JPH038805B2 - - Google Patents

Info

Publication number
JPH038805B2
JPH038805B2 JP30299287A JP30299287A JPH038805B2 JP H038805 B2 JPH038805 B2 JP H038805B2 JP 30299287 A JP30299287 A JP 30299287A JP 30299287 A JP30299287 A JP 30299287A JP H038805 B2 JPH038805 B2 JP H038805B2
Authority
JP
Japan
Prior art keywords
magnetic
backwashing
magnets
magnetic particles
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP30299287A
Other languages
Japanese (ja)
Other versions
JPH01143612A (en
Inventor
Motofumi Kurahashi
Masakane Takemoto
Naoki Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30299287A priority Critical patent/JPH01143612A/en
Priority to CA000584480A priority patent/CA1319113C/en
Priority to EP88119871A priority patent/EP0318913B1/en
Priority to DE3888795T priority patent/DE3888795T2/en
Priority to KR1019880015925A priority patent/KR910004446B1/en
Publication of JPH01143612A publication Critical patent/JPH01143612A/en
Priority to US07/503,159 priority patent/US5019272A/en
Publication of JPH038805B2 publication Critical patent/JPH038805B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Cleaning In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は金属加工や摩耗により発生する磁性粒
子や水中に存在する磁性粒子、磁性を持つた微生
物及び液中に混入している磁性粒子を連続的に除
去する逆洗方法(以下、磁気フイルターに付着し
ている磁性粒子等を磁気フイルターから除去する
ことを逆洗と言う)に関するものである。 (従来の技術) 従来、磁性粒子や磁性を持つた微生物の除去に
は、永久磁石を用いた磁気分離方法や、強磁性体
繊維を用いた電磁フイルター等が行われている。 しかしながら、前者では除去効率が低く、又後
者の方法では逆洗を効果的に行う為、特開昭54−
86878号公報の如く磁界をなくすことが必要であ
り、そのため、大規模な電磁石の使用や、磁石を
取り除くための大掛かりな装置が必要となり、多
大な電力消費や大きな製作コストがかかるもので
ある。 一般に、製鉄業や金属工業、自動車等のプレ
ス、加工産業では、その成品製造工程の中で、洗
浄水、圧延油、冷却水、加工油等の液中に多量の
磁性粒子を含んでおり、製品表面清浄度を悪化さ
せるばかりでなく、製品の疵発生等品質にも大き
な影響を与えている。 又、これらの磁性粒子は非常に細かく、通常の
磁気分離装置を使用しても除去しにくく、タンク
洗浄、フイルター洗浄や処理場への配管の詰まり
等のため、その除去に多大なコストがかかつてい
た。 又淡水、浄水等の処理においても、配管中から
発生する錆や鉄バクテリア等の発生は避けられ
ず、水道水中の赤水等の要因となつているため、
それらを除去するため、大掛かりな浄化槽や分離
装置が必要となり、多大なコストがかかつてい
る。 例えば、製鉄業における例では、冷間圧延され
た冷却鋼板では、圧延工程において発生した鉄粒
子が鋼板上に付着しているため、その除去のため
電解脱脂工程を経て、熱処理工程やメツキ工程等
の次工程に送られる。この場合、圧延油タンクや
洗浄油タンクでは、鉄粉濃度を下げるためドラム
式の磁気分離装置と布を用いたフイルターが一般
的に使用されている。 しかし、ドラム式磁気分離装置はドラム表面の
磁石の磁力により磁性粒子を吸着して除去するた
め、除去効率を極めて低く、又布フイルターでは
鉄粒子が細かすぎるため、除去効率が上がらず、
その上すぐ目詰まりを起こすため、布コストが多
大にかかる。 これに対し、強磁性細線を用いた電磁フイルタ
ーがある。これは高勾配磁気分離法を用いて、強
磁性細線の回りに大きな磁気勾配を発生させ、磁
性粒子を効率よく分離できるが、現状では逆洗が
難しく、そのため大きな電磁コイルを用いて磁界
の制御を行つており、多大な装置、製作費と膨大
な電力消費となり、従つて低コストでフイルター
内に付着した磁性粒子を高効率に逆洗することが
課題となつている。 (発明が解決しようとする問題点) 本発明は、前述した種々の問題点を有利に解決
する磁気分離された磁性粒子の逆洗方法を提供す
ることを目的とするものである。 (問題点を解決するための手段) 本発明の要旨は磁気分離された磁性粒子を逆洗
する際に、磁気フイルターの回転方向の上下に磁
石を配置し、該磁気フイルターに液体を噴出しつ
つ、磁気フイルターを回転し、磁性粒子を逆洗す
ることを特徴とする磁気分離された磁性粒子の逆
洗方法、及び上下に配置した磁石は複数の磁石で
放射状に配置し、該磁石は隣接する磁石と異極に
配置し、上下の一方の磁石を固定し、他方を回転
することにより交番磁界を発生させて逆洗するこ
とを特徴とする。 先ず、磁性粒子を除去する磁気分離方法の概要
を第4図を用いて説明する。 例えば、冷間圧延工程1に用いられた圧延油等
には、該冷間圧延で発生した磁性粒子が含有され
ており、該圧延油は循環タンク2に留まり、圧延
油中の磁性粒子を除去された後、冷間圧延工程に
送られ循環される。 磁性粒子を含んだ圧延油はタンク2よりポンプ
に圧送され(経路A)、磁気フイルター3にて濾
過され、濾過された圧延油は経路Bを通つてタン
ク2に戻され、圧延油中の磁性粒子の除去がなさ
れる。 時間の経過と共に磁気分離フイルター3の除去
率が低下するため、定期的に逆洗される。逆洗は
経路Cより、逆洗液(水、蒸気、油等)を投入
し、磁気フイルター3の内部が1000〜3000rpmに
て回転し逆洗し、排出された磁性粒子は経路Dを
通つて、排出タンク5に溜められる。この方法を
一定時間毎に行うことにより、循環タンクで圧延
油中の磁性粒子の除去を行うものである。 本発明は磁気フイルターにて磁性粒子を除去し
た後、磁気フイルターに付着している磁性粒子
を、磁気フイルターから有利に除去(逆洗)する
ことを特徴とするものである。そのために、本発
明は磁気フイルターの上下に磁石を配置し、磁気
フイルターを回転させ、遠心力を利用して逆洗す
ることを特徴とする。 即ち、一般的に用いられる磁気フイルターは、
第5図に示す如く、放射状に磁石6が設けられて
いる。 このような磁気フイルター3を回転させて、遠
心力を利用して磁性粒子を含んだ逆洗液から磁性
粒子を除去する際、逆洗液は第6図に示す如く磁
気フイルター3が回転するため、回転と逆方向に
aの如く円運動を描いて流れようとするが、磁石
6が障害となり、bの如く逆洗液は途中から磁石
に沿つて流れる。 従つて、磁気フイルター3内の逆洗される箇所
は、第6図の斜線で示した箇所のみとなり、逆洗
効果は極めて低く好ましくないものである。 しかし、本発明は第1図に示す如く、磁気フイ
ルター3の上下に磁石を配置し、磁気フイルター
を回転させて逆洗することにより、逆洗液は上部
の磁石6aと下部の磁石6bとの間を流れ、水路
障害となる壁がないので、高効率に逆洗が可能な
ものである。 尚、上下に設けた磁石6は第1図cに示す如く
磁石6aと6bの対向する配置は、S極とN極が
対向する(異極となる)ようにし、磁石6aと6
bとの間には強磁性繊維7を設け、強磁性繊維に
磁界を発生させ、磁性粒子を強磁性繊維に付着さ
せるものである。 以上の如く、磁気フイルターの上下に磁石を配
置し逆洗することにより、効率良く磁性粒子を除
去できるものである。 前述した逆洗方法に加えて、本発明は上下に配
置した磁石は複数の磁石で放射状に配置し、該磁
石は隣接する磁石と異極に配置し、上下の一方の
磁石を固定し、他方を回転することにより交番磁
界を発生させて逆洗すると、より効率的な逆洗が
可能となる。 即ち、本発明は第2図に示す如く、上部に配置
された磁石はN極とS極が交互にならんでおり、
