JPH0388272A - Electrode of phosphoric acid type fuel cell and manufacture thereof - Google Patents

Electrode of phosphoric acid type fuel cell and manufacture thereof

Info

Publication number
JPH0388272A
JPH0388272A JP1223502A JP22350289A JPH0388272A JP H0388272 A JPH0388272 A JP H0388272A JP 1223502 A JP1223502 A JP 1223502A JP 22350289 A JP22350289 A JP 22350289A JP H0388272 A JPH0388272 A JP H0388272A
Authority
JP
Japan
Prior art keywords
electrode
catalyst layer
electrode catalyst
fluororesin
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1223502A
Other languages
Japanese (ja)
Inventor
Makoto Aoki
信 青木
Toshihiro Sugiyama
杉山 智弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1223502A priority Critical patent/JPH0388272A/en
Publication of JPH0388272A publication Critical patent/JPH0388272A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To increase the output performance and life of a cell without the use of multilayer catalyst structure by using an electrode with one electrode catalyst layer in which the distribution of fluororesin is continuously, gradually increased from matrix side to electrode base material side. CONSTITUTION:The distribution of fluororesin 11 in an electrode catalyst layer 5a is continuously, gradually increased from a matrix 7 side to an electrode base material 3 side so that phosphoric acid in the electrode catalyst layer 5a is continuously, gradually decreased from the matrix 7 side to the electrode base material 3 side. The electrode catalyst layer 5a formed on the electrode base material 3 is not necessary to be formed with multilayer structure in which contents of fluororesin are different at every layer, and conflicting relation is satisfied with only one layer. Ion migration in a phosphoric acid solution film and gas supply are kept good. Output performance of a cell is increased and increased performance is retained for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燐酸量燃料電池の電極およびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode for a phosphoric acid fuel cell and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第4図は燐IIl型燃料電池の構成部材と、それらの配
置関偽を示した模式的な斜視図である。第4図において
、空気電極lおよび燃料電極2は、それぞれ例えば犀g
1.s〜2 mのカーボン繊維織布からなる多孔質のリ
ブ付き電極基材3.4の上に、カーボンブラックに白金
などの貴金属を担持した触媒と結合剤の弗素樹脂を均一
に混ぜ合わせた空気電極触媒層5.燃料電極触媒層6を
約Q、l Ig鵬の厚さに塗布したものであり、さらに
空気電極1の電極触媒層5の上にはSiC微粉末に少量
の弗素樹脂を約0.1雪・厚さに塗布したマトリックス
7を設け、このマ) 11ツクスフには燐酸電解液を含
浸しである。
FIG. 4 is a schematic perspective view showing the constituent members of a phosphorus type II fuel cell and their arrangement. In FIG. 4, the air electrode 1 and the fuel electrode 2 are, for example, rhinoceros
1. On top of the porous ribbed electrode base material 3.4 made of carbon fiber woven fabric with a thickness of 2 m to 2 m, air containing a catalyst in which noble metals such as platinum are supported on carbon black and a fluororesin as a binder is uniformly mixed. Electrode catalyst layer 5. The fuel electrode catalyst layer 6 is coated to a thickness of approximately Q, l Ig, and the electrode catalyst layer 5 of the air electrode 1 is coated with a small amount of fluororesin in SiC fine powder of approximately 0.1 cm. A thickly coated matrix 7 is provided, and this matrix 11 is impregnated with a phosphoric acid electrolyte.

燐酸量燃料電池は第4図に示したように、リブ付きの空
気電極l、燃料電極2をマトリックス7を介して空気電
極触媒層5.燃料電極触媒層6の主表面が向き合うよう
に菖ね、空気電極1.燃料電極2のリブ側には反応ガス
が互いに混合することがないよう導電性を有するガス不
透過性のセパレータプレート8を設置することにより、
空気電極lに空気通路9.燃料電極2に燃料通路lOが
形成される。
As shown in FIG. 4, the phosphoric acid fuel cell is constructed by connecting a ribbed air electrode 1, a fuel electrode 2 to an air electrode catalyst layer 5 through a matrix 7. Air electrodes 1. are arranged so that the main surfaces of the fuel electrode catalyst layers 6 face each other. By installing a conductive and gas-impermeable separator plate 8 on the rib side of the fuel electrode 2 to prevent reaction gases from mixing with each other,
Air passage 9 to air electrode l. A fuel passage lO is formed in the fuel electrode 2.

