウム(MgFi )からな
る低屈折率層(2L)とを合計25層反射部(11)内
面に交互積層してなるもので、各層の光学膜厚は1/4
λである。このうち第1層から第13層まではλ、〜i
a=600nmに制御しである。すなわちλ=600n
mの高屈折率層(2H)とλ=600rv+の低屈折率
層(2L)とをそれぞれ6層づつ交互に積層し、さらに
そのうえにλ=600nmの高屈折率層(2H)を1層
付加して13層としである。さらにその上に第14層か
ら第25層までをλ1.〜ii=450nmに制御しで
ある。
As shown schematically and enlarged in Fig. 2, the visible light reflective infrared transmitting film (2) has a high refractive index layer (2H) made of zinc sulfide (ZnS) and a low refractive index layer made of magnesium fluoride (MgFi). (2L) are alternately laminated on the inner surface of the reflective part (11), with a total of 25 layers, and the optical thickness of each layer is 1/4
It is λ. Among these, the first to thirteenth layers are λ, ~i
It was controlled to a=600 nm. That is, λ=600n
A high refractive index layer (2H) of λ = 600 nm and a low refractive index layer (2L) of λ = 600 rv+ are alternately laminated in 6 layers each, and one high refractive index layer (2H) of λ = 600 nm is added thereon. It has 13 layers. Furthermore, layers from the 14th layer to the 25th layer are layered with λ1. ~ii=450 nm.

すなわちλ=450nmの高屈折率層(2H)とλ= 
450nmの低屈折率層(2L)とをそれぞれ6層づつ
交互に積層したものである。そして、実施例の第1の特
徴はS/Znの組成比が0.6(1”0.90. Fz
/Mgの組成比が0.60〜0.90であることである
。また、本実施例の第2の特徴は高屈折率層(2H)の
層密度が0.96以上でかつ低屈折率層(2L)の層密
度の0.98以上であることである。
That is, a high refractive index layer (2H) with λ=450 nm and λ=
Six 450 nm low refractive index layers (2L) are alternately laminated. The first feature of the example is that the S/Zn composition ratio is 0.6 (1"0.90.Fz
/Mg composition ratio is 0.60 to 0.90. The second feature of this embodiment is that the layer density of the high refractive index layer (2H) is 0.96 or more and is 0.98 or more than the layer density of the low refractive index layer (2L).

上記ハロゲン電球■は石英ガラスなどの耐熱ガラスから
なる筒形(T形)バルブ(31)の基部を圧潰して封止
部(32)を形成してフィラメント(33)を封装して
なり、封止部(32)を口金部(12)内に位置させて
接着剤■で固定し、フィラメント(33)を反射部(1
1)の焦点に位置させである。
The above halogen light bulb (■) is made by crushing the base of a cylindrical (T-shaped) bulb (31) made of heat-resistant glass such as quartz glass to form a sealing part (32) and enclosing a filament (33). Position the stop part (32) inside the cap part (12) and fix it with adhesive ■, and attach the filament (33) to the reflective part (1).
It is located at the focal point of 1).

次に、上記可視光反射赤外線透過膜■の形成方法を説明
する。高屈折率層(2H)および低屈折率層(2L)は
いずれもイオンプレーテング法およびイオンアシスト法
とを同時に行なう形成法によって得られ、イオンアシス
ト法によるイオンや電子の衝撃によって層密度が向上す
る。また、蒸着母材の組成比と蒸着条件とによって層(
2H)、 (2L)の組成比が定まる。すなわち、第3
図に示す電子ビーム戒膜装置■において、複数個の蒸着
母材が収容可能なるつぼ(51)中にぶつ化マグネシウ
ムが収容されており、電子銃(52)からの電子ビーム
によって加熱蒸発される。この場合、加速電圧は6KV
である。また、エミッション電流値は42■Amある。
Next, a method for forming the above-mentioned visible light reflective and infrared transmitting film (2) will be explained. Both the high refractive index layer (2H) and the low refractive index layer (2L) are obtained by a formation method that simultaneously performs the ion plating method and the ion assist method, and the layer density is improved by bombardment of ions and electrons by the ion assist method. do. In addition, the layer (
The composition ratio of 2H) and (2L) is determined. That is, the third
In the electron beam film device (■) shown in the figure, magnesium fragments are housed in a crucible (51) that can accommodate a plurality of evaporation base materials, and are heated and evaporated by an electron beam from an electron gun (52). . In this case, the acceleration voltage is 6KV
It is. Further, the emission current value is 42 μAm.

