JPH0388334A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0388334A
JPH0388334A JP22609789A JP22609789A JPH0388334A JP H0388334 A JPH0388334 A JP H0388334A JP 22609789 A JP22609789 A JP 22609789A JP 22609789 A JP22609789 A JP 22609789A JP H0388334 A JPH0388334 A JP H0388334A
Authority
JP
Japan
Prior art keywords
wiring layer
insulating film
hole
layer
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22609789A
Other languages
Japanese (ja)
Inventor
Kazuo Kunimasa
国政 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22609789A priority Critical patent/JPH0388334A/en
Publication of JPH0388334A publication Critical patent/JPH0388334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce the occupying area of a through hole pad by connecting at least three wiring layers by way of the same through hole. CONSTITUTION:A field insulating film 3 is formed on the surface of an N-type semiconductor substrate 1. A P-type high-concentration diffused layer 2 is formed. Then, a first interlayer insulating film 4 is formed. A first wiring layer 5, a second interlayer insulating film 6, a second wiring layer 7 and a third interlayer insulating film 8 are sequentially formed, and the pattern of photoresist 9 is formed. A single through hole 10 reaching the P-type high concentration diffusing layer 2 is formed by sequentially removing the films and the layers by anisotropic dry etching. Tungsten 11 is embedded, and a third wiring layer 12 is formed. Of the interconnection layers comprising multilayered interconnection layers and the high-concentration diffusing layer which is formed on the main surface of the semiconductor substrate, at least three wiring layers are electrically connected with a metallic conductor layer embedded in the same through hole. Thus, the integration density of elements can be enhanced to a large extent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の構造およびその製造方法に関し、
特に多層配線層を有する半導体装置の構造およびその製
造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of a semiconductor device and its manufacturing method;
In particular, the present invention relates to a structure of a semiconductor device having a multilayer wiring layer and a method of manufacturing the same.

〔従来の技術〕[Conventional technology]

従来の半導体装置の構造および製造方法を、第3図を用
いて説明する。
The structure and manufacturing method of a conventional semiconductor device will be explained with reference to FIG.

第3図(b)は、従来の3層配線層を有する半導体装置
の縦断面図を示す、N型半導体基板1の主面にP壁高濃
度拡散層2およびフィールド絶縁膜3があり、さらに、
表面上に膜厚7000人の第1層間絶縁膜4がある。第
1層間絶縁膜4には1μm口のコンタクトホールが開孔
されており、膜厚1μmの第1配線層5はP壁高濃度拡
散層2に接続されている。さらに、膜厚1μmの第2層
間絶縁膜6には1μm口のスルーホールが開口されてお
り、第2配線層7と第1配線層5が接続されている、第
2配線層7の表面には、膜厚1μmの第3層間絶縁膜8
が存在し、1μm口のスルーホールにより第2配線層7
は第3配線層12と接続している。
FIG. 3(b) shows a vertical cross-sectional view of a conventional semiconductor device having three wiring layers, in which there is a P-wall high concentration diffusion layer 2 and a field insulating film 3 on the main surface of an N-type semiconductor substrate 1. ,
A first interlayer insulating film 4 having a thickness of 7000 layers is provided on the surface. A 1 μm contact hole is formed in the first interlayer insulating film 4 , and a 1 μm thick first wiring layer 5 is connected to the P-wall high concentration diffusion layer 2 . Further, a 1 μm-sized through hole is opened in the second interlayer insulating film 6 having a film thickness of 1 μm, and the second wiring layer 7 and the first wiring layer 5 are connected to each other through a through hole. is a third interlayer insulating film 8 with a film thickness of 1 μm.
exists, and the second wiring layer 7 is connected by a 1 μm through hole.
is connected to the third wiring layer 12.

次に、上述の3層配線層を有する半導体装置の製造方法
を示す。
Next, a method for manufacturing a semiconductor device having the above-mentioned three wiring layers will be described.

