JPH038810B2 - - Google Patents

Info

Publication number
JPH038810B2
JPH038810B2 JP59274806A JP27480684A JPH038810B2 JP H038810 B2 JPH038810 B2 JP H038810B2 JP 59274806 A JP59274806 A JP 59274806A JP 27480684 A JP27480684 A JP 27480684A JP H038810 B2 JPH038810 B2 JP H038810B2
Authority
JP
Japan
Prior art keywords
hydrogen
tubular membrane
gas
purity
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59274806A
Other languages
Japanese (ja)
Other versions
JPS61157327A (en
Inventor
Tadahiro Oomi
Toshio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shinku Gijutsu KK filed Critical Nihon Shinku Gijutsu KK
Priority to JP59274806A priority Critical patent/JPS61157327A/en
Publication of JPS61157327A publication Critical patent/JPS61157327A/en
Publication of JPH038810B2 publication Critical patent/JPH038810B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば核融合炉燃料給排気系におけ
る不純物の除去工程や半導体プロセス等に利用さ
れ得る高純度水素精製装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-purity hydrogen purification device that can be used, for example, in an impurity removal process in a nuclear fusion reactor fuel supply and exhaust system, a semiconductor process, and the like.

従来技術 従来、高純度水素の製造法としてパラジウム合
金膜を用いたものが知られており、この方法はパ
ラジウムの水素透過性が極めて大きいことを利用
して不純物と水素との分離を行なうものである。
すなわちパラジウム系合金の膜を加熱し、上記膜
を介して不純物を含んだ水素ガス中の水素のみ透
過させ、高純度の水素を精製するものであり、こ
の方法は、今回最も高純度の水素を得ることので
きる方法であるとされている。
Conventional technology Conventionally, a method using a palladium alloy membrane is known as a method for producing high-purity hydrogen, and this method takes advantage of palladium's extremely high hydrogen permeability to separate impurities and hydrogen. be.
In other words, a palladium-based alloy membrane is heated, and only hydrogen in hydrogen gas containing impurities is permeated through the membrane to purify high-purity hydrogen. It is said that this is the method by which it can be obtained.

ところでパラジウム合金膜を用いた従来の水素
精製装置としては、Pd−Ag合金膜管の一端を直
接ステンレス製等の本体に溶接し、他端は同じ材
質のもので封じられており、そしてPd−Ag合金
膜管の外側(すなわち一次側)には加熱用ヒータ
ーが設けられ、加熱温度を均一にするためステン
レスの粉等を入れる場合がある。処理すべき水素
ガスはPd−Ag合金膜管の外側に供給され、水素
だけが管の外側より内側へ透過して二次側へ引き
出されるようにされている。
By the way, in conventional hydrogen purification equipment using palladium alloy membranes, one end of the Pd-Ag alloy membrane tube is directly welded to a main body made of stainless steel or the like, and the other end is sealed with the same material. A heater is provided on the outside (ie, the primary side) of the Ag alloy membrane tube, and stainless steel powder or the like may be added to the tube to make the heating temperature uniform. Hydrogen gas to be treated is supplied to the outside of the Pd-Ag alloy membrane tube, so that only hydrogen permeates from the outside of the tube to the inside and is drawn out to the secondary side.