硫化亜鉛はボート(53)による抵抗加熱によって加熱
蒸発させる。ちなみに、このボート(53)はタングス
テン製で、通電時の電流値はたとえば290Aである。
Zinc sulfide is heated and evaporated by resistance heating using a boat (53). Incidentally, this boat (53) is made of tungsten, and the current value when energized is, for example, 290A.

そして、反射鏡ω用ガラス(13)はドーム(54)上
に複数個取付けられており、このドームは回転機構(5
5)によって工時間当り900〜1500回転の速度で
自転して反射鏡用ガラス(13)を移動させる。
A plurality of reflective mirror ω glasses (13) are mounted on a dome (54), and this dome is connected to a rotating mechanism (54).
5), the reflecting mirror glass (13) is moved by rotating at a speed of 900 to 1500 revolutions per working hour.

このとき、ガラス(13)はヒータ(56)のふく射に
よって100〜300℃に加熱される。イオン銃(57
)はエンドホール型イオン銃で、イオン化のための導入
ガスは硫化亜鉛層、ぶつ化マグネシウム層の成膜時いず
れもアルゴンを共通に用いた。このイオン化のためおよ
び背景としてのアルゴンの全圧を8X10−”1.0X
10−’Torrとした。6は膜厚制御装置で、光源(
61)からの光を回転機構(62)からなる複数個収容
可能なモニタ基板(63)で反射させ、この反射光を制
御波長λn朧なる干渉フィルタ(64)を通してモニタ
基板(63) IIIにつき数層ずつ光学的膜厚を製御
し、これによって反射鏡ガラス(13)に可視光反射赤
外線透過膜■の各層(2H)、 (2L)を形成するも
のである。つまり本実施例では光学方式の膜厚制御方法
を用いている。上述のイオン銃(57)の条件は、導入
ガスを陽イオン化させるために熱電子を放出させるため
のカソード電流を2OA。
At this time, the glass (13) is heated to 100 to 300°C by radiation from the heater (56). Ion gun (57
) is an end-hole type ion gun, and argon was commonly used as the gas introduced for ionization when forming the zinc sulfide layer and the magnesium sulfide layer. The total pressure of argon for this ionization and as background is 8X10-"1.0X
The pressure was set at 10-'Torr. 6 is a film thickness control device, and a light source (
61) is reflected by a monitor board (63) that can accommodate a plurality of rotating mechanisms (62), and this reflected light is passed through an interference filter (64) with a controlled wavelength of λn to a monitor board (63) that can accommodate several monitor boards (63). The optical film thickness is controlled layer by layer, thereby forming each layer (2H) and (2L) of the visible light reflecting and infrared transmitting film (2) on the reflecting mirror glass (13). In other words, in this embodiment, an optical film thickness control method is used. The above-mentioned conditions for the ion gun (57) include a cathode current of 2 OA to emit thermoelectrons to positively ionize the introduced gas.

放電のための加速電圧を100v、放電電流を4.5A
とする。また、成層中の雰囲気はプラズマ雰囲気である
。このプラズマは周波数13.56MH2なる高周波電
源(58)から高周波出力50v〜10にVの高周波電
圧を整合器(58a)を介して装置■内のコイル(59
)へ出力させることによって生じる。
Accelerating voltage for discharge is 100V, discharge current is 4.5A
shall be. Further, the atmosphere during the layering is a plasma atmosphere. This plasma is generated by applying a high frequency voltage of 50 V to 10 V from a high frequency power source (58) with a frequency of 13.56 MH2 to a coil (59) in the device (2) through a matching box (58a).
).