まず、第3図(a)に示すように、N型半導体基板1の
表面にLOCO3法により、熱酸化膜よりなるフィール
ド絶縁膜3を形成し、さらに、高ドースイオン注入法に
よりP型高濃度拡散層2を形成する0次に、第1層間絶
縁膜4をCVD法によるBPSG膜で形成し、コンタク
トホールをP壁高濃度拡散層2上に開孔し、スパッタリ
ング法により1層程度のSiを含むアルミニウムよりな
る第1配線層5を形成する。ここで、第1配線層5にお
いて、上層配線層との間のスルーホールが形成される部
分(以下、スルーホールパッドと称する〉を3μm口と
幅広く形戒しておく。
First, as shown in FIG. 3(a), a field insulating film 3 made of a thermal oxide film is formed on the surface of an N-type semiconductor substrate 1 by the LOCO3 method, and then a P-type high-concentration diffusion film is formed by a high-dose ion implantation method. Forming Layer 2 Next, a first interlayer insulating film 4 is formed using a BPSG film using the CVD method, a contact hole is opened on the P-wall high concentration diffusion layer 2, and approximately one layer of Si is deposited using a sputtering method. A first wiring layer 5 made of aluminum containing aluminum is formed. Here, in the first wiring layer 5, a portion where a through hole is formed between the upper wiring layer and the upper wiring layer (hereinafter referred to as a through hole pad) is broadly defined as a 3 μm opening.

次に、第2層間絶縁膜6をポリイミドで形成した後、上
述のスルーホールパッド上に1μm口のスルーホールを
開孔し、さらに、第2配線層7を形成する。ここで、第
2配線層7は前述の第2層間絶縁M6に設けられたスル
ーホールを介して第1配線層5に接続される。また、第
1配線層5と同様に、第2配線層7においても3μm口
のスルーホールパッドを形戒しておく。
Next, after a second interlayer insulating film 6 is formed of polyimide, a 1 μm through hole is opened on the above-mentioned through hole pad, and a second wiring layer 7 is further formed. Here, the second wiring layer 7 is connected to the first wiring layer 5 via a through hole provided in the second interlayer insulation M6 described above. Further, similarly to the first wiring layer 5, a 3 μm opening through-hole pad is also provided in the second wiring layer 7.

次に、第2配線層7上にポリイミドによる第3層間絶縁
膜8を形成した後、第2配線層7のスルーホールパッド
上に1μm口のスルーホールを開孔し、さらに、第3配
線層12を形戒する。ここで、第3配線層12は前述の
第3層間絶縁膜8に設けられたスルーホールを介して第
2配線層7に接続され、第3図(b)に示した半導体装
置の多層配線層の構造が完成する。
Next, after forming a third interlayer insulating film 8 made of polyimide on the second wiring layer 7, a 1 μm through hole is opened on the through hole pad of the second wiring layer 7, and then 12 is a form of precept. Here, the third wiring layer 12 is connected to the second wiring layer 7 through the through hole provided in the third interlayer insulating film 8 described above, and is connected to the multilayer wiring layer of the semiconductor device shown in FIG. 3(b). The structure of is completed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の多層配線層を有する半導体装置は、第3
配線層、第2配線層、第1配線層、P型高濃度拡散層を
接続する場合、1つのコンタクトホールと2つのスルー
ホールが必要となり、合計3回の絶縁膜への開孔を行な
うことになる。
The semiconductor device having the conventional multilayer wiring layer described above has a third
When connecting the wiring layer, the second wiring layer, the first wiring layer, and the P-type high concentration diffusion layer, one contact hole and two through holes are required, and the insulating film must be opened three times in total. become.

1回の開孔の工程に対しフォトリソグラフィの位置合せ
、エツチングおよび現像のばらつき等を考慮してマージ
ンを1μm程度とる必要がある。
It is necessary to provide a margin of about 1 μm for one hole-opening process, taking into account variations in photolithographic alignment, etching, and development.

このため、コンタントホール、スルーホールの開孔場所
には、開孔径を1μm口とすると、3μm口の面積が必
要となる。
Therefore, if the opening diameter of the contact hole and through hole is 1 μm, an area of 3 μm is required.

