JPH0388114A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0388114A
JPH0388114A JP22310889A JP22310889A JPH0388114A JP H0388114 A JPH0388114 A JP H0388114A JP 22310889 A JP22310889 A JP 22310889A JP 22310889 A JP22310889 A JP 22310889A JP H0388114 A JPH0388114 A JP H0388114A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
magnetic
recording medium
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22310889A
Other languages
Japanese (ja)
Inventor
Toshio Inao
俊雄 稲生
Eiji Kato
英司 加藤
Akio Kondo
近藤 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP22310889A priority Critical patent/JPH0388114A/en
Publication of JPH0388114A publication Critical patent/JPH0388114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the magnetic recording medium which is less decreased in output in a high-frequency region and has a high resolving power by providing a magnetic recording layer having a two-layered structure consisting of a ferromagnetic material layer and a diamagnetic material layer on a substrate coated with a nonmagnetic underlying layer. CONSTITUTION:The surface of a substrate is coated with the nonmagnetic underlying layer, on which the diamagnetic material layer consisting of a diamagnetic material and the ferromagnetic material layer consisting of a ferromagnetic material are formed to constitute the magnetic recording layer. A protective layer is formed on this magnetic recording layer. The magnetic recording medium constituted in such a manner is subjected to writing by a magnetic head. Magnetization Md in a -x direction is generated in the diamagnetic material layer when the magnetization Mf in a +x direction is written in the ferromagnetic layer, where Mf>Md. The magnetic flux in the lower part of the ferromagnetic layer is looped and excess magnetic fields do not exist in the lower part of the magnetization inversion region of the medium; therefore, the magnetic charge distribution and the magnetization inversion region are narrowed. The half-amplitude level of the reproduced and isolated waves is, therefore, diminished. The degradation in the output by an interference effect is reduced and the resolving power is improved even if the recording frequency increases.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コンピュータなどの外部記憶装置において、
磁気記憶体として用いられる磁気記録媒体に関するもの
である。
Detailed Description of the Invention (Industrial Application Field) The present invention provides an external storage device for a computer, etc.
The present invention relates to a magnetic recording medium used as a magnetic storage medium.

(従来の技術) 従来、コンピュータなどの記憶媒体として磁性粉を塗布
したテープなどが広く用いられていたが、この記憶テー
プ方式では記憶密度が小さくアクセス時間が長いなどの
欠点があるため、テープにかわりランダムアクセスが可
能な円板状の磁気ディスクが用いられてきている。なか
でも厚さ2■程度の堅い基板上に、厚さ1μm程度の磁
気記録層を形成して構成された磁気ディスクが広く用い
られてきている。このような磁気ディスクの磁気記録層
は、酸化鉄などの磁性粉をバインダと混合したものをデ
ィスク基板上にスピンコードなどの手法で塗布すること
により得られていたが、この方法で得られた磁気記録層
は飽和磁化の大きさに限界があった。そこで最近では大
きい飽和磁化を有する金属薄膜を磁気記録層として用い
た磁気記録媒体が提案されており、このような磁気記録
層はコバルトあるいはコバルト系合金からなる薄膜を真
空蒸着、スパッタリングなどの真空成膜技術により形成
したり、Co−PSCo−Ni−Pなどの合金薄膜を無
電解メツキ等の湿式法により形成することにより得られ
ている。しかしながら、このような磁気記録媒体にあっ
ては、分解能に問題があり、特に高周波数での出力を維
持するのが困難であるという問題点がある。
(Prior technology) Conventionally, tapes coated with magnetic powder have been widely used as storage media for computers, etc. However, this storage tape method has drawbacks such as low storage density and long access times, so tape Instead, disk-shaped magnetic disks that allow random access have been used. Among these, a magnetic disk constructed by forming a magnetic recording layer about 1 μm thick on a hard substrate about 2 μm thick has been widely used. The magnetic recording layer of such magnetic disks was obtained by coating a mixture of magnetic powder such as iron oxide with a binder onto the disk substrate using a technique such as a spin cord. The magnetic recording layer has a limit on the magnitude of saturation magnetization. Therefore, recently, magnetic recording media have been proposed that use a metal thin film with large saturation magnetization as a magnetic recording layer, and such a magnetic recording layer is formed by vacuum deposition, sputtering, etc. of a thin film made of cobalt or a cobalt-based alloy. It can be formed by film technology, or by forming an alloy thin film such as Co-PSCo-Ni-P by a wet method such as electroless plating. However, such magnetic recording media have problems in resolution, and in particular, it is difficult to maintain output at high frequencies.