又下部の磁石は上部の磁石の極性と反対の磁極に
配置する。 又、例えば上下の一方の磁石(上部磁石)は固
定され、他方の磁石(下部磁石)は回転可能とす
る。この時上部の磁石を固定し下部の磁石を回転
させると、上部と下部の磁石は磁極が反対であつ
たものが、S極とS極、あるいはN極とN極の如
く、極性が同じものが対向するようになる。 このようにすると上部と下部の磁石間に設けた
強磁性体繊維には、交番磁界が作用し、あたかも
磁石がない状態となり、更に高効率に逆洗ができ
るものである。 尚、本発明は磁気フイルターの回転方向の上下
に磁石を配置して逆洗するものであるが、磁気フ
イルターを水平方向に回転させて逆洗する方法の
他に、磁気フイルターを水平方法から90゜角度を
変えた垂直方向に回転させた逆洗方法でも良く、
磁気フイルターの回転方向の上下に磁石を配置す
れば、高効率の逆洗が可能なものである。 次に本発明の逆洗方法が可能な装置例を第3図
を用いて説明する。 ポンプ8より供給される磁性粒子を含んだ液体
は、磁性粒子除去の目的で本装置に入る。液体は
上下に配置された永久磁石6で形成される磁場中
を通過し、その際その間に配置された強磁性繊維
7によつてできる磁気勾配によつて、強磁性繊維
7に補獲される。浄化された液体はポンプ9によ
つて吸いだされ、パイプ10を通して、元のタン
クに戻される。 逆洗時には、モーター11によつて、磁気フイ
ルター本体部12が高速で回転し、逆洗水がノズ
ル13から噴出し逆洗を行う。このように磁石を
上下に配置するため、逆洗液の水路障害となる壁
がないので、高効率に逆洗が可能なものである。 (実施例) 製鉄業で冷延鋼板を製造する際、冷間圧延に使
用した圧延油を本発明方法を用いて逆洗した。逆
洗回転数1300rpm、逆洗水量15/minで逆洗時
間10分間で逆洗を行い、磁気フイルターに付着し
ている残存鉄粉量を測定し、その結果を第1表に
示す。
(Industrial Application Field) The present invention is a backwashing method that continuously removes magnetic particles generated by metal processing and wear, magnetic particles present in water, magnetic microorganisms, and magnetic particles mixed in liquid. The present invention relates to a method (hereinafter, the process of removing magnetic particles, etc. attached to a magnetic filter from a magnetic filter is referred to as backwashing). (Prior Art) Conventionally, magnetic particles and magnetic microorganisms have been removed using magnetic separation methods using permanent magnets, electromagnetic filters using ferromagnetic fibers, and the like. However, the former method has low removal efficiency, and the latter method backwashes effectively.
As in Publication No. 86878, it is necessary to eliminate the magnetic field, which requires the use of large-scale electromagnets and a large-scale device to remove the magnets, resulting in large power consumption and high production costs. Generally, in the steel industry, metal industry, automobile press and processing industries, large amounts of magnetic particles are contained in liquids such as washing water, rolling oil, cooling water, processing oil, etc. during the product manufacturing process. This not only deteriorates the surface cleanliness of the product, but also has a major impact on the quality of the product, such as the occurrence of defects. In addition, these magnetic particles are very fine and difficult to remove even with ordinary magnetic separation equipment, and their removal requires a great deal of cost due to tank cleaning, filter cleaning, and clogging of piping to the treatment plant. I used to be. Also, in the treatment of fresh water, purified water, etc., the occurrence of rust and iron bacteria in the pipes is unavoidable, and is a cause of red water in tap water.
In order to remove them, large-scale septic tanks and separation equipment are required, which incurs a great deal of cost. For example, in the steel industry, cold-rolled cooled steel sheets have iron particles generated during the rolling process adhering to the steel sheets, so to remove them, they undergo an electrolytic degreasing process, a heat treatment process, a plating process, etc. sent to the next process. In this case, a drum-type magnetic separator and a cloth filter are generally used in the rolling oil tank and cleaning oil tank to reduce the concentration of iron powder. However, drum-type magnetic separators attract and remove magnetic particles using the magnetic force of the magnet on the drum surface, resulting in extremely low removal efficiency, and cloth filters do not have high removal efficiency because the iron particles are too fine.