しかしこのような従来装置ではパラジウム合金
は非常にもろいもので、上述のようにPd−Ag合
金膜管を直接ステンレス等の本体に溶接した場合
には、溶接部に割れが入り易く、それによりリー
クが発生し、二次側(高純度水素側)に不純物が
流入する恐れがある。またこのようなPd−Ag合
金膜管は通常機械工作的方法で製作されるため、
管の内側および外側とも油膜がほこり等で相当汚
れている。そのため先端の封じている構造では管
内部の洗浄を十分に行なうことができず、二次側
に不純物ガスが発生し、水素の純度を低下させる
原因となつている。さらに加熱の均一化のために
一次側にステンレス等の粉を多量に充填したもの
ではそこから不純物が発生し、パラジウム合金膜
を腐食させて穴をあけてしまう場合が生じ得る。
However, in such conventional equipment, the palladium alloy is extremely brittle, and when the Pd-Ag alloy membrane tube is welded directly to the main body made of stainless steel, etc., as mentioned above, cracks are likely to occur in the welded part, resulting in leaks. This may cause impurities to flow into the secondary side (high-purity hydrogen side). In addition, since such Pd-Ag alloy membrane tubes are usually manufactured using mechanical methods,
The oil film on both the inside and outside of the pipe is quite dirty with dust, etc. Therefore, with a structure in which the tip is sealed, the inside of the tube cannot be sufficiently cleaned, and impurity gas is generated on the secondary side, causing a decrease in the purity of hydrogen. Furthermore, if the primary side is filled with a large amount of powder of stainless steel or the like in order to ensure uniform heating, impurities may be generated therefrom, corroding the palladium alloy film and creating holes.

このような種々の欠点を解決した高純度水素精
製装置が特願昭59−198500号明細書に提案されて
おり、この装置においてはパラジウム系合金の管
状膜の両端部を開放端とし、その一方の端部は溶
接やロウ付けの容易なニツケル等の高純度金属の
管状部材を介して本体に固着し、他方の端部に
は、管状部材と同じ材質の封止部材が嵌合固着さ
れ、また管状膜に対する加熱ヒータは不純物の発
生の少ない物質の支持体で支持され、さらに各シ
ール部には超高真空フランジが用いられている。
A high-purity hydrogen purification device that solves these various drawbacks has been proposed in Japanese Patent Application No. 198500/1985. In this device, both ends of a palladium-based alloy tubular membrane are open ends, and one The end of the tube is fixed to the main body via a tubular member made of high-purity metal such as nickel that can be easily welded or brazed, and the other end is fitted and fixed with a sealing member made of the same material as the tubular member. Further, the heater for the tubular membrane is supported by a support made of a material that generates few impurities, and furthermore, an ultra-high vacuum flange is used at each sealing portion.

発明が解決しようとする問題点 しかしながら、このような改良型の装置におい
ても、ステンレス等の本体の内壁の水素ガスと接
触する部分からの放出ガスを無視できず、これら
の放出ガスはPd−Ag膜を腐食させ、その結果ピ
ンホールを作る原因となり長期間にわたつて安定
した精製を維持することができない。また二次側
においても放出ガスが生じ、これにより精製水素
の純度低下を生じさせている。
Problems to be Solved by the Invention However, even in such an improved device, gases released from the inner wall of the main body made of stainless steel or the like cannot be ignored, and these gases are released from Pd-Ag. This corrodes the membrane and causes pinholes to form, making it impossible to maintain stable purification over a long period of time. Further, gas is also generated on the secondary side, which causes a decrease in the purity of purified hydrogen.

そこで、本発明の目的は、一次側および二次側
の水素ガス接触部分からの放出ガスを実質的に減
少させて安定した水素精製と精製水素の純度維持
を達成することにある。
Therefore, an object of the present invention is to substantially reduce the gas released from the hydrogen gas contact portions on the primary side and the secondary side, thereby achieving stable hydrogen purification and maintaining the purity of purified hydrogen.

問題点を解決するための手段 上記の目的を達成するために、本発明によれ
ば、ステンレス等の本体にパラジウム系合金の管
状膜の一端を溶接し、管状膜の他端には封止部材
を装着し、この管状膜を加熱し、上記管状膜を介
して不純物を含んだ水素ガス中の水素のみを透過
させ、高純度の水素を精製するようにした高純度
水素精製装置において、本体の一次側及び二次側
の内壁の水素ガスと接触する部分にガス放出防止
層を施したことを特徴としている。
Means for Solving the Problems In order to achieve the above object, according to the present invention, one end of a palladium-based alloy tubular membrane is welded to a main body made of stainless steel, etc., and a sealing member is attached to the other end of the tubular membrane. In a high-purity hydrogen purification device that purifies high-purity hydrogen by heating this tubular membrane and permeating only the hydrogen in the hydrogen gas containing impurities through the tubular membrane, It is characterized in that a gas release prevention layer is applied to the portions of the inner walls on the primary and secondary sides that come into contact with hydrogen gas.