(発明が解決しようとする課題) 本発明の目的は、分解能の優れた磁気記録媒体を提供す
ることにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a magnetic recording medium with excellent resolution.

(課題を解決するための手段) 本発明者らは上記課題を解決するために磁気記録層につ
いて鋭意検討を行った。その結果、磁気記録層を二層構
造とすることにより分解能の優れた磁気記録媒体が得ら
れることを見出だし本発明を完成するに至った。すなわ
ち本発明は、非磁性下地層を被覆した基板上に磁気記録
層及び保護層を設けた磁気記録媒体において、磁気記録
層が強磁性体層と反磁性体層の二層構造を有することを
特徴とする磁気記録媒体である。以下、本発明の詳細な
説明する。
(Means for Solving the Problems) In order to solve the above problems, the present inventors conducted intensive studies on magnetic recording layers. As a result, they discovered that a magnetic recording medium with excellent resolution can be obtained by forming the magnetic recording layer into a two-layer structure, and have completed the present invention. That is, the present invention provides a magnetic recording medium in which a magnetic recording layer and a protective layer are provided on a substrate coated with a non-magnetic underlayer, in which the magnetic recording layer has a two-layer structure of a ferromagnetic layer and a diamagnetic layer. This is a magnetic recording medium with special characteristics. The present invention will be explained in detail below.

第2図に磁気記録層が一層構造である従来の磁気記録媒
体の磁化反転領域部分の断面図を示す。
FIG. 2 shows a cross-sectional view of the magnetization reversal region of a conventional magnetic recording medium in which the magnetic recording layer has a single-layer structure.

図に示すとおり、磁気記録媒体において磁化反転領域に
分布する磁荷から媒体の上下にもれ磁束が発散している
。これらの磁束のうち実際に再生信号に寄与するのは上
側に発散する磁束のみであり、この磁束により磁気ヘッ
ドを通して再生電圧が誘起される。一方、媒体下部に位
置する磁荷は再生には寄与しないが、磁荷分布は磁荷の
絶対量が多いほど大きく広がる傾向を示すため、従来の
磁気記録媒体では下側のもれ磁束に由来する磁荷が存在
し、その結果磁化反転領域が必要以上に広がりを有して
いた。従って従来の磁気記録媒体は誘起される再生孤立
波の幅が広く、高周波数領域での干渉効果が大きくなり
、高周波数での出力、すなわち分解能を維持するのが困
難であった。
As shown in the figure, leakage magnetic flux diverges from the magnetic charges distributed in the magnetization reversal region in the magnetic recording medium to the top and bottom of the medium. Of these magnetic fluxes, only the magnetic flux that diverges upward actually contributes to the reproduction signal, and this magnetic flux induces a reproduction voltage through the magnetic head. On the other hand, although the magnetic charge located at the bottom of the medium does not contribute to reproduction, the magnetic charge distribution tends to spread more as the absolute amount of magnetic charge increases. As a result, the magnetization reversal region was wider than necessary. Therefore, in conventional magnetic recording media, the width of the induced reproduction solitary wave is wide, the interference effect becomes large in the high frequency region, and it is difficult to maintain the output at high frequencies, that is, the resolution.