Moreover, the fabric becomes clogged quickly, which increases the cost of the fabric. On the other hand, there are electromagnetic filters that use ferromagnetic thin wires. This method uses a high-gradient magnetic separation method to generate a large magnetic gradient around a thin ferromagnetic wire and can efficiently separate magnetic particles, but backwashing is currently difficult, so a large electromagnetic coil is used to control the magnetic field. This requires a large amount of equipment, manufacturing costs, and enormous power consumption.Therefore, it has become a challenge to backwash the magnetic particles adhering to the filter at a low cost and with high efficiency. (Problems to be Solved by the Invention) An object of the present invention is to provide a method for backwashing magnetic particles that have been magnetically separated, which advantageously solves the various problems described above. (Means for Solving Problems) The gist of the present invention is that when backwashing magnetic particles that have been magnetically separated, magnets are placed above and below the rotational direction of a magnetic filter, and while liquid is spouted to the magnetic filter, , a method for backwashing magnetically separated magnetic particles characterized by rotating a magnetic filter and backwashing the magnetic particles, and a method in which a plurality of magnets arranged above and below are arranged radially, and the magnets are adjacent to each other. It is characterized in that it is arranged at different polarities from the magnets, one of the upper and lower magnets is fixed, and the other is rotated to generate an alternating magnetic field and perform backwashing. First, an overview of the magnetic separation method for removing magnetic particles will be explained using FIG. 4. For example, the rolling oil used in the cold rolling process 1 contains magnetic particles generated during the cold rolling, and the rolling oil remains in the circulation tank 2 to remove the magnetic particles in the rolling oil. After that, it is sent to a cold rolling process and circulated. The rolling oil containing magnetic particles is pumped from the tank 2 to the pump (route A) and filtered by the magnetic filter 3. The filtered rolling oil is returned to the tank 2 through the route B, and the magnetic particles in the rolling oil are Particle removal is performed. Since the removal rate of the magnetic separation filter 3 decreases over time, it is periodically backwashed. For backwashing, a backwashing liquid (water, steam, oil, etc.) is input through path C, and the inside of the magnetic filter 3 rotates at 1000 to 3000 rpm to perform backwashing, and the discharged magnetic particles are passed through path D. , is stored in the discharge tank 5. By performing this method at regular intervals, magnetic particles in the rolling oil are removed in the circulation tank. The present invention is characterized in that after magnetic particles are removed by a magnetic filter, the magnetic particles adhering to the magnetic filter are advantageously removed (backwashed) from the magnetic filter. To this end, the present invention is characterized in that magnets are placed above and below the magnetic filter, the magnetic filter is rotated, and backwashing is performed using centrifugal force. That is, commonly used magnetic filters are
As shown in FIG. 5, magnets 6 are provided radially. When the magnetic filter 3 is rotated to remove magnetic particles from the backwash liquid containing magnetic particles using centrifugal force, the backwash liquid is removed as the magnetic filter 3 rotates as shown in FIG. , the backwashing liquid tries to flow in a circular motion as shown in a in the direction opposite to the rotation, but the magnet 6 becomes an obstacle, and the backwashing liquid flows along the magnet from the middle as shown in b. Therefore, the only parts of the magnetic filter 3 that are backwashed are the parts indicated by diagonal lines in FIG. 6, and the backwashing effect is extremely low and undesirable. However, in the present invention, as shown in FIG. 1, magnets are arranged above and below the magnetic filter 3, and the magnetic filter is rotated for backwashing, so that the backwashing liquid flows between the upper magnet 6a and the lower magnet 6b. Since there are no walls between the pipes that can obstruct the flow, highly efficient backwashing is possible. In addition, as shown in FIG. 1c, the magnets 6 provided above and below are arranged so that the magnets 6a and 6b face each other so that the S pole and the N pole face each other (different poles), and the magnets 6a and 6