以上の如く燐酸量燃料電池は、電解液が含浸されたマ)
 IJクックフか介在しそれぞれ電極触媒層5.6を有
する空気電極l、燃料電極2からなる単セルを、セパレ
ータプレート8を挾んで多数積層し全体を積層方向に締
め付けて、燃料電池のセルスタックを構成することによ
り所期の出力が得られるように設計されている。
As mentioned above, a phosphoric acid fuel cell is a battery impregnated with an electrolyte.
A large number of single cells each consisting of an air electrode 1 and a fuel electrode 2 each having an electrode catalyst layer 5.6 interposed therebetween are stacked with separator plates 8 in between, and the whole is tightened in the stacking direction to form a fuel cell cell stack. It is designed so that the desired output can be obtained by configuring it.

このような構造を持つ燐酸量燃料電池をある電流密度で
運転した際に取り出すことができる出力電圧は、一般に
電極触媒層5.6中に含まれる弗素樹脂の少ない電極1
.2を用いたとき、良好な特性を示すがその特性の低下
は速く、これとは逆に電極触媒層5,6中に含まれる弗
素樹脂の多い電極1,2を用いたときは、出力電圧特性
は劣るがその特性の低下は遅い。このように電橋触媒層
5.6中の弗素樹脂量有量に関して出力電圧特性とその
低下速度は相反する傾向を持つている。これは撥水剤で
ある弗素樹脂の含有量によって電極触媒層5,6中の燐
酸量、燐酸分布の状Wおよびその経時変化が制御されて
いるからであり、弗素樹脂量有量の多い電極触媒層5,
6を備えた電極1.2では、[ffi触媒層5,6中の
燐酸量が少ないために電池の出力電圧特性は低くなるが
その状態を安定して持続することができるので特性低下
は比較的小さく、−万邦素樹脂含有量の少ない電極触媒
層5.6を備えた電極1.2を用いたときは、電極触媒
層5.6中の燐酸量が多く燐酸液換中のイオンの移動が
容易であるから出力電圧特性は高くなるが、時間の経過
とともに電極触媒層5゜6中の燐酸量が増加し原料ガス
の電極触媒層5゜6への供給が不十分となり、特性が速
く低下してしまうのである。
The output voltage that can be obtained when a phosphoric acid fuel cell having such a structure is operated at a certain current density is generally lower than that of the electrode 1 containing less fluororesin in the electrode catalyst layer 5.6.
.. When electrodes 1 and 2 are used, they exhibit good characteristics, but the characteristics deteriorate rapidly.On the contrary, when electrodes 1 and 2, which contain a large amount of fluororesin in the electrode catalyst layers 5 and 6, are used, the output voltage decreases. Although the properties are inferior, the deterioration of the properties is slow. As described above, regarding the amount of fluororesin in the bridge catalyst layer 5.6, the output voltage characteristics and the rate of decrease thereof have contradictory tendencies. This is because the amount of phosphoric acid in the electrode catalyst layers 5 and 6, the shape of phosphoric acid distribution W, and its change over time are controlled by the content of fluororesin, which is a water repellent. catalyst layer 5,
In electrode 1.2 equipped with 6, the output voltage characteristics of the battery are low due to the small amount of phosphoric acid in the [ffi catalyst layers 5 and 6, but this state can be maintained stably, so the deterioration in characteristics is comparatively low. When using the electrode 1.2 equipped with the electrode catalyst layer 5.6, which has a small surface area and a low content of resin, the amount of phosphoric acid in the electrode catalyst layer 5.6 is large and the movement of ions during phosphoric acid liquid exchange is reduced. Since it is easy to This results in a decline.