テ つぎに、この実施例の反射鏡へハロゲン電球の作用を説
明する。ハロゲン電球■を点灯すると、フィラメント(
33)から可視光とともに大量の赤外線が放射される。
Next, the effect of the halogen bulb on the reflector of this embodiment will be explained. When you turn on a halogen bulb, the filament (
33), a large amount of infrared rays are emitted along with visible light.

そして、これらの光が可視光反射赤外線透過膜■に入射
すると、可視光は可視光反射赤外線透過膜■で反射して
前方に投射され、赤外線は可視光反射赤外線透過膜■を
透過し、さらに反射部(11)を透過して後方に向かう
、したがそ って、この反射鏡軸)ロゲン電球は赤外線の少な、い可
視光いわゆる冷光を放射する。また、このとき、ハロゲ
ン電球■からの伝熱と光の吸収とにより、可視光反射赤
外線透過膜■および反射部(11)が高温に熱せられる
が本寒施例の可視光反射赤外線透過膜■は耐熱性に優れ
ているので剥離することがない、さらに、本実施例可視
光反射赤外線透過膜■は耐候性にも優れているので湿潤
雰囲気中に長期間放置しても剥離することがない。
When these lights enter the visible light reflecting infrared transmitting film ■, the visible light is reflected by the visible light reflecting infrared transmitting film ■ and projected forward, and the infrared light passes through the visible light reflecting infrared transmitting film ■, and then The reflector (11) is transmitted through the reflector (11) toward the rear, and thus this reflector axis).The rogen bulb emits visible light, so-called cold light, with little infrared radiation. At this time, due to the heat transfer and light absorption from the halogen bulb (2), the visible light reflective infrared transmitting film (2) and the reflective portion (11) are heated to a high temperature. Because it has excellent heat resistance, it will not peel off.Furthermore, the visible light reflective infrared transmitting film (■) of this example also has excellent weather resistance, so it will not peel off even if left in a humid atmosphere for a long time. .

つぎに、このようにして形成された反射鏡ωの可視光反
射赤外線透過膜■の両層(2H)、 (2L)の組成比
および層密度を上述のように限定した理由を説明する。
Next, the reason why the composition ratio and layer density of both layers (2H) and (2L) of the visible light reflecting infrared transmitting film (2) of the reflecting mirror ω formed in this manner are limited as described above will be explained.

まず、高屈折率層(2H)、および低屈折率層(2L)
の層密度をそれぞれ0.98に保ち高周波をかけて各層
(2H)、 (2L)の組成比を種々変化させて、耐熱
性と耐候性とを調査した。耐熱性はランプ点灯時、反射
鏡反射部(11)が通常負荷される温度である300℃
と350℃とをとり、耐候性は50℃で関係湿度(H)
90%をとり、剥離が発生するまでの時間で表現した。
First, a high refractive index layer (2H) and a low refractive index layer (2L)
Heat resistance and weather resistance were investigated by varying the composition ratio of each layer (2H) and (2L) by applying high frequency while maintaining the layer density of each layer at 0.98. Heat resistance is 300℃, which is the temperature at which the reflector (11) is normally subjected to when the lamp is lit.
and 350℃, and the weather resistance is 50℃ and relative humidity (H)
90% was taken and expressed as the time until peeling occurred.

この結果を第2表に示す。The results are shown in Table 2.

(以下余白) 第 表 (時間) 第2表から明らかなとおり、S/Znの組成比が0゜6
0以上0.90以下で、カッFa/Mgノ組成比が0.
60以上0.90以下のとき耐熱性および耐候性が優れ
ている。
(Margins below) Table (Time) As is clear from Table 2, the S/Zn composition ratio is 0°6
0 or more and 0.90 or less, and the composition ratio of KaFa/Mg is 0.
When it is 60 or more and 0.90 or less, heat resistance and weather resistance are excellent.