A ferromagnetic fiber 7 is provided between the ferromagnetic fiber 7 and the ferromagnetic fiber 7, and a magnetic field is generated in the ferromagnetic fiber to cause magnetic particles to adhere to the ferromagnetic fiber. As described above, magnetic particles can be efficiently removed by placing magnets above and below the magnetic filter and backwashing the filter. In addition to the above-mentioned backwashing method, the present invention includes a plurality of magnets arranged radially in the upper and lower directions, the magnets being arranged with different polarities from the adjacent magnets, one of the upper and lower magnets is fixed, and the other magnet is arranged radially. If backwashing is performed by generating an alternating magnetic field by rotating the , more efficient backwashing becomes possible. That is, in the present invention, as shown in FIG. 2, the magnets placed at the top have N poles and S poles arranged alternately.
Further, the lower magnet is arranged at a magnetic pole opposite to that of the upper magnet. Further, for example, one of the upper and lower magnets (upper magnet) is fixed, and the other magnet (lower magnet) is rotatable. At this time, when the upper magnet is fixed and the lower magnet is rotated, the upper and lower magnets will change from having opposite magnetic poles to having the same polarity, such as S pole and S pole, or N pole and N pole. will now face each other. In this way, an alternating magnetic field acts on the ferromagnetic fibers provided between the upper and lower magnets, making it as if there were no magnets, allowing for more efficient backwashing. The present invention is for backwashing by arranging magnets above and below the rotating direction of the magnetic filter, but in addition to the method of backwashing by rotating the magnetic filter in the horizontal direction,゜It is also possible to use a backwashing method in which the angle is changed and rotated in the vertical direction.
Highly efficient backwashing can be achieved by placing magnets above and below the magnetic filter in its rotating direction. Next, an example of an apparatus capable of carrying out the backwashing method of the present invention will be described with reference to FIG. The liquid containing magnetic particles supplied from the pump 8 enters the apparatus for the purpose of removing magnetic particles. The liquid passes through the magnetic field formed by the permanent magnets 6 arranged above and below, and is captured by the ferromagnetic fibers 7 due to the magnetic gradient created by the ferromagnetic fibers 7 arranged between them. . The purified liquid is sucked out by pump 9 and returned to the original tank through pipe 10. During backwashing, the magnetic filter main body 12 is rotated at high speed by the motor 11, and backwash water is ejected from the nozzle 13 to perform backwashing. Since the magnets are arranged one above the other in this way, there are no walls that obstruct the waterway for backwashing liquid, so backwashing can be performed with high efficiency. (Example) When manufacturing cold rolled steel sheets in the steel industry, the rolling oil used for cold rolling was backwashed using the method of the present invention. Backwashing was performed for 10 minutes at a backwash rotation speed of 1300 rpm and a backwash water flow rate of 15/min, and the amount of residual iron powder adhering to the magnetic filter was measured. The results are shown in Table 1.