従って、第3配線層、第2配線層、第1配線層、P型高
濃度拡散層を接続する場合、3層3μm口の面積が接続
のために費やされるこになり、大きな欠点となる。
Therefore, when connecting the third wiring layer, the second wiring layer, the first wiring layer, and the P-type high concentration diffusion layer, an area of 3 μm of the three layers is consumed for the connection, which is a major drawback.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の多層配線層を有する半導体装置は、多層配線層
および半導体基板の主面に形成された高濃度拡散層から
なる配線層のうち少なくとも3層の配線層が、同一のス
ルーホールに埋め込まれた金属導電層により電気的に接
続されている。
In the semiconductor device having a multilayer wiring layer of the present invention, at least three wiring layers of the multilayer wiring layer and the wiring layer consisting of a high concentration diffusion layer formed on the main surface of the semiconductor substrate are embedded in the same through hole. electrically connected by a metal conductive layer.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(d)は本発明の多層配線層を有する半導体装置
の第1の実施例を示す縦断面図である。
FIG. 1(d) is a longitudinal cross-sectional view showing a first embodiment of a semiconductor device having multilayer wiring layers according to the present invention.

N型半導体基板1の主面にP型高濃度拡散層2およびフ
ィールド絶縁膜3があり、さらに、N型半導体基板1の
表面に形成された第1層間絶縁膜4、第1配線層5.第
2層間絶縁膜6.第2配線層7.第3層間絶縁膜8には
P型高濃度拡散層2に達する同一のスルーホールが形成
され、このスルーホールに金属導電層であるタングステ
ン11が埋め込まれ、これによりP型高濃度拡散層2゜
第1配線層5.第2配線層7.さらに第3配線層12が
電気的に接続されている。
A P-type high-concentration diffusion layer 2 and a field insulating film 3 are provided on the main surface of the N-type semiconductor substrate 1, and a first interlayer insulating film 4, a first wiring layer 5. Second interlayer insulating film 6. Second wiring layer 7. The same through hole reaching the P-type high concentration diffusion layer 2 is formed in the third interlayer insulating film 8, and tungsten 11, which is a metal conductive layer, is embedded in this through hole. First wiring layer5. Second wiring layer 7. Furthermore, the third wiring layer 12 is electrically connected.

次に本発明の多層配線層を有する半導体装置の第1の実
施例の構造の製造方法を、第1図(a)〜(d)を用い
て説明する。
Next, a method for manufacturing a structure of a first embodiment of a semiconductor device having multilayer wiring layers according to the present invention will be explained with reference to FIGS. 1(a) to 1(d).

まず、第1図(a)に示すように、N型半導体基板1の
表面にLOCO3法により、熱酸化膜よりなるフィール
ド絶縁膜3を形成し、さらに、高ドースイオン注入法に
よりP型高濃度拡散層2を形成する0次に、第1層間絶
縁膜4をCVD法によるBPSG膜で形成する。
First, as shown in FIG. 1(a), a field insulating film 3 made of a thermal oxide film is formed on the surface of an N-type semiconductor substrate 1 by the LOCO3 method, and then a P-type high-concentration diffusion film is formed by a high-dose ion implantation method. Next, the first interlayer insulating film 4 is formed of a BPSG film using the CVD method.

続いて、第1図(b)に示すように、膜厚1μmの1層
程度のSLを含有したアルミニウムからなる第1配線層
5.膜厚1μmのポリイミドからなる第2層間絶縁膜6
.膜厚1μmのアルミニウムからなる第2配線層7.膜
厚1μmのポリイミドからなる第3層間絶縁膜8を順次
形成する。
Subsequently, as shown in FIG. 1(b), a first wiring layer 5. of aluminum containing about one layer of SL with a film thickness of 1 μm is formed. Second interlayer insulating film 6 made of polyimide with a film thickness of 1 μm
.. Second wiring layer 7 made of aluminum with a film thickness of 1 μm. A third interlayer insulating film 8 made of polyimide and having a thickness of 1 μm is successively formed.

次に、第1図(c)に示すように、フォトリソグラフィ
によりフォトレジスト9のパターンを形成し、異方性の
ドライエツチングにより第3層間絶縁膜8.第2配線層
7.第2層間絶縁1t16.第1配線層5.第1層間絶
縁膜4を順次除去してP壁高濃度拡散層2に達する単一
のスルーホール10を形成する。
Next, as shown in FIG. 1(c), a pattern of photoresist 9 is formed by photolithography, and a third interlayer insulating film 8 is etched by anisotropic dry etching. Second wiring layer 7. Second interlayer insulation 1t16. First wiring layer5. The first interlayer insulating film 4 is sequentially removed to form a single through hole 10 that reaches the P-wall high concentration diffusion layer 2.