一方、第3図は第−層を反磁性層、第二層を強磁性層と
した本発明の磁気記録媒体の磁気記録層の断面図であり
、磁気ヘッドによる書き込み時の磁化の様子を示したも
のである。本発明の磁気記録媒体の強磁性層に+χ方向
の磁化(Mf)を書き込んだとき、反磁性層には一χ方
向の磁化(Md)が生ずる。ここでl Mfl > l
 Mdlである。また第4図にこの媒体の磁化反転領域
部分の断面図を示すが、本発明の磁気記録媒体の磁気記
録層は反磁性層を有するため、図に示すように強磁性層
の下部の磁束がループ状となり、媒体の反転領域下部に
余分な磁荷が存在しない。その結果、磁荷分布及び磁化
反転領域が狭くなり、磁束分布もシャープになり急峻な
変化を持つようになる。従って、本発明の磁気記録媒体
は、再生される孤立波の半値憧が小さくなり、記録周波
数が高くなっても干渉効果による出力低下が少なくなり
、分解能が向上する。
On the other hand, FIG. 3 is a cross-sectional view of the magnetic recording layer of the magnetic recording medium of the present invention in which the first layer is a diamagnetic layer and the second layer is a ferromagnetic layer, and shows the state of magnetization during writing by a magnetic head. It is something that When magnetization (Mf) in the +χ direction is written in the ferromagnetic layer of the magnetic recording medium of the present invention, magnetization (Md) in the 1χ direction is generated in the diamagnetic layer. where l Mfl > l
It is Mdl. FIG. 4 shows a cross-sectional view of the magnetization reversal region of this medium. Since the magnetic recording layer of the magnetic recording medium of the present invention has a diamagnetic layer, the magnetic flux below the ferromagnetic layer is reduced as shown in the figure. It becomes a loop, and there is no extra magnetic charge below the reversal region of the medium. As a result, the magnetic charge distribution and the magnetization reversal region become narrower, and the magnetic flux distribution becomes sharper and has a steeper change. Therefore, in the magnetic recording medium of the present invention, the half value of the solitary wave to be reproduced is reduced, and even if the recording frequency becomes high, the output decrease due to the interference effect is reduced, and the resolution is improved.

本発明における磁気記録層の下層の反磁性層はホウ素、
ケイ素、リン、イオウ、銅、亜鉛、ゲルマニウム、イン
ジウム、カドミウム、銀、金、鉛から選ばれる金属から
なり、その厚みは50〜500人とすることが好ましい
。また上層の強磁性層は、コバルト、コバルトニッケル
合金から選ばれる磁性金属あるいはこれらにプラチナ、
ロジウム、チタン、クロム、サマリウム、タンタル、レ
ニウム、タングステンから選ばれる少なくとも一種以上
の金属を添加したものからなり、その厚みは200〜1
500人とすることが好ましい。
In the present invention, the diamagnetic layer below the magnetic recording layer is made of boron,
It is preferably made of a metal selected from silicon, phosphorus, sulfur, copper, zinc, germanium, indium, cadmium, silver, gold, and lead, and has a thickness of 50 to 500 people. The upper ferromagnetic layer is made of a magnetic metal selected from cobalt and cobalt-nickel alloys, or platinum or platinum.
It is made of a material to which at least one metal selected from rhodium, titanium, chromium, samarium, tantalum, rhenium, and tungsten is added, and its thickness is 200 to 1.
It is preferable to set the number to 500 people.