作 用 このように構成することによつて本発明の高純
度水素精製装置においては、一次側の壁からの放
出ガスは実質的に抑えることができ、Pd−Ag膜
がこれらの放出ガスによつて損傷されるのを防止
することができ、また二次側の壁から放出ガスも
低減され、精製水素の純度を低下させることがな
い。ガス放出防止層としてはTiN,CrN,AlN,
BN等が用いられ得るが、静電気の発生の問題の
観点からは導電性を持つ材質を使用するのが望ま
しい。接ガス部表面が絶縁物で形成されていると
大量の水素が流れたときそのまさつによつて静電
気が発生する。静電気の量がある値を越えると放
電し、その放電により発生する各種ガス成分や異
物が半導体プロセスのロツトアウトを引き起すか
らである。
Effect With this configuration, in the high-purity hydrogen purification apparatus of the present invention, gases released from the primary side wall can be substantially suppressed, and the Pd-Ag film prevents these gases from releasing. In addition, the amount of gas released from the secondary wall is reduced, and the purity of purified hydrogen is not reduced. TiN, CrN, AlN,
Although BN or the like may be used, it is preferable to use a conductive material from the viewpoint of static electricity generation. If the surface of the part in contact with gas is made of an insulating material, static electricity will be generated by the flow of a large amount of hydrogen. This is because when the amount of static electricity exceeds a certain value, it will be discharged, and various gas components and foreign matter generated by the discharge will cause a dropout in the semiconductor process.

実施例 以下添付図面を参照して本発明の実施例につい
て説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図には本発明の一実施例を示し、1はステ
ンレス製の本体,2はPd−Ag管状膜で、この管
状膜2の一方の開端2aはニツケルの管状部材3
の一端にパラジウムロウ材を用いてロウ付けさ
れ、管状部材3の他端は本体1の端壁4に溶接さ
れている。一方、管状膜2の他方の開端2bには
ニツケル封止部材5が嵌合ロウ付けされている。
こうして構成された管状膜組立体は図面には二つ
だけ示されているが、その数は任意に設計するこ
とができる。各管状膜2内にはその全長に沿つ
て、表面を窒化チタンでコーテンイングしたステ
ンレスまたはタングステン等のばね状体6が内接
した状態で挿置されている。これにより管状膜2
は一次側の圧力に十分耐えることができる。管状
膜組立体の外周には、その全長にわたつてのびる
無酸素銅製の円筒体7が配置されており、この円
筒体7は一端で本体1の端壁8に固定されてお
り、そしてこの円筒体7の外周面上にはヒータ9
が装着されている。このヒータ9は図示してない
導線を介して外部電源に接続される。また10は
精製すべき水素ガスの導入管であり、その先端に
は各管状膜2の一部分に局所的に水素ガスが吹き
付けるのを避け、本体1内で比較的均一なガス流
を得るため、第2図に示すように横方向の多数の
吹き出し口11aを備えたドラム状の導入部11
が設けられている。これにより一次側ガスの精製
筒すなわち各管状膜2への水素ガスの吹き出しが
制御され、その結果管状膜2の寿命を延ばすこと
ができる。
FIG. 1 shows an embodiment of the present invention, in which 1 is a stainless steel main body, 2 is a Pd-Ag tubular membrane, and one open end 2a of this tubular membrane 2 is a nickel tubular member 3.
One end of the tubular member 3 is brazed using palladium brazing material, and the other end of the tubular member 3 is welded to the end wall 4 of the main body 1. On the other hand, a nickel sealing member 5 is fitted and brazed to the other open end 2b of the tubular membrane 2.
Although only two tubular membrane assemblies constructed in this manner are shown in the drawings, the number can be designed arbitrarily. A spring-like body 6 made of stainless steel, tungsten, or the like whose surface is coated with titanium nitride is inscribed inside each tubular membrane 2 along its entire length. This allows the tubular membrane 2
can withstand the pressure on the primary side. Arranged on the outer periphery of the tubular membrane assembly is a cylinder 7 made of oxygen-free copper extending over its entire length, which cylinder 7 is fixed at one end to the end wall 8 of the body 1; A heater 9 is provided on the outer peripheral surface of the body 7.
is installed. This heater 9 is connected to an external power source via a conductor (not shown). Reference numeral 10 denotes an inlet pipe for introducing hydrogen gas to be purified, and its tip is equipped with a pipe in order to avoid blowing hydrogen gas locally onto a portion of each tubular membrane 2 and to obtain a relatively uniform gas flow within the main body 1. As shown in FIG. 2, a drum-shaped introduction section 11 is provided with a large number of lateral air outlets 11a.
is provided. This controls the blowing of hydrogen gas to the primary gas purification cylinder, that is, to each tubular membrane 2, and as a result, the life of the tubular membrane 2 can be extended.