最後に、フォトレジスト9を剥離した後、スルーホール
10に選択成長によるタングステン11を埋め込み、第
3配線層12を形成し、第1図(d)に示す構造を得る
Finally, after peeling off the photoresist 9, tungsten 11 is buried in the through hole 10 by selective growth to form a third wiring layer 12 to obtain the structure shown in FIG. 1(d).

第2図(f)は本発明の多層配線層を有する半導体装置
の第2の実施例を示す縦断面図である。
FIG. 2(f) is a longitudinal cross-sectional view showing a second embodiment of a semiconductor device having multilayer wiring layers according to the present invention.

N型半導体基板1の主面にP壁高濃度拡散層2およびフ
ィールド絶縁膜3があり、さらに、N型半導体基板1の
表面に形成された第1層間絶縁膜4、第1配線層5.第
2層間絶縁膜6.第2配線層7.第3層間絶縁膜8には
P壁高濃度拡散層2に達するスルーホールと、第2層間
絶縁膜6.第2配線層7.第3層間絶縁膜8を貫通して
第1配線層5に達するスルーホールが形成され、これら
のスルーホールにはタングステン11が埋め込まれるこ
とによりP壁高濃度拡散層2.第1配線層5、第2配線
層7.第3配線層12の電気的接続、および第1配線層
5.第2配線層7.第3配線層12の電気的接続がなさ
れている。
A P-wall high concentration diffusion layer 2 and a field insulating film 3 are provided on the main surface of the N-type semiconductor substrate 1, and a first interlayer insulating film 4, a first wiring layer 5. Second interlayer insulating film 6. Second wiring layer 7. The third interlayer insulating film 8 has a through hole reaching the P wall high concentration diffusion layer 2, and the second interlayer insulating film 6. Second wiring layer 7. Through holes are formed that penetrate the third interlayer insulating film 8 and reach the first wiring layer 5, and by filling these through holes with tungsten 11, the P-wall high concentration diffusion layer 2. First wiring layer 5, second wiring layer 7. Electrical connection of the third wiring layer 12 and the first wiring layer 5. Second wiring layer 7. The third wiring layer 12 is electrically connected.

次に本発明の多層配線層を有する半導体装置の第2の実
施例の構造の製造方法を、第2図(a)〜(f)を用い
て説明する。
Next, a method for manufacturing a structure of a second embodiment of a semiconductor device having multilayer interconnection layers according to the present invention will be described with reference to FIGS. 2(a) to 2(f).

まず、第2図(a)に示すように、N型半導体基板1の
表面にLOCOS法により、熱酸化膜よりなるフィール
ド絶縁膜3を形成し、さらに、高ドースイオン注入法に
よりP壁高濃度拡散層2を形成する0次に、第1層間絶
縁膜4をCVD法によるBPSG膜で形成する。
First, as shown in FIG. 2(a), a field insulating film 3 made of a thermal oxide film is formed on the surface of an N-type semiconductor substrate 1 by the LOCOS method, and then a P-wall is heavily diffused by a high-dose ion implantation method. Next, the first interlayer insulating film 4 is formed of a BPSG film using the CVD method.

続いて、第2図(b)に示すように、膜厚1μmの1層
程度のSiを含有したアルミニウムからなる第1配線層
5.膜厚1μmのポリイミドからなる第2層間絶縁膜6
.膜厚1μmのアルミニウムからなる第2配線層7.膜
厚1μmのポリイミドからなる第3層間絶縁膜8を順次
形成する。
Subsequently, as shown in FIG. 2(b), a first wiring layer 5. about one layer of Si-containing aluminum having a thickness of 1 μm is formed. Second interlayer insulating film 6 made of polyimide with a film thickness of 1 μm
.. Second wiring layer 7 made of aluminum with a film thickness of 1 μm. A third interlayer insulating film 8 made of polyimide and having a thickness of 1 μm is successively formed.

次に、フォトレジストのパターンを形成し、異方性のド
ライエツチングにより第3層間絶縁膜8、第2配線層7
.第2層間絶縁膜6を順次除去して第1配線層5に達す
る複数のスルーホール10aを開孔し、フォトレジスト
パターンを剥離する。
Next, a photoresist pattern is formed, and anisotropic dry etching is performed to etch the third interlayer insulating film 8 and the second wiring layer 7.
.. The second interlayer insulating film 6 is sequentially removed to form a plurality of through holes 10a reaching the first wiring layer 5, and the photoresist pattern is peeled off.