これに対する解決策の一つとして行なわれているのは、
電極触媒層5,6を弗素樹脂含有量に関して多層構成に
することである。即ち電極1.2の基材3,4上に初め
弗素樹脂含有量の多い電極触媒層を形成した後、その上
lζこれより弗素樹脂量:’*mの少ない電極触媒層を
形成し、順次弗素樹脂含有量が少なくなるように複数個
の電極触媒層を積み重ねるものであり、通常二層もしく
は三層に冨ねることが行なわれている。このようにt極
触媒層5.6を多層構成とすることにより、電極基材3
,4に近い側は燐酸量の少ない状態を維持することがで
き、電極触媒層5.6へのガス供給を確保しようとする
ものである。
One of the solutions to this problem is to
The electrode catalyst layers 5 and 6 have a multilayer structure with respect to the fluororesin content. That is, after first forming an electrode catalyst layer with a high fluororesin content on the base materials 3 and 4 of the electrode 1.2, an electrode catalyst layer with a lower amount of fluororesin: '*m is formed thereon, and then A plurality of electrode catalyst layers are stacked to reduce the fluororesin content, and usually two or three layers are used. By making the t-electrode catalyst layer 5.6 have a multilayer structure in this way, the electrode base material 3
, 4 can maintain a low amount of phosphoric acid and ensure gas supply to the electrode catalyst layer 5.6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、以上述べたごと〈従来の燐II!!It
燃料電池は出力電圧特性とその特性低下の速さ即ちi4
aの寿命とは相反関係にあり、いずれか一方を良くする
ことはできても双方を満足させることは困難であり、そ
の対策として行なわれる電極基材側から次第に弗素樹脂
量を減らす多層の電極触媒層を形成することにも問題が
ある。
However, as stated above, <conventional phosphorus II! ! It
For fuel cells, the output voltage characteristics and the speed of deterioration of those characteristics, i.e.
There is a contradictory relationship with the lifespan of a, and even if one can be improved, it is difficult to satisfy both.As a countermeasure, we have developed a multilayer electrode in which the amount of fluororesin is gradually reduced from the electrode base material side. There are also problems in forming the catalyst layer.

それは、このような多層の電極触媒層を形成するために
は、通常の電極触媒層に比べて製造工程が2〜3倍も必
要となる上に、各電極触媒層の界面で燐酸やガス通路の
つながりが不連続となることから、電池の特性、寿命の
改讐が見られるとは言え満足できるものではない。
In order to form such a multi-layered electrode catalyst layer, the manufacturing process is 2 to 3 times longer than that of a normal electrode catalyst layer, and in addition, phosphoric acid and gas passages are required at the interface of each electrode catalyst layer. Since the connection between the battery and battery becomes discontinuous, it is not satisfactory even though the characteristics and life of the battery have been improved.

本発明は上述の点に鑑みてナサれたものであり、その目
的は電極触媒層を多層構造とすることなく、一つの電極
触媒層についてその甲に含まれる弗素樹脂量を、表面即
ちセルにしたときのマトリックス側から電極基材側へ向
かって連続的に多くなるようにした燐酸量燃料電池の電
極およびその製造方法を提供することにある。
The present invention was developed in view of the above points, and its purpose is to reduce the amount of fluororesin contained in the upper part of one electrode catalyst layer to the surface, that is, to the cells, without making the electrode catalyst layer have a multilayer structure. An object of the present invention is to provide an electrode for a fuel cell in which the amount of phosphoric acid increases continuously from the matrix side toward the electrode base material side, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために本発明はカーボン基材上に
電極触媒層を形成した後、この電極触媒層の表面を弗素
樹脂の蒸発温度以上に加熱し、電極触媒層が基材と接す
る側の近傍は弗素樹脂の蒸発温度以下となる温度勾配を
持つように熱処理を施すことにより電極を作製し、一つ
の電極触媒層でその厚さ方向に弗素樹脂の含有量をマト
リックス側から基材側に向かって連続的に漸増する電極
触媒層を備えた電極としたものである。
In order to solve the above problems, the present invention forms an electrode catalyst layer on a carbon base material, then heats the surface of this electrode catalyst layer to a temperature higher than the evaporation temperature of the fluororesin, and The electrode is fabricated by heat treatment so that the temperature gradient is below the evaporation temperature of the fluororesin in the vicinity of The electrode is provided with an electrode catalyst layer that gradually increases toward the top.