各管状膜組立体の内部はふた部材12に設けら
れた精製水素取出管13へ空所14を介して連通
している。また本体1の両端のフランジ1a,1
bと組合さつた端壁4,8との間および端壁4と
ふた部材12との間のシール部には、99,99999
%以上の高純度の水素を精製する観点から装置内
部を超高真空にできしかも200℃以上の高温にも
耐え得るようにするため、それぞれメタルOリン
グ15,16,17が使用される。これらのメタ
ルOリングは例えばステンレス,Ni,Alに窒化
チタンをコーテイングしたものから成り、つぶれ
ないようにするため内部にばねを入れたものが好
ましい。
The inside of each tubular membrane assembly communicates via a cavity 14 to a purified hydrogen take-off pipe 13 provided in the lid member 12. Also, the flanges 1a, 1 at both ends of the main body 1
99,99999 in the seal portion between the end walls 4 and 8 assembled with b and between the end wall 4 and the lid member 12.
Metal O-rings 15, 16, and 17 are used, respectively, in order to be able to create an ultra-high vacuum inside the device and withstand high temperatures of 200° C. or higher in order to purify hydrogen with a high purity of 200° C. or higher. These metal O-rings are made of, for example, stainless steel, Ni, or Al coated with titanium nitride, and preferably have a spring inside to prevent crushing.

また本体1の内壁の水素ガスと接触する部分お
よび二次側の空所14の内壁部分には図示された
ように例えば窒化チタンコーテイングから成るガ
ス放出防止層18,19が施されており、これに
より放出ガスを少なくして管状膜2の腐食や精製
水素の純度低下を防止している。このコーテイン
グ材料としては上記窒化チタンの他に、放出ガス
の少ない材料例えばCrN,AlN,BN等を挙げる
ことができる。
Furthermore, gas release prevention layers 18 and 19 made of, for example, titanium nitride coating are applied to the portion of the inner wall of the main body 1 that comes into contact with hydrogen gas and the inner wall portion of the secondary side cavity 14, as shown in the figure. This reduces the amount of released gas and prevents corrosion of the tubular membrane 2 and a decrease in the purity of purified hydrogen. In addition to the above-mentioned titanium nitride, examples of the coating material include materials that emit little gas, such as CrN, AlN, and BN.