次に本発明の一実施態様を図面に基づき説明する。第1
図は本発明の磁気記録媒体からなる磁気ディスクの一実
施例を示す部分断面図である。本発明の磁気記録媒体は
基板1上に構成されており、基板1は例えばN1−Pメ
ツキ膜、陽極酸化アルマイト膜等を被覆したアルミナ合
金、または窒化硅素焼結体、酸化アルミ焼結体などのセ
ラミックスまたはステンレス、チタン合金などの金属、
ガラスまたはプラスチックなどからなる。また基板1上
にはクロムなどからなる非磁性下地層2が500〜50
00人の厚さで被覆され、この上に反磁性物質からなる
反磁性体層3、強磁性物質からなる強磁性体層4を底膜
し、磁気記録層が構成される。更に磁気記録層上に保護
層6を形成するが、この保護層6は炭素、酸化アルミニ
ウム、ジルコニアなどの無機物質からなり、厚さは50
〜400人が適当である。また必要に応じて磁性層4と
保護層6の間に表面層5を加えてもよく、この表面層5
はクロム、チタン、バナジウムなどの金属薄膜からなり
、その厚みは50〜200人が適当である。以上、非磁
性下地層2から保護層6までの薄膜の形成にあたっては
、DC,RFスパッタリング法や真空蒸着などの真空成
膜技術が有効に用いられる。更に本発明の磁気記録媒体
の使用にあたっては、上記保護層6上に液体潤滑剤、固
体潤滑剤あるいはこれらの複合潤滑剤を塗布して潤滑層
を形成して使用することができる。
Next, one embodiment of the present invention will be described based on the drawings. 1st
The figure is a partial sectional view showing an embodiment of a magnetic disk made of the magnetic recording medium of the present invention. The magnetic recording medium of the present invention is constructed on a substrate 1, and the substrate 1 is made of, for example, an alumina alloy coated with an N1-P plating film, an anodized alumite film, etc., or a silicon nitride sintered body, an aluminum oxide sintered body, etc. ceramics or metals such as stainless steel and titanium alloys,
Made of glass or plastic. Further, on the substrate 1, a non-magnetic underlayer 2 made of chromium etc.
A diamagnetic layer 3 made of a diamagnetic material and a ferromagnetic layer 4 made of a ferromagnetic material are placed on top of this to form a magnetic recording layer. Furthermore, a protective layer 6 is formed on the magnetic recording layer, and this protective layer 6 is made of an inorganic material such as carbon, aluminum oxide, or zirconia, and has a thickness of 50 mm.
~400 people is appropriate. Further, a surface layer 5 may be added between the magnetic layer 4 and the protective layer 6 as necessary.
is made of a thin film of metal such as chromium, titanium, vanadium, etc., and its thickness is suitably between 50 and 200. As described above, in forming the thin films from the non-magnetic underlayer 2 to the protective layer 6, vacuum film forming techniques such as DC and RF sputtering methods and vacuum evaporation are effectively used. Furthermore, when using the magnetic recording medium of the present invention, a liquid lubricant, a solid lubricant, or a combination of these lubricants can be applied on the protective layer 6 to form a lubricating layer.

(実施例) 以下、本発明の具体的な実施例について説明する。なお
本発明は以下の実施例に限定されるものではない。
(Example) Hereinafter, specific examples of the present invention will be described. Note that the present invention is not limited to the following examples.

実施例1〜4.比較例1 第1図に示す磁気記録媒体を作製した。下地体1として
平均表面粗さ100人に研磨されたN1−Pメツキ膜被
覆のアルミニウム合金を用い、この下地体1の上に下地
層2としてDCスパッタリング法により厚さ3000人
のクロム膜をDCスパッタリング法により形成した。次
に下地層2の上に反磁性層3として銀をDCスパッタリ
ング法により形威し、さらにこの上に強磁性層4として
ニッケルを20原子%、クロムを10原子%含むコバル
ト合金をDCスパッタリング法により700人の厚みに
形成した。この磁気記録層の上に、表面層5としてクロ
ムをDCスパッタリング法により厚さ100A形成し、
更にこの上に保護Frl6として炭素を同じくDCスパ
ッタリング法により300人形成し、磁気記録媒体を作
製した。
Examples 1-4. Comparative Example 1 A magnetic recording medium shown in FIG. 1 was produced. An aluminum alloy coated with an N1-P plating film polished to an average surface roughness of 100 mm was used as the base body 1, and a 3000 mm thick chromium film was deposited on the base body 1 as the base layer 2 by DC sputtering. It was formed by a sputtering method. Next, silver is formed as a diamagnetic layer 3 on the underlayer 2 by DC sputtering, and on top of this, a cobalt alloy containing 20 atom% of nickel and 10 atom% of chromium is formed as a ferromagnetic layer 4 by DC sputtering. It was formed to a thickness of 700 people. On this magnetic recording layer, chromium was formed as a surface layer 5 to a thickness of 100A by DC sputtering method,
Furthermore, 300 carbon layers were formed as protective Frl6 on this layer by the same DC sputtering method to produce a magnetic recording medium.