〔作用〕[Effect]

不発明の電極は以上のように一つの電極触媒層中に含ま
れる弗素樹脂がマトリックス側から基材側に向かって連
続的に多くなっているので、弗素W豚舎有量の異なる電
極m煤層を多層に形成することなく、燐酸量燃料電池と
しては電極Ps謀層中の@酸がマトリックス側から基材
側に向かって連続的に少なくなり、燐酸中のイオンの移
動およびガスの供給が十分に行なわれ、またこの燐酸の
分布状態を長期間Jこ亘って持続することが可能である
から、電池の出力特性と寿命の双方を同時に向上させる
ことができる。
As described above, in the uninvented electrode, the amount of fluororesin contained in one electrode catalyst layer increases continuously from the matrix side to the base material side, so that the soot layer of the electrode with different amounts of fluorine W can be used. Without forming multiple layers, the amount of phosphoric acid in the fuel cell decreases continuously from the matrix side to the base material side, and the movement of ions in the phosphoric acid and the supply of gas are sufficient. Since this phosphoric acid distribution state can be maintained for a long period of time, both the output characteristics and the life span of the battery can be improved at the same time.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は第4図に示した燐酸量燃料電池の電極触媒層5
または6に相当する本発明による電極触媒層5aを模式
的に表わした部分拡大断面図であり、本発明ではこの電
極触媒層5aに含まれる弗素樹脂11が、マトリックス
7側から電極基材3@へ向かって連続的に多くなってい
る弗素樹脂11の分布状態のみを表わしたものである。
Figure 1 shows the electrode catalyst layer 5 of the phosphoric acid fuel cell shown in Figure 4.
FIG. 6 is a partially enlarged sectional view schematically showing an electrode catalyst layer 5a according to the present invention corresponding to No. This figure shows only the distribution state of the fluororesin 11, which increases continuously toward .

弗素樹脂11には最も一般的なポリテトラフルオロエチ
レン(以下PTFEとする)を用いている。一つの電極
触媒層5aについてその中に含まれるP T F E 
11に1s1図のような分布状態を与えるには、電極基
材3上にPTFEIIの含有量が通常より多い電極触媒
層を作製した後、不活性気体雰囲気中で電極基材3に接
触する側の電極触媒層の温度をPTFEllの蒸発温度
以下に保ちながら、その反対側の電極触媒層の表面側の
温度がP T F E uの蒸発温度以上となるように
、電、極触煤層の厚さ方向に温度勾配をつけて熱処理を
行なうことによりこれを電極触媒層5aとして得ること
ができる。本発明ではその他の例えば第4図に示した電
極触媒層6に相当する電極触媒層も同様の手法により作
製することができるのは勿論である。
The most common fluororesin 11 is polytetrafluoroethylene (hereinafter referred to as PTFE). P T F E contained in one electrode catalyst layer 5a
In order to give No. 11 a distribution state as shown in the 1s1 diagram, after preparing an electrode catalyst layer with a higher content of PTFEII than usual on the electrode base material 3, the side contacting the electrode base material 3 is prepared in an inert gas atmosphere. While keeping the temperature of the electrode catalyst layer below the evaporation temperature of PTFEll, the thickness of the electrode catalyst layer is adjusted so that the temperature of the surface side of the electrode catalyst layer on the opposite side is above the evaporation temperature of PTF E u. This can be obtained as the electrode catalyst layer 5a by performing heat treatment with a temperature gradient in the horizontal direction. Of course, in the present invention, other electrode catalyst layers corresponding to, for example, the electrode catalyst layer 6 shown in FIG. 4 can also be produced by the same method.