【表】 本発明によると、第1表に示す如く、磁気フイ
ルターの上下に磁石を設け、上下の磁石を回転し
て逆洗を行うことにより、逆洗効率は向上する。 又実施例2、3の如く一方の磁石を固定して交
番磁界を発生させて逆洗を行うと、より高い逆洗
効率が得られ有利なものである。 (発明の効果) 本発明の磁気分離された磁気粒子の逆洗方法を
用いると、液中の磁性粒子や、磁性を持つ微生物
の除去を高効率に低コストで実現でき、あらゆる
液中からの磁性粒子の除去が可能となり、その効
果は極めて大きいものである。
[Table] According to the present invention, as shown in Table 1, backwashing efficiency is improved by providing magnets above and below a magnetic filter and rotating the upper and lower magnets to perform backwashing. Further, when backwashing is performed by fixing one of the magnets and generating an alternating magnetic field as in Examples 2 and 3, higher backwashing efficiency can be obtained, which is advantageous. (Effects of the Invention) By using the method for backwashing magnetically separated magnetic particles of the present invention, magnetic particles and magnetic microorganisms in liquid can be removed with high efficiency and at low cost. It becomes possible to remove magnetic particles, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは本発明の磁石の配置を示す
説明図、第2図は本発明の一方の磁石を固定し、
他方の磁石を回転させる説明図、第3図は本発明
方法の装置例を示す説明図、第4図は磁性粒子の
磁気分離方法を説明する概要図、第5図a,b、
第6図は従来の逆洗方法を示す説明図である。
Figures 1a, b, and c are explanatory diagrams showing the arrangement of the magnets of the present invention, and Figure 2 shows one of the magnets of the present invention fixed,
An explanatory diagram for rotating the other magnet, FIG. 3 is an explanatory diagram showing an example of the apparatus for the method of the present invention, FIG. 4 is a schematic diagram for explaining the method for magnetic separation of magnetic particles, and FIGS. 5 a, b,
FIG. 6 is an explanatory diagram showing a conventional backwashing method.