ここで反磁性層3の厚さを表2に示すように変化させて
得られた磁気記録媒体の電磁変換特性を表1に示す条件
により評価比較した。その結果を表2に示す。また、比
較例1として反磁性層3を形成しないで得られた磁気記
録媒体を作製し、この電磁変換特性を実施例と同様の方
法で評価比較した。その結果を表2にあわせて示す。更
に第5図に実施例3で得られた磁気記録媒体と比較例1
で得られた磁気記録媒体の記録密度と出力の相関を示す
Here, the electromagnetic conversion characteristics of magnetic recording media obtained by changing the thickness of the diamagnetic layer 3 as shown in Table 2 were evaluated and compared under the conditions shown in Table 1. The results are shown in Table 2. Further, as Comparative Example 1, a magnetic recording medium was produced without forming the diamagnetic layer 3, and its electromagnetic conversion characteristics were evaluated and compared using the same method as in the example. The results are also shown in Table 2. Furthermore, FIG. 5 shows the magnetic recording medium obtained in Example 3 and Comparative Example 1.
The correlation between the recording density and output of the magnetic recording medium obtained in the above is shown.

表1    評価条件 半径  :  35mm 回転数 : 3600RPM 1F周波数:1.25MHz 2F周波数:2.50MHz トラック幅=20μm ギャップ長:0,9μm ヘッド浮上:0.25μm 表2 実施例5〜8 実施例1と同じ方法で同じ構造の磁気記録媒体を作製し
た。ただし本実施例の場合、反磁性層3の厚さを100
人と一定にし強磁性層4の厚さを変化させ、得られた磁
気記録媒体の電磁変換特性を実施例1と同様に評価比較
した。この結果を表3に示す。
Table 1 Evaluation conditions Radius: 35 mm Rotation speed: 3600 RPM 1F frequency: 1.25 MHz 2F frequency: 2.50 MHz Track width = 20 μm Gap length: 0.9 μm Head flying height: 0.25 μm Table 2 Examples 5 to 8 Example 1 and A magnetic recording medium with the same structure was manufactured using the same method. However, in the case of this embodiment, the thickness of the diamagnetic layer 3 is 100 mm.
The electromagnetic conversion characteristics of the obtained magnetic recording medium were evaluated and compared in the same manner as in Example 1, with the thickness of the ferromagnetic layer 4 being varied while keeping the thickness constant. The results are shown in Table 3.