次にその方法についてのべる。先ず、カーボンブラクク
に白金などの貴金属を担持した触媒と6wt%のPTF
EIIとからなる電極触媒層を多孔質カーボン電極基材
上に塗布などにより形成するが、このとき界面活性剤を
用いるなどして触媒とPTFEllが均一に混ざり合う
ように留意しなければならない。この電極触媒層の厚さ
は@度勾配をつけやすいように、触媒となる金属を担持
したカーボンブラタクと金属を担持してないカーボンブ
ラνりをよく混せて厚< L/ 200 petとする
。かくして得られた例えば第4図に示す電極lに相当す
る電極を酸化から保護するために窒素などの不活性気体
を多量に流しながら、これに赤外線ランプを用いて電極
基材に接していないt種触媒層表面から赤外線を照射し
、電極触媒層のME電極基材側温度を500℃以下、電
極触媒層の表面側の温度8535〜545℃に1分間保
ち熱処理を施すことによりこの電極には電極触媒層5a
が得られる。熱処理後の電極を重量測定し、電極触媒層
5aの平均のPTFE含有量を求めた結果は45wt%
である。
Next, I will talk about the method. First, a catalyst in which noble metals such as platinum are supported on carbon black and 6 wt% PTF
An electrode catalyst layer consisting of EII is formed by coating on a porous carbon electrode base material, but at this time care must be taken to ensure that the catalyst and PTFEll are uniformly mixed by using a surfactant or the like. The thickness of this electrode catalyst layer is made by thoroughly mixing carbon fibers that support a metal that will serve as a catalyst and carbon fibers that do not support a metal, so that the thickness of the electrode catalyst layer is less than L/200 pet. do. For example, in order to protect the thus obtained electrode corresponding to electrode 1 shown in FIG. This electrode is heated by irradiating infrared rays from the surface of the seed catalyst layer and keeping the temperature on the ME electrode base material side of the electrode catalyst layer at 500°C or less and the temperature on the surface side of the electrode catalyst layer at 8535 to 545°C for 1 minute. Electrode catalyst layer 5a
is obtained. The weight of the electrode after heat treatment was measured, and the average PTFE content of the electrode catalyst layer 5a was found to be 45 wt%.
It is.

以上の熱処理温度は、Sl素雰囲気中で測定した電極触
媒層5aの熱重量−示差熱(TG−DTA)分析結果を
示した第2図の線図に基づき決定したものである。第2
図において曲#(イ)は熱重量分析曲線であり、曲*(
ロ)は示差熱分析曲縁を示す。
The above heat treatment temperature was determined based on the diagram in FIG. 2 showing the results of thermogravimetric-differential thermal analysis (TG-DTA) of the electrode catalyst layer 5a measured in a sl atmosphere. Second
In the figure, song #(a) is a thermogravimetric analysis curve, and song *(
B) shows the differential thermal analysis curve.

曲Ml(イ)の領域AはP T F E 11の蒸発に
よる重量減少であり、曲f1(ロ)の領域BはP T 
F E 11の融解による吸熱ピーク、領域CはPTF
EIIの蒸発による吸熱ピークを表わすものである。第
2図の曲線(イ)  、 (0)からP T F E 
11 cD蒸発温度は530〜575℃の範囲にあるこ
とがわかる。不発明ではPTFEllの一部のみを除去
するために、熱処理における電極PfX媒層煤層の表面
側の温度を535〜545℃とするのが適している。こ
の温度に1分間保持したとき電極触媒層5aの電極基材
側の温度は500℃に達することなく、電極MllIj
l15碑には厚さ方向に不発明で必要とする温度勾配を
得ることができる。
Area A of song Ml (a) is the weight loss due to evaporation of P T F E 11, and area B of song f1 (b) is the weight loss due to evaporation of P T F E 11.
Endothermic peak due to melting of F E 11, region C is PTF
This represents an endothermic peak due to the evaporation of EII. From the curves (A) and (0) in Figure 2, P T F E
It can be seen that the 11 cD evaporation temperature is in the range of 530-575°C. In the present invention, in order to remove only a portion of PTFEll, it is suitable to set the temperature on the surface side of the soot layer of the electrode PfX medium layer in the heat treatment to 535 to 545°C. When this temperature was maintained for 1 minute, the temperature on the electrode base material side of the electrode catalyst layer 5a did not reach 500°C, and the electrode MllIj
It is possible to obtain the required temperature gradient in the thickness direction of the L15 monument.