次に、第2図(c)に示すように、所定のスルーホール
10aの部分に開口部を有するフォトレジスト9aを形
成し、異方性のドライエツチングにより第1配線層5.
第1層間絶縁膜4を順次除去してP壁高濃度拡散層2に
達するスルーホール10を開孔する。
Next, as shown in FIG. 2(c), a photoresist 9a having an opening at a predetermined through hole 10a is formed, and the first wiring layer 5. is etched by anisotropic dry etching.
The first interlayer insulating film 4 is sequentially removed to open a through hole 10 that reaches the P-wall high concentration diffusion layer 2.

続いて、第2図(d)に示すように、フォトレジストリ
aを剥離し、タングステン11をスルーホール10.ス
ルーホール10aの中に選択酸をさせる。この時、スル
ーホール10aでは、タングステン11が第3層間絶縁
膜8上まではみだして突起状に成長する。
Subsequently, as shown in FIG. 2(d), the photoresist a is peeled off and the tungsten 11 is inserted into the through hole 10. A selective acid is introduced into the through hole 10a. At this time, in the through hole 10a, the tungsten 11 protrudes onto the third interlayer insulating film 8 and grows into a protruding shape.

次に、第2図(e)に示すように、フォトレジストリb
を塗布、エッチバックを行ない、タングステン11の突
起部分をエツチング除去する。
Next, as shown in FIG. 2(e), the photoresist b
The protruding portions of the tungsten 11 are etched away by applying and etching back.

最後に、第3配線層12を形成ゆることにより、第2図
(f)にしめずP壁高濃度拡散層2゜第1配線層5.第
2配線層7.第3配線層12の電気的接続と第1配線層
5.第2配線層7.第3配線層12の電気的接続とを得
る。
Finally, by forming the third wiring layer 12, as shown in FIG. 2(f), the P-wall high concentration diffusion layer 2, the first wiring layer 5. Second wiring layer 7. Electrical connection of third wiring layer 12 and first wiring layer 5. Second wiring layer 7. Electrical connection of the third wiring layer 12 is obtained.

本実施例では、複数の種類の深さのスルーホールがある
場合、浅いスルーホール上に生じる選択成長金属の突起
部分を簡単に除去することができる。
In this embodiment, when there are through holes of a plurality of different depths, it is possible to easily remove the protruding portions of the selectively grown metal that occur on the shallow through holes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、同一のスルーホールによ
り少なくとも3層の配線層を接続することにより、従来
、3層の配線層の最上層以外の各配線層に設置していた
スルーホールパッドが最下層の配線層のみに設ければよ
く、スルーホールパッドの占有面積が削減され、素子の
集積度を大幅に高くすることができる。
As explained above, the present invention connects at least three wiring layers using the same through hole, thereby eliminating the through hole pads that were conventionally installed in each wiring layer except the top layer of the three wiring layers. It is only necessary to provide the through-hole pad in the lowest interconnection layer, which reduces the area occupied by the through-hole pad and greatly increases the degree of device integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の第1の実施例の縦断面
図、第2図(a)〜(f)は本発明の第2の実施例の縦
断面図、第3図(a)、(b)は従来の技術を示す縦断
面図である。 1・・・N型半導体基板、2・・・P型高濃度拡散層、
3・・・フィード絶縁膜、4・・・第1層間絶縁膜、5
・・・第1配線層、6・・・第2層間絶縁膜、7・・・
第2配線層、8・・・第3層間絶縁膜、9.9a、9b
・・・7オトレジスト、10.10a・・・スルーホー
ル、11・・・タングステン、12・・・第3配線層。
1(a) to (d) are longitudinal cross-sectional views of the first embodiment of the present invention, FIGS. 2(a) to (f) are longitudinal cross-sectional views of the second embodiment of the present invention, and FIG. Figures (a) and (b) are longitudinal sectional views showing a conventional technique. 1... N-type semiconductor substrate, 2... P-type high concentration diffusion layer,
3... Feed insulating film, 4... First interlayer insulating film, 5
...first wiring layer, 6...second interlayer insulating film, 7...
Second wiring layer, 8...Third interlayer insulating film, 9.9a, 9b
... 7 photoresist, 10.10a... through hole, 11... tungsten, 12... third wiring layer.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の表面に多層配線層を有する半導体装
置において、前記多層配線層および前記半導体基板の主
面に形成された高濃度拡散層からなる配線層のうち少な
くとも3層の前記配線層が、同一のスルーホールに埋め
込まれた金属導電層により電気的に接続されていること
を特徴とする半導体装置。
(1) In a semiconductor device having a multilayer wiring layer on the surface of a semiconductor substrate, at least three of the wiring layers consisting of the multilayer wiring layer and a high concentration diffusion layer formed on the main surface of the semiconductor substrate , a semiconductor device characterized in that the semiconductor device is electrically connected by a metal conductive layer embedded in the same through hole.
(2)請求項(1)記載の半導体装置の製造方法におい
て、前記少なくとも3層の前記配線層の最上層の配線層
が上面に形成される層間絶縁膜を形成する工程と、前記
スルーホールを形成する工程と、前記スルーホールに金
属の選択成長により前記金属導電層を埋め込む工程と、
前記最上層の配線層を形成する工程とを有することを特
徴とする半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim (1), including the step of forming an interlayer insulating film on which the uppermost wiring layer of the at least three wiring layers is formed; a step of embedding the metal conductive layer in the through hole by selective growth of metal;
A method for manufacturing a semiconductor device, comprising the step of forming the uppermost wiring layer.
JP22609789A 1989-08-30 1989-08-30 Semiconductor device and manufacture thereof Pending JPH0388334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22609789A JPH0388334A (en) 1989-08-30 1989-08-30 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22609789A JPH0388334A (en) 1989-08-30 1989-08-30 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0388334A true JPH0388334A (en) 1991-04-12