さらに第1図において20は一次側で不純物成
分の濃縮された水素ガスを排出するための排出系
で、この排出系20は図示されたように、二つの
バルブ20a,20bとフイルタ20cとを備え
ている。フイルタ20cは、大気中から微粒子が
一次側に侵入して管状膜2に付着するのを阻止す
る働きをし、例えば0.02μmフイルタから成り得
る。またバルブ20aには操作時に微粒子発生の
ないバルブ,例えばベローバルブ,ダイアフラム
バルブ等が使用され得る。管状膜2に微粒子が付
着すると、微結晶成長核となり、ピンホール発生
の原因となるため、微粒子の侵入を防ぐことは安
定動作の観点からも重要である。
Furthermore, in FIG. 1, reference numeral 20 denotes an exhaust system for discharging hydrogen gas enriched with impurity components on the primary side, and as shown, this exhaust system 20 includes two valves 20a, 20b and a filter 20c. ing. The filter 20c serves to prevent fine particles from the atmosphere from entering the primary side and adhering to the tubular membrane 2, and may be made of, for example, a 0.02 μm filter. Further, the valve 20a may be a valve that does not generate particulates during operation, such as a bellows valve or a diaphragm valve. When fine particles adhere to the tubular membrane 2, they become nuclei for microcrystal growth and cause pinholes, so preventing the penetration of fine particles is also important from the viewpoint of stable operation.

第3〜4図には変形実施例を示し、水素ガスの
導入部21がドーナツ状を成し、端壁8に向つて
多数の吹き出し口21aを備えている点を除いて
第1図に示す構造と同じである。
3 and 4 show a modified embodiment, which is shown in FIG. 1 except that the hydrogen gas introduction part 21 has a donut shape and is provided with a large number of outlets 21a toward the end wall 8. The structure is the same.

図示実施例は、単に例示のためのものであつて
各部分の構造,形状等は種々設計することがで
き、また本発明は当然上述で述べたような先行技
術の水素精製装置にも適用され得るものである。
The illustrated embodiment is merely for illustrative purposes, and the structure, shape, etc. of each part can be designed in various ways, and the present invention is naturally applicable to the prior art hydrogen purification apparatus as described above. It's something you get.

効 果 以上説明してきたように本発明によれば、一次
側および二次側壁の水素ガスと接触する部分にガ
ス放出防止層を設けたことによつて、一次側壁か
らの放出ガスによるPd−Ag膜の損傷を実質的に
防止することができ、装置の安定動作と共に精製
膜の長寿命化を得ることができる。また二次側壁
からの放出ガスも実質的に低減できるので精製水
素の純度を低下させることがなく、従つて99,
99999%以上の純度を維持することができる。
Effects As explained above, according to the present invention, by providing a gas release prevention layer on the portions of the primary and secondary side walls that come into contact with hydrogen gas, Pd-Ag due to gas released from the primary side wall can be prevented. Damage to the membrane can be substantially prevented, resulting in stable operation of the device and a longer lifespan of the purification membrane. In addition, the gas released from the secondary sidewall can be substantially reduced, so the purity of purified hydrogen will not be reduced.
Purity of 99999% or higher can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略断面図、
第2図は第1図の装置の一部を拡大して示す斜視
図、第3図は本発明の変形実施例を示す概略断面
図,第4図は第3図の装置の一部の拡大平面図で
ある。 図中、1:本体、2:管状膜、18,19:窒
化チタンコーテイング。
FIG. 1 is a schematic sectional view showing an embodiment of the present invention;
2 is an enlarged perspective view of a part of the device shown in FIG. 1, FIG. 3 is a schematic sectional view showing a modified embodiment of the present invention, and FIG. 4 is an enlarged part of the device shown in FIG. 3. FIG. In the figure, 1: main body, 2: tubular membrane, 18, 19: titanium nitride coating.