本発明による電極触媒層5aを有する゛電極の縦断面を
走査型電子顕微鏡(SEM)で観察した結果は、1jt
極触媒層5aは厚さ方向に電極基材側からこれに近い領
域程P 1’ F E uが多く存在しており、表面に
逸むにしたがって第1図に模式断面図として示したよつ
に、PTFEuは次第に連続的に減少している様子をw
秘することができる。
The longitudinal section of the electrode having the electrode catalyst layer 5a according to the present invention was observed with a scanning electron microscope (SEM), and the results showed that 1jt
In the polar catalyst layer 5a, more P 1' F E u exists in the region closer to the electrode base material side in the thickness direction, and as it deviates toward the surface, it becomes more concentrated as shown in the schematic cross-sectional view in FIG. , PTFEu gradually and continuously decreases.
It can be kept secret.

次に以上のようにして得られた電極FjlIs層5aを
有する電極を空気電極に用いてセルを組み立てて運転し
た結果を第3図に示す。第3図は運転時間と出力電圧と
の関係を示す線図であり、比較のために前に述べたt徳
触煤層をPTFEに関して3層構成とし、電極触媒層中
の平均PTFE含有量が45wt%となるように作製し
た電極を空気電極として用いた従来のセルの場合も併記
しである。第3図の曲線(イ)が不発明9曲線(ロ)が
従来の場合を表わす。第3図のように曲線(ロ)の従来
セルは初期から出力が低い上に時間の経過とともにその
低下も大きいのに対して、曲!(イ)の本発明のセルは
初期状態から従来セルより出力は高く、時間経過による
その低下が極めて少ない。このように本発明の電極を用
いた燃料電池は、電極上に形成される一つの電極触媒層
で、PTFE含有量に起因する出力と寿命についての相
反関係を一挙に解決し、良好な特性を非常に安定して持
続し作動することができるものである。
Next, FIG. 3 shows the results of assembling and operating a cell using the electrode having the electrode FjlIs layer 5a obtained as described above as an air electrode. FIG. 3 is a diagram showing the relationship between operating time and output voltage. For comparison, the electrode catalyst layer described above is made of three layers of PTFE, and the average PTFE content in the electrode catalyst layer is 45w. The case of a conventional cell in which an electrode prepared so as to have a % of The curve (a) in FIG. 3 represents the non-inventive case. The curve (b) represents the conventional case. As shown in Figure 3, the conventional cell shown by the curve (b) has a low output from the beginning and also decreases greatly over time, whereas the output of the conventional cell shown by the curve (b) is low from the beginning and decreases significantly over time. The cell of the present invention (a) has a higher output than the conventional cell from the initial state, and its decrease over time is extremely small. In this way, the fuel cell using the electrode of the present invention solves the conflicting relationship between output and life caused by the PTFE content at once with one electrode catalyst layer formed on the electrode, and achieves good characteristics. It is very stable and can last and operate.