表3 (発明の効果) 以上述べたとおり、本発明の反磁性物質から成る第一の
磁性層と強磁性物質から成る第二の磁性層との二層構造
とした磁気記録媒体は、再生孤立波の半値幅を小さくす
ることができ、高周波数領域において出力低下の少ない
、つまり分解能が高<D50の大きい磁気記録媒体とな
る。
Table 3 (Effects of the Invention) As described above, the magnetic recording medium of the present invention having a two-layer structure of a first magnetic layer made of a diamagnetic material and a second magnetic layer made of a ferromagnetic material has a read-isolated The half-width of the wave can be made small, resulting in a magnetic recording medium with little output drop in the high frequency region, that is, a high resolution with high<D50.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体からなる磁気ディスクの
一実施例を示す部分断面図である。 第2図は従来の磁気記録媒体の磁化反転領域部分の断面
図である。 第3図は本発明の磁気記録媒体の磁気記録層の断面にお
いて磁気ヘッドによる書き込み時の磁化の様子を示した
図である。 第4図は本発明の磁気記録媒体の磁化反転領域部分の断
面図である。 第5図は実施例3で得られた磁気記録媒体と比較例1で
得られた磁気記録媒体の記録密度と出力の相関を示す図
である。 図中、 1・・・下地体 2・・・下地層 3・・・反磁性層 4・・・強磁性層 5・・・表面層 6・・・保護層 を各々示す。
FIG. 1 is a partial cross-sectional view showing one embodiment of a magnetic disk made of the magnetic recording medium of the present invention. FIG. 2 is a cross-sectional view of a magnetization reversal region portion of a conventional magnetic recording medium. FIG. 3 is a diagram showing the state of magnetization during writing by a magnetic head in a cross section of the magnetic recording layer of the magnetic recording medium of the present invention. FIG. 4 is a sectional view of the magnetization reversal region portion of the magnetic recording medium of the present invention. FIG. 5 is a diagram showing the correlation between recording density and output of the magnetic recording medium obtained in Example 3 and the magnetic recording medium obtained in Comparative Example 1. In the figure, 1... base body 2... base layer 3... diamagnetic layer 4... ferromagnetic layer 5... surface layer 6... protective layer, respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性下地層を被覆した基板上に磁気記録層及び
保護層を設けた磁気記録媒体において、磁気記録層が強
磁性体層と反磁性体層の二層構造を有することを特徴と
する磁気記録媒体。
(1) A magnetic recording medium in which a magnetic recording layer and a protective layer are provided on a substrate coated with a non-magnetic underlayer, characterized in that the magnetic recording layer has a two-layer structure of a ferromagnetic layer and a diamagnetic layer. magnetic recording media.
JP22310889A 1989-08-31 1989-08-31 Magnetic recording medium Pending JPH0388114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22310889A JPH0388114A (en) 1989-08-31 1989-08-31 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22310889A JPH0388114A (en) 1989-08-31 1989-08-31 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0388114A true JPH0388114A (en) 1991-04-12

Family

ID=16792952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22310889A Pending JPH0388114A (en) 1989-08-31 1989-08-31 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0388114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538977B2 (en) * 2004-04-30 2009-05-26 Hitachi Global Storage Technologies B.V. Method and apparatus for providing diamagnetic flux focusing in a storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538977B2 (en) * 2004-04-30 2009-05-26 Hitachi Global Storage Technologies B.V. Method and apparatus for providing diamagnetic flux focusing in a storage device

Similar Documents

Publication Publication Date Title
JPH0566647B2 (en)
JPH0388114A (en) Magnetic recording medium
JPS61240429A (en) Magnetic recording medium
JP2952967B2 (en) Magnetic recording media
JP2814630B2 (en) Magnetic recording media
JPH02121116A (en) Magnetic recording medium
JP3044571B2 (en) Magnetic recording media
JP2906480B2 (en) Magnetic recording medium
JPS59177725A (en) Magnetic storage body
JPS62219227A (en) Magnetic memory body
JPH0334122A (en) Magnetic recording medium and production thereof
JP2549769B2 (en) Magnetic recording media
JPH0216417Y2 (en)
JPH0737237A (en) Magnetic recording medium and its production and magnetic recorder
JP2792118B2 (en) Manufacturing method of magnetic recording medium
JPH03176814A (en) Magnetic recording medium
JPH0268712A (en) Thin film magnetic recording medium
JPH02101618A (en) Magnetic disk
JPH03283016A (en) Magnetic recording medium
JPH04143920A (en) Magnetic disk
Berghof Head and Media Requirements for High-Density Recording
JPS58171717A (en) Magnetic recording medium
JPS63102014A (en) Magnetic recording medium
JPH04182925A (en) Magnetic recording medium
JPS62202317A (en) Magnetic recording medium and its production