つぎに、可視光反射赤外線透過膜■の高屈折率層(2H
)のS/Znの組成比および低屈折率層(2L)のF2
/Mgの組成比をいずれも1.0とし、高周波をかけな
い場合の膜密度を変化させたものについて耐熱性および
耐候性を調査した。調査は第2表と同様にした。この結
果を第3表に示す。
Next, the high refractive index layer (2H
) S/Zn composition ratio and F2 of the low refractive index layer (2L)
/Mg composition ratio was set to 1.0 in each case, and the heat resistance and weather resistance were investigated with respect to films with varying film densities when high frequency was not applied. The investigation was conducted in the same manner as in Table 2. The results are shown in Table 3.

第3表 (時間) 第3表から明らかなとおり、高屈折率層(2H)の層密
度が0.96以上かつ低屈折率層(2L)の層密度が0
.98以上のとき耐熱性および耐候性が優れている。
Table 3 (Time) As is clear from Table 3, the layer density of the high refractive index layer (2H) is 0.96 or more and the layer density of the low refractive index layer (2L) is 0.
.. When it is 98 or higher, heat resistance and weather resistance are excellent.

以上を要約して再言すれば、高屈折率層(2H)および
低屈折率層(2L)は組成的に真空蒸着したものよりも
イオンプレーテングのように硫黄やふっ素が若干減った
組成の方が耐熱性や耐候性が高く、さらに層密度をより
高くすることにより優れた耐熱性および耐候性が得られ
る。そして、各層(2H) 。
To summarize and restate the above, the high refractive index layer (2H) and the low refractive index layer (2L) have a composition with slightly reduced sulfur and fluorine, such as ion plating, compared to those deposited in vacuum. This has higher heat resistance and weather resistance, and by further increasing the layer density, excellent heat resistance and weather resistance can be obtained. And each layer (2H).

(2L)のS/Zn、 Fz/Mgの組成比が上述の範
囲にありさらに層密度が上述の数値以上であるときは、
組成比および層密度のいずれか一方だけの条件を具備し
た場合に比較して耐熱性および耐候性が格段に向上する
When the S/Zn and Fz/Mg composition ratios of (2L) are within the above-mentioned range and the layer density is above the above-mentioned values,
Heat resistance and weather resistance are significantly improved compared to the case where only one of the conditions of composition ratio and layer density is satisfied.

つぎに、第4図に第2の実施例を示す、このものは複写
機やファクシミリなどの露光用に用いられるハロゲン電
球で、石英ガラス製管形バルブ0の中心線に沿ってフィ
ラメント■を配設し、バルブ0の外面に多層光干渉膜の
他の例である可視光透過赤外線反射膜■を形成したもの
で、プイラメント■から放射された光のうち可視光は可
視光透過赤外線反射膜0を透過して外界に放射され、赤
外線は可視光透過赤外線反射膜0で反射してフィラメン
ト■に帰還してこれを加熱する。したがって、このハロ
ゲン電球は冷光を放射し、かつ高効率である。
Next, a second embodiment is shown in FIG. 4. This is a halogen light bulb used for exposure in copying machines and facsimile machines, and a filament (2) is arranged along the center line of a tube-shaped bulb (0) made of quartz glass. A visible light transmitting infrared reflective film (2), which is another example of a multilayer light interference film, is formed on the outer surface of the bulb (0). The infrared rays are reflected by the visible light transmitting infrared reflective film 0 and returned to the filament (2) to heat it. Therefore, this halogen bulb emits cold light and is highly efficient.

上記可視光透過赤外線反射膜■は上述の可視光反射赤外
線透過膜■と同様硫化亜鉛からなる高屈折率層とふつ化
マグネシウムからなる抵屈折率層とを交互積層してなる
もので層の厚さを変えたことにより可視光を透過し、赤
外線を反射するものである。
The above-mentioned visible light-transmissive infrared-reflecting film (2) is made by alternately laminating a high refractive index layer made of zinc sulfide and a low-refractive index layer made of magnesium fluoride, similar to the above-mentioned visible light-transmitting infrared-transmissive film (2). By changing the brightness, it transmits visible light and reflects infrared rays.