〔発明の効果〕〔Effect of the invention〕

燐酸量燃料電池の電極に設けられる電極触媒層はこれに
含まれる弗素樹脂が従来均等に分布していたので、弗素
樹脂没の多少によって燐酸液膜中のイオンの移動とガス
供給について相反関係にあり、電池の出力特性と寿命の
双方を満足することができなかったが、本発明では実施
例で述べたように、電極触媒層を形成した後、厚さ方向
に温度勾配を付与させる熱処理を施すことにより、電極
触媒層中の弗素樹脂の分布をマトリックス側から電極基
材側へ厚さ方向に連続的に漸増するようIこし、電極触
媒層中の燐酸がマ) IJラックスから電極基材側へ厚
さ方向に連続的に漸減するようにしたために、電極基材
上に形成される電極触媒層を弗素樹脂含有量の異なる多
層構成とすることなく、ただ1層のみで上述の相反関係
を一挙に解決し、燐酸液膜°中のイオンの移動とガス供
給のいずれも良好な状態を保つことが可能となり、その
結果電池の出力特性が向上し、しかもその特性を長期間
に亘って持続することができるという大きな効果が得ら
れた。
Phosphoric acid amount Conventionally, the fluororesin contained in the electrode catalyst layer provided on the electrode of a fuel cell was evenly distributed, so depending on the degree of fluororesin absorption, there is a conflicting relationship between the movement of ions in the phosphoric acid liquid film and the gas supply. However, as described in the examples, in the present invention, after forming the electrode catalyst layer, heat treatment is performed to impart a temperature gradient in the thickness direction. By applying this, the distribution of fluororesin in the electrode catalyst layer is gradually increased in the thickness direction from the matrix side to the electrode base material side, and the phosphoric acid in the electrode catalyst layer is removed from the electrode base material. Since the electrode catalyst layer formed on the electrode base material is made to gradually decrease in the thickness direction toward the side, the above-mentioned contradictory relationship can be achieved with just one layer, without having to make the electrode catalyst layer formed on the electrode base material a multilayer structure with different fluororesin contents. This solves the problems all at once, making it possible to maintain good conditions for both the movement of ions in the phosphoric acid liquid film and the gas supply.As a result, the output characteristics of the battery are improved, and these characteristics can be maintained for a long period of time. The great effect was that it was sustainable.

【図面の簡単な説明】[Brief explanation of drawings]

第】図は本発明による電極の電極触媒層を模式的に表わ
した部分拡大断面図、第2図は本発明による電極の電極
触媒層について測定した熱重量分析曲線図および示差熱
分析曲線図、第3図は不発明により得られた燃料電池の
運転時間と出力電圧との関係を示す線図、第4図は燐酸
量燃料電池の構成部材と、それらの配置関係を示した模
式的な斜視図である。 l:空気電極、2:燃料電極、3,4:電極基材、5:
g!気電極触媒層、5a:を極M煤層、6:燃料電極触
媒層、7:マトリックス、8:セノfレートプレート、 :空気通路、 10:燃料通路、 第llm 200 00 00 371/°C 00 00 000 20003000 這−1 000 soo。 第3図
FIG. 2 is a partially enlarged sectional view schematically showing the electrode catalyst layer of the electrode according to the present invention, FIG. 2 is a thermogravimetric analysis curve diagram and a differential thermal analysis curve diagram measured for the electrode catalyst layer of the electrode according to the present invention, Fig. 3 is a diagram showing the relationship between the operating time and output voltage of the fuel cell obtained by the invention, and Fig. 4 is a schematic perspective view showing the constituent members of the phosphoric acid fuel cell and their arrangement relationship. It is a diagram. l: air electrode, 2: fuel electrode, 3, 4: electrode base material, 5:
g! Gas electrode catalyst layer, 5a: Soot layer, 6: Fuel electrode catalyst layer, 7: Matrix, 8: Senof rate plate, : Air passage, 10: Fuel passage, No. llm 200 00 00 371/°C 00 00 000 20003000 1 000 soo. Figure 3

Claims (1)