Claims (1)

【特許請求の範囲】 1 磁気分離された磁性粒子を逆洗する際に、磁
気フイルターの回転方向の上下に磁石を配置し、
該磁気フイルターに液体を噴出しつつ磁気フイル
ターを回転し、磁性粒子を逆洗することを特徴と
する磁気分離された磁性粒子の逆洗方法。 2 上下に配置した磁石は複数の磁石で放射状に
配置し、該磁石は隣接する磁石と異極に配置し、
上下の一方の磁石を固定し、他方を回転すること
により交番磁界を発生させて逆洗することを特徴
とする特許請求の範囲第1項記載の逆洗方法。
[Claims] 1. When backwashing magnetic particles that have been magnetically separated, magnets are placed above and below the rotation direction of the magnetic filter,
A method for backwashing magnetic particles that have been magnetically separated, which comprises rotating a magnetic filter while spouting a liquid onto the magnetic filter to backwash the magnetic particles. 2. The magnets arranged above and below are a plurality of magnets arranged radially, and the magnets are arranged with different polarity from the adjacent magnets,
2. The backwashing method according to claim 1, wherein one of the upper and lower magnets is fixed and the other is rotated to generate an alternating magnetic field for backwashing.
JP30299287A 1987-11-30 1987-11-30 Reverse washing of magnetically separated magnetic particles Granted JPH01143612A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP30299287A JPH01143612A (en) 1987-11-30 1987-11-30 Reverse washing of magnetically separated magnetic particles
CA000584480A CA1319113C (en) 1987-11-30 1988-11-29 Method for washing off magnetically separated particles
EP88119871A EP0318913B1 (en) 1987-11-30 1988-11-29 Method of washing off magnetically separated particles
DE3888795T DE3888795T2 (en) 1987-11-30 1988-11-29 Washing process of magnetically separated particles.
KR1019880015925A KR910004446B1 (en) 1987-11-30 1988-11-30 Method of washing off magnetically separated particles
US07/503,159 US5019272A (en) 1987-11-30 1990-03-16 Method of washing filters having magnetic particles thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30299287A JPH01143612A (en) 1987-11-30 1987-11-30 Reverse washing of magnetically separated magnetic particles

Publications (2)

Publication Number Publication Date
JPH01143612A JPH01143612A (en) 1989-06-06
JPH038805B2 true JPH038805B2 (en) 1991-02-07

Family

ID=17915629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30299287A Granted JPH01143612A (en) 1987-11-30 1987-11-30 Reverse washing of magnetically separated magnetic particles

Country Status (2)

Country Link
JP (1) JPH01143612A (en)
CA (1) CA1319113C (en)

Also Published As

Publication number Publication date
JPH01143612A (en) 1989-06-06
CA1319113C (en) 1993-06-15

Similar Documents

Publication Publication Date Title
EP0318913B1 (en) Method of washing off magnetically separated particles
JP2020075242A (en) Soil remediation system
JP3241462B2 (en) Method and apparatus for magnetically coagulating impurities in liquid
US6264757B1 (en) Separating contaminants from continuous from surface cleansing solution during continuous strip steel processing
CN201684473U (en) Filter cloth rotary disk filter
JPH038805B2 (en)
KR19990087791A (en) Device for self-aggregation of impurities in liquid
US6679273B2 (en) Surface cleansing of continuous-strip steel for hot-dip metal coating and apparatus for decreasing surface cleansing solution requirements
US20020189990A1 (en) Magnetic filter device
JP2014000543A (en) Processing method of metallic powder and granular material including waste liquid
WO1998033606A1 (en) Continuous particle separation operation
WO1995019847A1 (en) An electromagnetic purifier for removing ferromagnetic micropowder in the rolling oil
JPH037407B2 (en)
JPH038806B2 (en)
EP0429700A1 (en) Apparatus for the continuous purification of liquids, and in particular of water, by means of the technique of high-gradient magnetic filtration
JP2000189834A (en) Method and apparatus for purifying cleaning liquid
JP4821085B2 (en) Magnetic separation and purification apparatus and magnetic separation and purification method
RU2422372C2 (en) Method of producing water soluble process fluids
CN106267996A (en) A kind of flow channel for liquids case of DYNAMIC MAGNETIC filter
CN113969181B (en) Device and method for separating solid particles in catalytic cracking slurry oil
JPS61118153A (en) Magnet filter
JPS60248211A (en) Magnetic separation device
KR20160079252A (en) Apparatus for removing an iron powder out of a roll oil
Franzreb et al. Magnetic filters on duty for cleaner metallic surfaces
JPH0234647B2 (en) JIKIBUNRISOCHI

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 17