そして、本可視光透過赤外線反射膜■においても前述の
可視光反射赤外線透過膜と同様S/Zn組成比が0.6
0〜0.90で、かつF、 /Ngが0.60〜0.9
0であるとき耐熱性、耐候性が優れ、また高屈折率層の
層密度が0.96以上で、かつ抵屈折率層の層密度が0
.98以上であるとき耐熱性、耐候性が優でいる。
Also, in this visible light-transmitting infrared-reflecting film (2), the S/Zn composition ratio is 0.6, similar to the visible light-reflecting infrared-transmitting film described above.
0 to 0.90, and F, /Ng is 0.60 to 0.9
When it is 0, the heat resistance and weather resistance are excellent, and the layer density of the high refractive index layer is 0.96 or more, and the layer density of the low refractive index layer is 0.
.. When it is 98 or more, heat resistance and weather resistance are excellent.

さらに、上述の組成比の条件と層密度の条件とが併有さ
れるとき、耐熱性と耐候性とはそれぞれの条件を単独に
満したときに比較してその効果は格段に大きなものとな
る。
Furthermore, when the above-mentioned composition ratio conditions and layer density conditions are combined, the effects on heat resistance and weather resistance are much greater than when each condition is satisfied individually. .

なお、前述の両実施例は多層光干渉膜の例として可視光
反射赤外線透過膜と可視光透過赤外線反射膜を上げたが
、本発明はこれに限らず、他の波長域の光を反射し他の
波長域の光を透過するものでもよく、要は光の干渉を利
用して所望の波長域の光を反射し、所望の波長域の光を
透過するものであればよい。さらに、本発明の多層光干
渉膜の適用例は前述のほか、干渉色フィルタ、紫外線遮
断フィルタなどにも適用できる。そして、基体はセラミ
クスなどでもよく、その形状は問わない。
In both of the above-mentioned embodiments, a visible light reflective infrared transmitting film and a visible light transmitting infrared reflective film are used as examples of the multilayer light interference film, but the present invention is not limited to this, and may reflect light in other wavelength ranges. It may be a material that transmits light in other wavelength ranges; in short, it may be a material that utilizes light interference to reflect light in a desired wavelength range and transmit light in a desired wavelength range. Furthermore, the multilayer optical interference film of the present invention can be applied not only to the above-mentioned examples but also to interference color filters, ultraviolet blocking filters, and the like. The base body may be made of ceramics or the like, and its shape is not limited.

〔発明の効果〕〔Effect of the invention〕

このように、本発明はZnS/MgFx系多暦光干渉膜
に関し、請求項の第1は高屈折率層を構成する硫化亜鉛
の組成比S/Znを0.60以上0.90以下に限定し
、かつ低屈折率層を構成するぶつ化マグネシウムの組成
比F、 /Mgを0.60以上0.90以下に限定した
ので、耐熱性および耐候性が向上し、長期使用しても剥
離しにくく、苛酷な条件に耐えられる。また、請求項の
第2は高屈折率層の層密度を0.96以上とし、かつ低
屈折率層の層密度を0.98以上に限定したので耐熱性
および耐候性が向上し、長期使用しても剥離しにくく、
苛酷な条件に耐えられる。
As described above, the present invention relates to a ZnS/MgFx multi-calendar optical interference film, and the first claim is that the composition ratio S/Zn of zinc sulfide constituting the high refractive index layer is limited to 0.60 or more and 0.90 or less. In addition, the composition ratio F, /Mg of the magnesium carbide constituting the low refractive index layer is limited to 0.60 or more and 0.90 or less, improving heat resistance and weather resistance, and preventing peeling even after long-term use. It is difficult and can withstand harsh conditions. In addition, the second claim is that the layer density of the high refractive index layer is 0.96 or more, and the layer density of the low refractive index layer is limited to 0.98 or more, so that heat resistance and weather resistance are improved, and long-term use is achieved. It is difficult to peel off even when
Can withstand harsh conditions.