【特許請求の範囲】 1)所定の面にリブを設けた多孔質カーボン基材上の前
記リブとは反対の面上に、カーボンブラックに貴金属を
担持した触媒と弗素樹脂を混合した電極触媒層を有する
電極、および対向する一対の前記電極の前記各電極触媒
層の間に介在するSiCに電解液を含浸したマトリツク
スを備えた燐酸型燃料電池の前記電極であって、前記電
極触媒層中に含まれる前記弗素樹脂が前記電極触媒層の
厚さ方向に前記マトリックス側から前記基材備に向かっ
て連続的に漸増することを特徴とする燐酸型燃料電池の
電極。 2)請求項1項記載の電極を製造するに当たり、前記基
材の前記リブとは反対の面上にやや多めの前記弗素樹脂
を含む電極触媒層を形成した後、不活性ガス雰囲気中で
この電極触媒層の自由表面から前記弗素樹脂の蒸発温度
以上に加熱し、前記電極触媒層が前記基材と接する側の
近傍は前記弗素樹脂の蒸発温度以下となる温度勾配を持
つ熱処理を施すことを特徴とする燐酸量燃料電池の電極
製造方法。
[Scope of Claims] 1) An electrode catalyst layer in which a catalyst in which noble metals are supported on carbon black and a fluororesin are mixed on a surface opposite to the ribs on a porous carbon base material provided with ribs on a predetermined surface. and a matrix of SiC impregnated with an electrolyte interposed between each of the electrode catalyst layers of a pair of opposing electrodes, the electrode of a phosphoric acid fuel cell comprising: An electrode for a phosphoric acid fuel cell, wherein the fluororesin contained in the electrode catalyst layer gradually increases from the matrix side toward the base material in the thickness direction of the electrode catalyst layer. 2) In manufacturing the electrode according to claim 1, after forming an electrode catalyst layer containing a slightly larger amount of the fluororesin on the surface of the base material opposite to the ribs, the electrode catalyst layer is formed in an inert gas atmosphere. Heat treatment is performed such that the free surface of the electrode catalyst layer is heated to a temperature higher than the evaporation temperature of the fluororesin, and the temperature gradient near the side where the electrode catalyst layer contacts the base material is lower than the evaporation temperature of the fluororesin. Features: Phosphoric acid content fuel cell electrode manufacturing method.
JP1223502A 1989-08-30 1989-08-30 Electrode of phosphoric acid type fuel cell and manufacture thereof Pending JPH0388272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223502A JPH0388272A (en) 1989-08-30 1989-08-30 Electrode of phosphoric acid type fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223502A JPH0388272A (en) 1989-08-30 1989-08-30 Electrode of phosphoric acid type fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0388272A true JPH0388272A (en) 1991-04-12

Family

ID=16799151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223502A Pending JPH0388272A (en) 1989-08-30 1989-08-30 Electrode of phosphoric acid type fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0388272A (en)

Similar Documents

Publication Publication Date Title
JP3583897B2 (en) Fuel cell
RU2182387C2 (en) Bipolar separator plate of fuel cell with proton-exchange membrane
DE112004002294B4 (en) Fuel cell system and cathode diffusion layer for a fuel cell system
JPS5940471A (en) Electrochemical power generating element
JP3813406B2 (en) Fuel cell
JP2000067874A (en) Fuel cell and manufacture thereof
CA1182520A (en) Electrochemical power generator
JP2006147425A (en) Electrolyte membrane for polymer electrolyte fuel cell, its manufacturing method and the polymer electrolyte fuel cell
JP2001057217A (en) Polymer electrolyte type fuel cell
JPH0388272A (en) Electrode of phosphoric acid type fuel cell and manufacture thereof
JPS6046515B2 (en) Method for manufacturing electrolyte retention matrix for fuel cells
JP7291295B2 (en) Membrane-electrode assembly capable of improving reverse voltage durability of fuel cell, manufacturing method thereof, and fuel cell including the same
JPH08106915A (en) Electrode of solid polymer fuel cell and manufacture of fuel cell
EP1298744A1 (en) Fuel cell
JPH0684528A (en) Solid high polymer electrolyte type fuel cell
JPH07176307A (en) Fuel cell
JPS60241654A (en) Plate for fuel cell
JPH08264192A (en) Electrode base material for fuel cell and its manufacture
JPH08287924A (en) Solid high polymer fuel cell
JPH03225763A (en) Electrode catalyst layer of phosphoric acid type fuel cell
JP5729357B2 (en) Manufacturing method of gas diffusion layer for fuel cell
JPS63116365A (en) Fuel cell
KR20200053715A (en) Separator for fuel cell and manufactureing method thereof
JPS5956364A (en) Manufacture of electrolyte matrix for fuel cell
JPS61273871A (en) Matrix for fuel cell