Family

ID=16839779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22609789A Pending JPH0388334A (en) 1989-08-30 1989-08-30 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0388334A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321197A (en) * 1994-05-20 1995-12-08 Nec Corp Wiring structure of semiconductor integrated circuit and its manufacture
US8836135B2 (en) 2011-03-01 2014-09-16 Kabushiki Kaisha Toshiba Semiconductor device with interconnection connecting to a via

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321197A (en) * 1994-05-20 1995-12-08 Nec Corp Wiring structure of semiconductor integrated circuit and its manufacture
US8836135B2 (en) 2011-03-01 2014-09-16 Kabushiki Kaisha Toshiba Semiconductor device with interconnection connecting to a via

Similar Documents

Publication Publication Date Title
JP3319555B2 (en) Method for manufacturing semiconductor device
JPS59220952A (en) Manufacture of semiconductor device
JPH0645329A (en) High-integration semiconductor device and manufacture
US4877750A (en) Method of fabricating a trench capacitor cell for a semiconductor memory device
JPH0645274A (en) Method for manufacture of contact via in integrated circuit
KR950012918B1 (en) Contact filling method using secondary deposition of selective tungsten thin film
JPH0685080A (en) Semiconductor and its manufacture
US5258328A (en) Method of forming multilayered wiring structure of semiconductor device
JPH0388334A (en) Semiconductor device and manufacture thereof
KR19980020482A (en) Wiring Structure and Method of Semiconductor Device
JP2616706B2 (en) Semiconductor device and manufacturing method thereof
EP0272051A2 (en) Reduced area butting contact structure
KR0137978B1 (en) Fabrication method of semiconductor device
JPH0629401A (en) Semiconductor device and its manufacture
KR960004078B1 (en) Contact forming method by stacked thin layer structure
JPS6484722A (en) Manufacture of semiconductor device
JP3618974B2 (en) Manufacturing method of semiconductor device
JPH02143445A (en) Manufacture of semiconductor device
JPH0438875A (en) Semiconductor device and manufacture method thereof
JP2855981B2 (en) Method for manufacturing semiconductor device
JPH01215036A (en) Semiconductor integrated circuit device
JP2695861B2 (en) Method for manufacturing semiconductor device
JP2925094B2 (en) Method for manufacturing semiconductor device
JPH01289142A (en) Vertical wiring structure
JP2900477B2 (en) Method for manufacturing semiconductor device