さらに、両請求項の発明を同時に実施すれば耐熱性と耐
候性とがさらに格段に向上する利点がある。
Furthermore, if the inventions of both claims are carried out simultaneously, there is an advantage that the heat resistance and weather resistance are further improved significantly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多層光干渉膜の第1の実施例を適用し
てなる反射鏡付きハロゲン電球の断面図、第2図は要部
の模型的拡大断面図、第3図は上記多層光干渉膜の形成
方法を示す説明図、第4図は第2の実施例を適用してな
るハロゲン電球の断面図である。 (1)・・・反射鏡(基体の一例) (11)・・・反射部     (13)・・・反射鏡
用ガラス■・・・可視光反射赤外線透過膜(多層光干渉
膜の一例) (2L)・・・低屈折率層 (31)・・・バルブ ■・・・接着剤 (2H)・・・高屈折率層 ■・・・ハロゲン電球 (33)・・・フィラメント ■・・・電子ビーム成膜装置 ■・・・膜厚制御装置 0・・・バルブ(基体の他の例) ■・・・フィラメント ■・・・可視光透過赤外線反射膜(多層光干渉膜の他の
例)
FIG. 1 is a sectional view of a halogen light bulb with a reflector to which the first embodiment of the multilayer optical interference film of the present invention is applied, FIG. 2 is a schematic enlarged sectional view of the main parts, and FIG. FIG. 4, which is an explanatory diagram showing a method of forming an optical interference film, is a sectional view of a halogen light bulb to which the second embodiment is applied. (1)...Reflector (an example of a base) (11)...Reflector (13)...Glass for a reflector ■...Visible light reflective infrared transmitting film (an example of a multilayer optical interference film) ( 2L)...Low refractive index layer (31)...Bulb■...Adhesive (2H)...High refractive index layer■...Halogen bulb (33)...Filament■...Electronic Beam film forming device ■...Film thickness control device 0...Bulb (another example of substrate) ■...Filament■...Visible light transmitting infrared reflective film (another example of multilayer optical interference film)

Claims (2)

【特許請求の範囲】[Claims] (1)基体面に硫化亜鉛からなる高屈折率層とふっ化マ
グネシウムからなる低屈折率層とを交互積層してなり、
上記硫化亜鉛を構成する亜鉛元素と硫黄元素との組成比
が0.60以上0.90以下であり、かつ上記ふっ化マ
グネシウムを構成するマグネシウム元素とふっ素元素と
の組成比が0.60以上0.90以下であることを特徴
とする多層光干渉膜。
(1) A high refractive index layer made of zinc sulfide and a low refractive index layer made of magnesium fluoride are alternately laminated on the substrate surface,
The composition ratio between the zinc element and the sulfur element constituting the zinc sulfide is 0.60 or more and 0.90 or less, and the composition ratio between the magnesium element and the fluorine element constituting the magnesium fluoride is 0.60 or more and 0. A multilayer optical interference film characterized in that the optical interference is .90 or less.
(2)基体面に硫化亜鉛からなる高屈折率層とふっ化マ
グネシウムからなる低屈折率層とを交互積層してなり、
上記高屈折率層は層密度が0.96以上であり、かつ上
記低屈折率層は層密度が0.98以上であることを特徴
とする多層光干渉膜。
(2) A high refractive index layer made of zinc sulfide and a low refractive index layer made of magnesium fluoride are alternately laminated on the substrate surface,
A multilayer optical interference film, wherein the high refractive index layer has a layer density of 0.96 or more, and the low refractive index layer has a layer density of 0.98 or more.
JP1225670A 1989-08-31 1989-08-31 Multilayer optical interference film Expired - Fee Related JP2696758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1225670A JP2696758B2 (en) 1989-08-31 1989-08-31 Multilayer optical interference film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1225670A JP2696758B2 (en) 1989-08-31 1989-08-31 Multilayer optical interference film

Publications (2)

Publication Number Publication Date
JPH0389201A true JPH0389201A (en) 1991-04-15
JP2696758B2 JP2696758B2 (en) 1998-01-14

Family

ID=16832944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225670A Expired - Fee Related JP2696758B2 (en) 1989-08-31 1989-08-31 Multilayer optical interference film