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス等の本体にパラジウム系合金の管
状膜の一端を溶接し、管状膜の他端には封止部材
を装着し、この管状膜を加熱し、上記管状膜を介
して不純物を含んだ水素ガス中の水素のみを透過
させ、高純度の水素を精製するようにした高純度
水素精製装置において、本体の一次側及び二次側
の内壁の水素ガスと接触する部分にガス放出防止
層を施したことを特徴とする高純度水素精製装
置。
1. One end of a palladium-based alloy tubular membrane is welded to a main body made of stainless steel, etc., a sealing member is attached to the other end of the tubular membrane, this tubular membrane is heated, and hydrogen containing impurities is passed through the tubular membrane. In a high-purity hydrogen purification device that purifies high-purity hydrogen by permeating only hydrogen in the gas, a gas release prevention layer is applied to the parts of the inner walls of the primary and secondary sides of the main body that come into contact with hydrogen gas. High purity hydrogen purification equipment.
JP59274806A 1984-12-28 1984-12-28 Apparatus for purifying high purity hydrogen Granted JPS61157327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274806A JPS61157327A (en) 1984-12-28 1984-12-28 Apparatus for purifying high purity hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274806A JPS61157327A (en) 1984-12-28 1984-12-28 Apparatus for purifying high purity hydrogen

Publications (2)

Publication Number Publication Date
JPS61157327A JPS61157327A (en) 1986-07-17
JPH038810B2 true JPH038810B2 (en) 1991-02-07

Family

ID=17546823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274806A Granted JPS61157327A (en) 1984-12-28 1984-12-28 Apparatus for purifying high purity hydrogen

Country Status (1)

Country Link
JP (1) JPS61157327A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282103A (en) * 1987-05-12 1988-11-18 Nippon Sanso Kk Purification of hydrogen
FR2685218B1 (en) * 1991-12-19 1994-02-11 Institut Francais Petrole HYDROGEN PURIFIER COMPRISING AN ALLOY BASE OF THE SAME COMPOSITION AS THAT OF THE TUBES.
JP2991609B2 (en) * 1993-10-18 1999-12-20 日本碍子株式会社 Joint of gas separator and metal and hydrogen gas separator
JP3402515B2 (en) * 1994-05-23 2003-05-06 日本碍子株式会社 Hydrogen separator, hydrogen separator using the same, and method for producing hydrogen separator
JP2010042397A (en) * 2008-07-14 2010-02-25 Ngk Insulators Ltd Hydrogen separator and method of operating hydrogen separator
JP2011125783A (en) * 2009-12-17 2011-06-30 Ngk Insulators Ltd Hydrogen separating body, hydrogen separating device, and method for manufacturing substrate for hydrogen separating body
JP7263281B2 (en) * 2020-03-12 2023-04-24 株式会社東芝 Hydrogen permeable membrane

Also Published As

Publication number Publication date
JPS61157327A (en) 1986-07-17

Similar Documents

Publication Publication Date Title
KR100306016B1 (en) Modules for filtration, separation, purification or catalytic conversion of gases or liquids
KR100540319B1 (en) Inline ultra-high efficiency filter
US4462812A (en) Ceramic monolith particulate trap including filter support
US2961062A (en) Large surface area hydrogen permeation cell
JPH038810B2 (en)
US8353977B2 (en) Hydrogen separator and method of operating hydrogen separator
JPH06201894A (en) Filter assembly
US3238704A (en) Diffusion purification of gases
JP3040488B2 (en) Filter candle for separating combustible substances consisting of exhaust gas by regeneration
CA1238866A (en) Diffusion cell
JPH038812B2 (en)
JPH038811B2 (en)
JPH049724B2 (en)
CN116692771A (en) External pressure type high-purity hydrogen purifier and preparation method thereof
JPH038809B2 (en)
JP2813274B2 (en) Gas filter device
JPH0218894B2 (en)
JP3273641B2 (en) Hydrogen gas purification equipment
US5542867A (en) Process for connection of a molybdenum foil to a molybdenum lead portion and method of producing a hermetically enclosed part of a lamp using the process
JP3076812B2 (en) Manufacturing method of metal filter for microfiltration
JP2009228635A (en) Exhaust emission control device
JP2000508965A (en) Multi membrane filter
JP2000296316A (en) Pressure-resistant hydrogen permeable membrane and its production
JPH06283186A (en) Processing of fuel exhaust gas of molten carbonate fuel cell and device therefore
JPH05330803A (en) Hydrogen purifier provided with a substrate made of alloy of composition being the same composition as alloy of pipe

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term