Country Status (1)

Country Link
JP (1) JP2696758B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273472A (en) * 1992-01-21 1993-10-22 Hughes Aircraft Co Light observation and near-infrared-ray tracking system for portable missile firing device
JP2008082112A (en) * 2006-09-28 2008-04-10 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Engine control device for construction machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230965A (en) * 1986-03-31 1987-10-09 Hitachi Ltd Manufacture of thin film
JPS63116106A (en) * 1986-11-05 1988-05-20 Matsushita Electric Ind Co Ltd Optical multi-layer film and its manufacture
JPS63220103A (en) * 1987-03-09 1988-09-13 Mitsubishi Electric Corp Infrared reflection radio wave transmission mirror
JPS63284502A (en) * 1987-05-18 1988-11-21 Toshiba Corp Production of multi-layered dielectric film filter
JPS647005A (en) * 1987-06-30 1989-01-11 Toshiba Glass Kk Reflecting mirror made of multi-layered films
JPS6480906A (en) * 1987-09-22 1989-03-27 Mitsubishi Electric Corp Infrared-light and radio wave separating plate
JPH01172563A (en) * 1987-12-26 1989-07-07 Agency Of Ind Science & Technol Formation of high-purity film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230965A (en) * 1986-03-31 1987-10-09 Hitachi Ltd Manufacture of thin film
JPS63116106A (en) * 1986-11-05 1988-05-20 Matsushita Electric Ind Co Ltd Optical multi-layer film and its manufacture
JPS63220103A (en) * 1987-03-09 1988-09-13 Mitsubishi Electric Corp Infrared reflection radio wave transmission mirror
JPS63284502A (en) * 1987-05-18 1988-11-21 Toshiba Corp Production of multi-layered dielectric film filter
JPS647005A (en) * 1987-06-30 1989-01-11 Toshiba Glass Kk Reflecting mirror made of multi-layered films
JPS6480906A (en) * 1987-09-22 1989-03-27 Mitsubishi Electric Corp Infrared-light and radio wave separating plate
JPH01172563A (en) * 1987-12-26 1989-07-07 Agency Of Ind Science & Technol Formation of high-purity film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273472A (en) * 1992-01-21 1993-10-22 Hughes Aircraft Co Light observation and near-infrared-ray tracking system for portable missile firing device
JP2008082112A (en) * 2006-09-28 2008-04-10 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Engine control device for construction machine

Also Published As

Publication number Publication date
JP2696758B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US4663557A (en) Optical coatings for high temperature applications
CA1177704A (en) Optical coatings for high temperature applications
US3712980A (en) Reflector arrangement for attenuating selected components of spectral radiation
US8253309B2 (en) Incandescent lamp incorporating reflective filament supports and method for making it
US8829334B2 (en) Thermo-photovoltaic power generator for efficiently converting thermal energy into electric energy
JPH0389201A (en) Multilayered light interference film
US6471376B1 (en) Increased life reflector lamps
JPH085833A (en) Optical interference body, tubular lamp, halogen lamp and illuminator
JPH0434501A (en) Multilayered optical interference film
JPH0217909B2 (en)
JP2993870B2 (en) Multilayer interference film
JP2006523366A (en) lamp
JPS60218761A (en) Lighting equipment
JP2687243B2 (en) Multilayer optical interference film
US20110032711A1 (en) High efficiency projection system
US10008379B1 (en) Infrared recycling incandescent light bulb
JP3054663B2 (en) Multilayer reflector
JP2928784B2 (en) Multilayer reflector
JP2971773B2 (en) Multilayer film
JP6625902B2 (en) Light-emitting body, filament, device using filament, and incandescent lamp
JP3221773B2 (en) High-intensity discharge lamp arc tube and high-intensity discharge lamp
JP2949126B2 (en) Lighting reflector
JP2790468B2 (en) Manufacturing method of halogen bulb
JPH05325895A (en) Metal halide lamp for automobile headlight
JPH06111792A (en) Bulb

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees