JPH0387400A - Single-electrode electrolytic cell and electrolyzing method - Google Patents

Single-electrode electrolytic cell and electrolyzing method

Info

Publication number
JPH0387400A
JPH0387400A JP1223671A JP22367189A JPH0387400A JP H0387400 A JPH0387400 A JP H0387400A JP 1223671 A JP1223671 A JP 1223671A JP 22367189 A JP22367189 A JP 22367189A JP H0387400 A JPH0387400 A JP H0387400A
Authority
JP
Japan
Prior art keywords
electrode
diaphragm
electrolysis
electrolytic cell
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1223671A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Makita
蒔田 善之
Yasuo Miyaji
宮地 安雄
Toshiro Igarashi
五十嵐 寿郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMIOKA KOGYO KK
Original Assignee
KAMIOKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMIOKA KOGYO KK filed Critical KAMIOKA KOGYO KK
Priority to JP1223671A priority Critical patent/JPH0387400A/en
Publication of JPH0387400A publication Critical patent/JPH0387400A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently recover an electrolyzed product by placing an electrode of fibrous carbon in the electrode chamber of a singleelectrode electrolytic cell separated by a diaphragm having a filtration function and transferring the electrolyte to a counter electrode chamber through the diaphragm after electrolysis. CONSTITUTION:The single-electrode electrolytic cell 1 is separated by the diaphragm 3 into two electrode chambers. A filtration function is imparted to the diaphragm 3 in the cell 1 by using a. cartridge filter, etc. The fibrous carbon 8 connected to a current collector 7 is placed at least in the separated cathode chamber 5 as a cathode, and an anode 6 is arranged in an anode chamber 4. A current is applied to the cell 1, an electrolyte to be treated such as the waste soln. contg. noble metals is supplied to the cathode chamber 5, and electrolysis is carried out. The solid component in the electrolyte produced by electrolysis is deposited on the cathode 8 and in the cathode chamber 5. After electrolysis, the inside of the cathode chamber 5 is pressurized to transfer the electrolyte to the anode chamber 4 through the membrane 3. The solid component such as noble metals is collected by the diaphragm 3, and efficiently recovered.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、廃液処理、金属回収等の溶液中の電解にまり
生成する有用成分を回収するために使用する単極式電解
槽及びその電解方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a monopolar electrolytic cell used for recovering useful components produced by electrolysis in solutions such as waste liquid treatment and metal recovery, and its electrolyzer. Regarding the method.

(従来技術とその問題点) 従来からめっき廃液の処理及び該廃液からの貴金属等の
回収に電解が使用されている。例えば廃液処理を電解以
外の方法で行う場合は、該廃液が一般に粘度が高く取り
扱い難い廃有機物を含有するため、通常の処理操作を行
い難く前記廃有機物を分解できずそのまま廃棄すること
が多くなっている。しかしながら、電解を使用して該廃
液処理を行う場合には、該廃液を電解槽に導くのみで電
極表面で前記有機物の分解が生じて、無害なガスや水等
に分解することができる。
(Prior art and its problems) Electrolysis has conventionally been used to treat plating waste liquid and recover precious metals and the like from the waste liquid. For example, when waste liquid treatment is performed by a method other than electrolysis, the waste liquid generally contains waste organic matter that is highly viscous and difficult to handle, making it difficult to perform normal treatment operations and often resulting in the waste organic matter being unable to be decomposed and being disposed of as is. ing. However, when the waste liquid is treated using electrolysis, the organic matter is decomposed on the electrode surface simply by introducing the waste liquid into an electrolytic cell, and can be decomposed into harmless gases, water, and the like.

有機反応を生じさせて有機化合物を他の化合物に変換さ
せる場合に使用される有機電解では、通常の有機反応で
ほぼ不可避的に生ずる副反応をほぼ完全に抑制し目的と
する化合物を高い収率及び選択率で得ることができる。
Organic electrolysis, which is used to generate organic reactions and convert organic compounds into other compounds, almost completely suppresses the side reactions that occur almost inevitably in normal organic reactions, and produces the desired compounds in high yields. and selectivity.

このように電解反応は一般の有機及び無機反応に比較し
て利点が多いため工業的に広く利用されているが、電解
による目的物質製造コストの大部分を占める電力コスト
を低減するために従来から種々の技術が提案されている
As described above, electrolytic reactions have many advantages compared to general organic and inorganic reactions, and are therefore widely used industrially. Various techniques have been proposed.

その−例として、電極として多孔質電極を使用する方法
があり、該方法によると、電極の表面積が大きくなり広
い面積で電解液と接触して電解反応速度が上昇すること
が知られている。しかし例えば多孔質の炭素板を電極と
して使用して電解を行うと、実際に電極反応が生ずるの
は対極側に面した平面部分のみで電解に寄与する面積の
増加には結びついていない。
For example, there is a method of using a porous electrode as an electrode, and it is known that this method increases the surface area of the electrode and contacts the electrolyte over a wide area, increasing the rate of electrolytic reaction. However, when electrolysis is carried out using, for example, a porous carbon plate as an electrode, the electrode reaction actually occurs only on the flat surface facing the counter electrode, and the area contributing to electrolysis does not increase.

このような欠点を解消するために本出願人は、電極特に
陰極として繊維状炭素を使用する電解槽及び電解方法を
提案した(特願平1−128553号)。
In order to overcome these drawbacks, the present applicant proposed an electrolytic cell and an electrolytic method using fibrous carbon as an electrode, particularly a cathode (Japanese Patent Application No. 1-128553).

この電解方法では、電解反応に寄与する電極表面の表面
積を増加させた電極を使用して効率良く電解反応を生じ
させることができ、特に廃液中の金属回収に使用すると
溶液中の金属イオンが金属単体となって前記繊維状炭素
陰極上に電析し、その後両極の極性を反転させて通電を
継続すると電析した金属が再溶解して前記廃液中の金属
イオンを精製し回収することができる。
In this electrolysis method, the electrolytic reaction can be efficiently caused by using an electrode with an increased surface area of the electrode surface that contributes to the electrolytic reaction.In particular, when used to recover metals from waste liquid, the metal ions in the solution are When a single metal is electrodeposited on the fibrous carbon cathode and then the polarity of both electrodes is reversed and electricity is continued, the electrodeposited metal is redissolved and the metal ions in the waste liquid can be purified and recovered. .

しかしながらこのような金属回収では、溶液中の金属イ
オンが常に金属単体として繊維状炭素陰極上に電析する
とは限らず、前記金属イオンが電解により溶液中の他の
成分と反応するような場合には金属化合物が生成し、該
金属化合物は繊維状炭素陰極上に電析せずに陰極室中に
浮遊するか沈澱する。このような状態で極性を逆にして
通電を継続しても浮遊あるいは沈澱している金属化合物
は再溶解せず回収できなくなる。
However, in such metal recovery, the metal ions in the solution are not always deposited as simple metals on the fibrous carbon cathode, and when the metal ions react with other components in the solution due to electrolysis. A metal compound is produced, and the metal compound is not deposited on the fibrous carbon cathode but floats or precipitates in the cathode chamber. In such a state, even if the polarity is reversed and electricity is continued, the floating or precipitated metal compounds will not be redissolved and cannot be recovered.

(発明の目的〉 本発明は、電解反応により特に金属回収を行う際に金属
単体だけでなく金属化合物も効率良く回収し、あるいは
有機電解や陽極酸化電解において生成する生成物を効率
良く回収する装置及び方法を提供することを目的とする
(Objective of the Invention) The present invention is an apparatus for efficiently recovering not only simple metals but also metal compounds when recovering metals through electrolytic reactions, or for efficiently recovering products generated in organic electrolysis or anodic oxidation electrolysis. and a method.

(問題点を解決するための半殺) 本発明は、第1に隔膜で2個の極室に区画された単極式
電解槽において、前記隔膜に濾過機能を持たせ、かつ集
電体に接続された繊維状炭素を少なくとも一方の極室で
電極として使用して電解を行うことを特徴とする単極式
電解槽であり、第2に濾過機能を有する隔膜を介して2
個の極室に区画された単極式電解槽の少なくとも一方の
極室に集電体が接続された繊維状炭素を収容して電極と
した単極式電解槽に通電しながら、前記繊維状炭素が収
容された電極室へ処理すべき電解液を供給し、電解によ
り生じた該電解液中の固形分を前記繊維状炭素電極上及
び/又は該繊維状炭素電極が収容された電極室内に析出
させ、該電解液を前記隔膜を通して対極室内に移行させ
て前記固形分を前記隔膜により捕集し回収することを特
徴とする電解方法である。
(A half-dead solution to the problem) The present invention firstly provides a monopolar electrolytic cell that is divided into two electrode chambers by a diaphragm, in which the diaphragm has a filtering function and the current collector has a filtration function. It is a monopolar electrolytic cell characterized in that connected fibrous carbon is used as an electrode in at least one electrode chamber to perform electrolysis, and secondly, two
While energizing the monopolar electrolytic cell, which contains fibrous carbon connected to a current collector in at least one electrode chamber of the monopolar electrolytic cell divided into electrode chambers, the fibrous carbon is used as an electrode. An electrolytic solution to be treated is supplied to an electrode chamber containing carbon, and solid content in the electrolytic solution generated by electrolysis is transferred onto the fibrous carbon electrode and/or into the electrode chamber containing the fibrous carbon electrode. The electrolytic method is characterized in that the electrolytic solution is caused to precipitate, the electrolytic solution is transferred into a counter electrode chamber through the diaphragm, and the solid content is collected and recovered by the diaphragm.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる単極式電解槽及び電解方法は、廃液処理
、石油精製触媒や自動車触媒等の触媒廃液等からの金属
回収、有機電解や陽極酸化電解における固形成分の回収
、写真現像用廃液や写真用定着液からの銀の回収等の特
に溶液中の金属イオンを回収するための電解に使用する
ことができる。
The monopolar electrolytic cell and electrolysis method according to the present invention are applicable to waste liquid treatment, metal recovery from catalyst waste liquid such as petroleum refining catalysts and automobile catalysts, recovery of solid components in organic electrolysis and anodic oxidation electrolysis, waste liquid for photographic development, etc. It can be used in electrolysis, particularly for recovering metal ions in solution, such as recovering silver from photographic fixers.

本発明は、少なくとも一方の電極として集電体に接続さ
れた繊維状炭素電極を使用する。前述した通り、多孔質
炭素板等の通常の多孔質体を電極として電解を行うと、
電極自体は高表面積を有しても電極として有効に機能す
る部分は対極に対向する面のみで実際には電解面積を増
加させる効果は少ない。
The present invention uses a fibrous carbon electrode connected to a current collector as at least one electrode. As mentioned above, when electrolysis is performed using a normal porous material such as a porous carbon plate as an electrode,
Even if the electrode itself has a high surface area, the only part that effectively functions as an electrode is the surface facing the counter electrode, and it actually has little effect on increasing the electrolytic area.

これに対し繊維状炭素電極を使用する本発明に係わる電
解槽では、理由は明確ではないが、繊維状炭素電極の各
繊維のそれぞれのほぼ全面が電極反応を行い、その有効
電極面積の増加量は多大なものとなる。該効果は、繊維
状炭素の長さが十分に長く電極内における電位勾配がな
く該電極のどの部分でも電位が等しいため、電解反応が
前記電極のどの部分でも生じ該電極のほぼ全面が電極と
して機能するためと推測することができる。
On the other hand, in the electrolytic cell according to the present invention using a fibrous carbon electrode, although the reason is not clear, almost the entire surface of each fiber of the fibrous carbon electrode undergoes an electrode reaction, resulting in an increase in the effective electrode area. becomes enormous. This effect is due to the fact that the length of the fibrous carbon is long enough so that there is no potential gradient within the electrode and the potential is the same in every part of the electrode, so electrolytic reactions occur in any part of the electrode and almost the entire surface of the electrode acts as an electrode. It can be assumed that this is because it functions.

従ってその電流密度は極小となり、これにより電流効率
が飛躍的に向上する。例えば廃液中の貴金属を電解によ
り陰極上に電析させて回収する場合、該貴金属濃度が1
0〜1000mg/ (l程度でありこれを1 mg/
β以下にする際に従来の板状炭素陰極を使用するとその
電流効率は1〜10%程度であるのに対し、本発明に係
わる繊維状炭素を電極として使用する単極式電解槽では
、10〜30%程度に上昇する。
Therefore, the current density becomes extremely small, thereby dramatically improving current efficiency. For example, when recovering precious metals in waste liquid by electrolytically depositing them on a cathode, the concentration of the precious metals is 1.
0 to 1000 mg/ (about 1 mg/l)
If a conventional plate-shaped carbon cathode is used to reduce the current efficiency to less than It increases to about 30%.

本発明に使用する繊維状炭素は市販のものを使用すれば
よく、フェルト状等の底形したものあるいは綿状のもの
をそのまま使用することが、できる。
As the fibrous carbon used in the present invention, commercially available fibrous carbon may be used, and fibrous carbon having a bottom shape such as felt or cotton-like may be used as is.

該繊維状炭素自体には電解電圧低減機能はないため、電
圧を減少させることにより消費電力の低減を図るために
は、パラジウム、ルテニウム、白金等の貴金属触媒を前
記繊維状炭素上に担持させる必要がある。これにより電
解電圧を低減させて電解反応を促進するとともに、前記
繊維状炭素電極の寿命を延ばすことが可能になる。
Since the fibrous carbon itself does not have an electrolysis voltage reduction function, in order to reduce power consumption by reducing the voltage, it is necessary to support a noble metal catalyst such as palladium, ruthenium, or platinum on the fibrous carbon. There is. This makes it possible to reduce the electrolytic voltage and promote the electrolytic reaction, as well as to extend the life of the fibrous carbon electrode.

該繊維状炭素電極は通常の金属回収では陰極として使用
されて単極式電解槽が構成されるが、電解液の極性によ
って例えば有機電解や陽極酸化電解では陽極として使用
することも可能である。本発明では前記電解槽を陽極室
と陰極室とに区画する隔膜に濾過機能を持たせ、一方の
極室から他方の極室へつまり陰極室から陽極室へあるい
はその逆に陽極室から陰極室へ電解液を透過させながら
電解液中に浮遊しあるいは沈澱している電析金属や電析
金属化合物、あるいは陽極酸化生成物等を前記隔膜で濾
過し回収するようにする。従って本発明では、廃液中の
金属回収等の場合には陰極室に濾過して回収すべき金属
イオン等を含む電解液を供給し該電解液を前記隔膜を通
して他方の陽極室へ導き前記金属イオン等が回収された
前記電解液を該陽極室から取り出すようにする。一方有
機電解や陽極酸化の生成物の回収の場合には陽極室に処
理すべき電解液を供給して電解処理を行った後、該電解
液を前記隔膜を通して陰極室へ導き前記生成物が回収さ
れた前記電解液を該陰極室から取り出すようにする。
The fibrous carbon electrode is used as a cathode in ordinary metal recovery to construct a monopolar electrolytic cell, but depending on the polarity of the electrolyte, it can also be used as an anode in, for example, organic electrolysis or anodic oxidation electrolysis. In the present invention, the diaphragm that divides the electrolytic cell into an anode chamber and a cathode chamber has a filtration function, so that it can be transferred from one electrode chamber to the other electrode chamber, that is, from the cathode chamber to the anode chamber, or vice versa. While the electrolyte is permeating through the electrolyte, the electrodeposited metal, the electrodeposited metal compound, the anodic oxidation product, etc. floating or precipitated in the electrolyte are filtered and recovered by the diaphragm. Therefore, in the present invention, in the case of recovering metals from waste liquid, etc., an electrolytic solution containing metal ions to be collected by filtration is supplied to the cathode chamber, and the electrolytic solution is guided through the diaphragm to the other anode chamber, where the metal ions are collected. The recovered electrolyte is taken out from the anode chamber. On the other hand, in the case of recovering products of organic electrolysis or anodic oxidation, the electrolytic solution to be treated is supplied to the anode chamber and the electrolytic treatment is performed, and then the electrolytic solution is introduced to the cathode chamber through the diaphragm and the products are recovered. The electrolyte solution is removed from the cathode chamber.

このような濾過機能を有する隔膜としては、カートリッ
ジフィルター、濾布等各種材質の使用が可能であり、電
解の継続につれて前記隔膜に電析金属等が蓄積して電解
液の透過効率が低下するが、これを防止するには、前記
隔膜として容易に交換可能な例えばカートリッジフィル
ターを使用して定期的に交換することが好ましい。
As a diaphragm having such a filtration function, various materials such as cartridge filters and filter cloths can be used.As electrolysis continues, deposited metals accumulate on the diaphragm and the permeation efficiency of the electrolyte solution decreases. To prevent this, it is preferable to use an easily replaceable diaphragm, for example, a cartridge filter, and to periodically replace it.

本発明は、特に写真現像用廃液からの銀回収や写真現像
用定着液の再生用として有用であり、特に該銀回収にお
いては固体の銀又は銀化合物として回収することが好ま
しい場合がある。写真現像用廃液には高濃度の銀イオン
が溶解し、前述した通り従来から電解法により銀回収が
試みられているが、前記廃液中には銀イオンの他にチオ
硫酸ナトリウム等の含硫黄化合物が溶解し、通常の電解
条件では前記金属イオンが陰極上で該含硫黄化合物中の
硫黄と反応して硫化銀等の硫黄を含む沈澱を生じ、該沈
澱の殆どは陰極上に電析せずに電解液中に浮遊するか陰
極室の底板上に沈澱し堆積する。
The present invention is particularly useful for recovering silver from waste solutions for photographic development and for recycling fixing solutions for photographic development. In particular, in the silver recovery, it may be preferable to recover silver as solid silver or a silver compound. A high concentration of silver ions is dissolved in the waste solution for photographic development, and as mentioned above, attempts have been made to recover silver by electrolytic methods, but in addition to silver ions, the waste solution also contains sulfur-containing compounds such as sodium thiosulfate. is dissolved, and under normal electrolysis conditions, the metal ions react with the sulfur in the sulfur-containing compound on the cathode to form a precipitate containing sulfur such as silver sulfide, and most of the precipitate is not deposited on the cathode. It either floats in the electrolyte or precipitates and deposits on the bottom plate of the cathode chamber.

一方定着液中に蓄積する銀の一部を回収し該定着液中の
銀濃度を一定範囲内に維持して該定着液の寿命を延ばす
際には、単に銀の回収だけでなく該定着液の組成を変化
させないことに対する考慮が必要になり、例えば該定着
液中の銀を硫化銀として電析させると該定着液中の硫黄
濃度が減少して以後一定の性能を有する定着液として使
用できなくなる。従って定着液からの銀回収の場合には
銀を金属銀の形で電析させ回収する必要がある。
On the other hand, when recovering some of the silver that accumulates in the fixer and maintaining the silver concentration in the fixer within a certain range to extend the life of the fixer, it is necessary to not only recover silver but also to maintain the silver concentration in the fixer within a certain range. For example, if silver in the fixer is electrodeposited as silver sulfide, the sulfur concentration in the fixer will decrease and it will no longer be possible to use the fixer as a fixer with a certain level of performance. It disappears. Therefore, in the case of silver recovery from the fixer, it is necessary to electrodeposit and recover silver in the form of metallic silver.

このような写真廃液や定着液の場合だけでなく他の金属
の回収の場合にも、処理すべき液の液性に応じて金属単
体として電析させることが好ましい場合と金属化合物と
して電析させることが好ましい場合がある。これら両者
の一方をほぼ選択的に起こさせるためには電流密度の値
で制御するのが良く、一般に通常の低電流密度の電解で
は銀イオンと他の陰イオンとの反応が阻害されて陰極上
への金属単体の電析が優先し、高電流密度では金属化合
物の生成が優先して該化合物の沈澱が生じ該沈澱は通常
は陰極上に電析されずに陰極室内に堆積しあるいは浮遊
する。なお陰極上への金属単体の電析が優先する場合で
も若干量の金属化合物が生じて該化合物が沈澱しあるい
は浮遊することがあり、又生成する金属単体も全てが陰
極上に電析されるとは限らず一部が沈澱しあるいは浮遊
することがある。
Not only in the case of such photographic waste liquids and fixing liquids, but also in the case of recovering other metals, depending on the liquid properties of the liquid to be treated, it is preferable to electrodeposit the metal as a single substance or as a metal compound. In some cases, it is preferable. In order to cause one of these two to occur almost selectively, it is best to control the current density value, and in general, in ordinary low current density electrolysis, the reaction between silver ions and other anions is inhibited, and the reaction between silver ions and other anions is inhibited and At high current densities, the formation of metal compounds takes precedence and the compounds precipitate, and the precipitates are usually not deposited on the cathode but are deposited or suspended in the cathode chamber. . Even if priority is given to the electrodeposition of an elemental metal onto the cathode, a small amount of a metal compound may be generated and the compound may precipitate or float, and all of the elemental metal that is generated may also be deposited onto the cathode. However, some of it may settle or float.

これらの沈澱を電解槽外に取り出して回収するために、
前述した通り電極の極性を反転させて通電を行っても前
記沈澱が電極と接触しないため該沈澱の溶解が起こらず
に回収できなくなる。
In order to take these precipitates out of the electrolytic cell and collect them,
As described above, even if the polarity of the electrode is reversed and electricity is applied, the precipitate does not come into contact with the electrode, so the precipitate does not dissolve and cannot be recovered.

従って本発明では、前述の通り沈澱又は浮遊している金
属銀/又は銀化合物を含む電解液を前記隔膜を透過させ
て一方の極室から他方の極室へ移動させることにより前
記隔膜中に捕集して回収するようにする。
Therefore, in the present invention, as described above, the electrolytic solution containing precipitated or floating metallic silver/or silver compounds is trapped in the diaphragm by passing through the diaphragm and moving from one electrode chamber to the other electrode chamber. Please collect and collect them.

このタイプの単極式電解槽では、電極を縦方向に配置す
る縦型構造だけでなく、電極を横方向に配置する横型構
造も可能であり、その他の電解槽の構造も特に限定され
ない。
This type of monopolar electrolytic cell can have not only a vertical structure in which the electrodes are arranged vertically, but also a horizontal structure in which the electrodes are arranged horizontally, and other electrolytic cell structures are not particularly limited.

この隔膜型電解槽では、前記繊維状炭素電極を電極室全
体に充填することが可能であり、これにより該電極が前
記隔膜に接触していわゆるゼロギャップタイプの電解が
可能になり、電解電圧低減にも寄与することができると
ともに、より以上の電解面積の増加を図ることができる
In this diaphragm-type electrolytic cell, it is possible to fill the entire electrode chamber with the fibrous carbon electrode, which allows the electrode to come into contact with the diaphragm, enabling so-called zero-gap type electrolysis, and reducing the electrolysis voltage. In addition, it is possible to further increase the electrolytic area.

このような構成から戒る電解槽あるいは電解方法を使用
して金属イオン等の回収を行うと、条件にもよるが、多
くの場合99%を越える回収率で目的成分を回収するこ
とができる。
If metal ions and the like are recovered using an electrolytic cell or an electrolytic method that does not have such a configuration, the target component can be recovered with a recovery rate of over 99% in many cases, although it depends on the conditions.

次に添付図面に基づいて本発明に係わる単極式電解槽の
好ましい例を説明するが、本発明は該電解槽に限定され
るものではない。
Next, a preferred example of a monopolar electrolytic cell according to the present invention will be explained based on the accompanying drawings, but the present invention is not limited to this electrolytic cell.

第1図は、廃液処理や金属回収等に使用して有用な本発
明の単極式電解槽の一実施例を示す′4?1断面図であ
る。
FIG. 1 is a 4-1 cross-sectional view showing an embodiment of a monopolar electrolytic cell of the present invention useful for waste liquid treatment, metal recovery, etc.

1は、上面開口部が蓋体2により密閉された円筒状の電
解槽で、該電解槽1の中央部には隔膜として機能し上下
両端部を閉塞した円筒状のカートリッジフィルター3が
設置され、該カートリッジフィルター3により前記電解
槽1は該カートリッジフィルタ−3内部の陽極室4と該
カートリッジフィルター3と前記電解槽l外壁間の陰極
室5とに区画されている。前記陽極室4内には、例えば
円筒形のチタン基材上に酸化イリジウムを被覆して成る
陽極6が設置され、一方前記陰極室5内には該陰極室5
の外壁に近接して例えば円筒形のチタン製集電体7が設
置され、該集電体7と前記カートリッジフィルター3間
には該空間を閉塞するようにフェルト状の繊維状炭素陰
極8が充填されている。
Reference numeral 1 denotes a cylindrical electrolytic cell whose upper opening is sealed by a lid 2, and a cylindrical cartridge filter 3 that functions as a diaphragm and has both upper and lower ends closed is installed in the center of the electrolytic cell 1. The electrolytic cell 1 is divided by the cartridge filter 3 into an anode chamber 4 inside the cartridge filter 3 and a cathode chamber 5 between the cartridge filter 3 and the outer wall of the electrolytic cell 1. An anode 6 made of, for example, a cylindrical titanium substrate coated with iridium oxide is installed in the anode chamber 4, while an anode 6 is installed in the cathode chamber 5.
For example, a cylindrical titanium current collector 7 is installed near the outer wall of the cartridge filter 3, and a felt-like fibrous carbon cathode 8 is filled between the current collector 7 and the cartridge filter 3 so as to close the space. has been done.

9及び10は、それぞれ前記電解槽1の外部に設置され
た給液槽及び廃液槽で、該給液槽9に貯留された写真廃
液等を給液ポンプ11により給液ライン12を通して前
記陰極室5に供給すると、前記廃液中の銀イオンは前記
繊維状炭素陰極8上で金属銀に還元されて該陰極8上に
電析するか、あるいは前記廃液中の硫黄含有化合物又イ
オン例えばチオ硫酸イオンが陰極上で分解して生成する
硫化水素と反応して硫黄含有銀化合物に変換されて電解
液中に浮遊するか電解槽1の底板上に沈澱して電解液中
の銀濃度は減少する。
Reference numerals 9 and 10 denote a liquid supply tank and a waste liquid tank installed outside the electrolytic cell 1, respectively, and the photographic waste liquid stored in the liquid supply tank 9 is passed through the liquid supply line 12 by a liquid supply pump 11 to the cathode chamber. 5, the silver ions in the waste liquid are reduced to metallic silver on the fibrous carbon cathode 8 and electrodeposited on the cathode 8, or the sulfur-containing compounds or ions in the waste liquid, such as thiosulfate ions, are The silver reacts with hydrogen sulfide generated by decomposition on the cathode and is converted into a sulfur-containing silver compound, which floats in the electrolytic solution or precipitates on the bottom plate of the electrolytic cell 1, reducing the silver concentration in the electrolytic solution.

給液を続けて陰極室5内の内圧を高めると、陰極室内の
電解液は前記カートリッジフィルター3を通して陽極室
4に移行し、該移行時に電解液中に浮遊し又は沈澱とし
て存在する前記銀化合物が前記カートリッジフィルター
3により濾過され捕集される。なお陽極室内では通常の
場合水電解による酸素発生反応が生ずる。
When the internal pressure in the cathode chamber 5 is increased by continuing to supply the liquid, the electrolyte in the cathode chamber passes through the cartridge filter 3 and transfers to the anode chamber 4, and at the time of the transfer, the silver compound floating in the electrolyte or existing as a precipitate is removed. is filtered and collected by the cartridge filter 3. In the anode chamber, an oxygen generation reaction normally occurs due to water electrolysis.

前記カートリッジフィルター3を通して陽極室4に移行
してくる電解液と同量の電解液を、その一端が陽極室4
上部に位置する廃液ライン13を通して前記廃液槽10
へ取り出す。又電解反応により両極室内で発生するガス
はガス排出ポンプ14によりガス排出ライン15を通し
て前記給液槽9へ導き、貯留液のバブリングに使用され
、排ガス中に含まれる硫化水素は吸収される。
The same amount of electrolyte as the electrolyte transferred to the anode chamber 4 through the cartridge filter 3 is transferred to the anode chamber 4 at one end.
The waste liquid tank 10 is passed through the waste liquid line 13 located at the upper part.
Take it out. Further, the gas generated in the bipolar chamber by the electrolytic reaction is guided by the gas discharge pump 14 through the gas discharge line 15 to the liquid supply tank 9, where it is used for bubbling the stored liquid, and the hydrogen sulfide contained in the exhaust gas is absorbed.

このような操作により例えば写真廃液である電解液中の
銀等の金属イオンが特に金属化合物の形で前記カートリ
ッジフィルター3中に捕集されるが、該銀化合物等を実
際に回収するには前記カートリフジフィルター3内に多
量の前記銀化合物等が蓄積した際に電解を停止してカー
トリッジフィルターを取り出すことにより行われる。銀
等の金属イオン濃度が低下した電解液は、前述の廃液槽
10に取り出され、必要に応じて再使用されるか処分さ
れる。
Through such operations, metal ions such as silver in the electrolyte solution, which is photographic waste liquid, are collected in the cartridge filter 3, especially in the form of metal compounds, but in order to actually recover the silver compounds, etc. This is done by stopping the electrolysis and taking out the cartridge filter when a large amount of the silver compound etc. has accumulated in the cartridge filter 3. The electrolytic solution in which the concentration of metal ions such as silver has decreased is taken out to the aforementioned waste liquid tank 10, and is reused or disposed of as necessary.

一部が前記繊維状炭素陰極8に金属として電析している
残りの回収すべき金属は、両極の極性を反転させて前記
繊維状炭素陰極8を陽極として通電することにより電解
液中に銀イオンとして溶解し回収されるが、この場合対
極となる陰極は金属電極、グラファイト電極等を使用す
る。なお16は循環用ラインであり、陰極室内の電解液
をカートリッジフィルター3を透過させずに該ライン1
6を通して槽外に取り出して前記給液槽9に循環し再使
用するようにしている。
The remaining metal to be recovered, which is partially electrodeposited on the fibrous carbon cathode 8, can be recovered by inverting the polarity of the two electrodes and applying electricity using the fibrous carbon cathode 8 as an anode. They are dissolved and recovered as ions; in this case, a metal electrode, a graphite electrode, or the like is used as a counter electrode, a cathode. Note that 16 is a circulation line, and the electrolyte in the cathode chamber is circulated through the line 1 without passing through the cartridge filter 3.
The liquid is taken out of the tank through 6 and circulated to the liquid supply tank 9 for reuse.

本実施例では、主として写真用廃液の銀イオンを硫黄含
有銀化合物の形で回収することを説明したが、本発明は
これに限定されず、金属回収や陽極酸化生成物等の回収
時に固形分が生じ易い他の成分の回収に使用することが
できる。更に殆どが金属単体の形で陰極上に電析する金
属回収の場合でも、若干量が電解液中に浮遊することが
あり、このような少量成分を確実に回収するにも本発明
は有効である。
In this example, it has been explained that silver ions from photographic waste liquid are mainly recovered in the form of a sulfur-containing silver compound, but the present invention is not limited to this. It can be used to recover other components that are susceptible to. Furthermore, even in the case of metal recovery in which most of the metal is electrodeposited on the cathode in the form of an elemental metal, a small amount may float in the electrolyte, and the present invention is effective in reliably recovering such small amounts of components. be.

なお図示の電解槽では繊維状炭素を陰極室に充填する方
式のみを示したが、例えば陰極集電体に薄厚のフェルト
状の繊維状炭素を接合して電解に使用することができる
In the illustrated electrolytic cell, only the method of filling the cathode chamber with fibrous carbon is shown, but for example, a thin felt-like fibrous carbon can be bonded to the cathode current collector and used for electrolysis.

更に図示の電解槽では、円筒状の電解槽本体の外部を陰
極室とし内部を陽極室としたが、逆に外部を陽極室とし
内部を陰極室とすることも可能であり、この形態では前
記カートリッジフィルター中に前記繊維状炭素陰極が収
容されるため、該カートリッジフィルターを取り出すの
みで該カートリッジフィルターで濾過される物質と前記
繊維状炭素陰極上に電析する物質の両者を一度に回収す
ることができるため、より好都合である。
Furthermore, in the illustrated electrolytic cell, the outside of the cylindrical electrolytic cell main body is the cathode chamber and the inside is the anode chamber, but it is also possible to conversely have the outside as the anode chamber and the inside as the cathode chamber. Since the fibrous carbon cathode is housed in the cartridge filter, both the substance filtered by the cartridge filter and the substance electrodeposited on the fibrous carbon cathode can be collected at once by simply removing the cartridge filter. This is more convenient because it allows you to

(実施例) 次に本発明の単極式電解槽を使用する金属回収の実施例
を記載するが、該実施例は本発明を限定するものではな
い。
(Example) Next, an example of metal recovery using the monopolar electrolytic cell of the present invention will be described, but this example is not intended to limit the present invention.

大奥畳上 第1図に示す単極式電解槽を使用して写真用漂白定着液
中の銀イオンを硫化銀として回収した。
Silver ions in a photographic bleach-fix solution were recovered as silver sulfide using a monopolar electrolytic cell shown in FIG.

電解槽本体は直径(内径) 12cm、長さ26.5c
mの塩化ビニル製円筒体とし、該本体内部を直径64開
、長さ250ntmの東洋濾紙株式会社製のカートリッ
ジフィルターで区画し陽極室と陰極室の容積がそれぞれ
900cc及び2100ccとなるようにした。
The electrolytic cell body has a diameter (inner diameter) of 12 cm and a length of 26.5 cm.
The inside of the main body was partitioned with a cartridge filter manufactured by Toyo Roshi Co., Ltd. with a diameter of 64 mm and a length of 250 ntm, so that the volumes of the anode chamber and cathode chamber were 900 cc and 2100 cc, respectively.

陽極として直径が22mm、長さが250mmで、電極
有効面積が1.57dm2である酸化イジウムを被覆し
たチタン基材を、陰極集電体として電極有効面積が6.
9 dm”であるチタン材を使用し、該集電体と前記隔
膜間にフェルト状の繊維状炭素陰極(日本カーボン株式
会社製「カーボロン−Pフェルト」)580 ccを充
填した。
As an anode, a titanium base material coated with idium oxide with a diameter of 22 mm, a length of 250 mm, and an effective electrode area of 1.57 dm2 was used as a cathode current collector, and an effective electrode area of 6.0 dm2 was used as a cathode current collector.
A titanium material having a diameter of 9 dm" was used, and 580 cc of a felt-like fibrous carbon cathode ("Carboron-P Felt" manufactured by Nippon Carbon Co., Ltd.) was filled between the current collector and the diaphragm.

この電解槽の陰極室に全量が3.Olで銀含有量が13
60mg/ lである写真現像廃液を1.01 /分の
速度で前記循環用ラインを通して循環させながら、電流
量をl0AHの定電流、電圧を4.3〜4.5■、液温
を30〜50℃として60分間電解を行った。電解中に
発生するガスの中に硫化水素は検出されなかったが、給
液槽内では20〜30ppm検出された。
The total amount of 3. Silver content is 13 in Ol.
While circulating the photographic developer waste solution having a concentration of 60 mg/l through the circulation line at a rate of 1.01/min, the amount of current was set to a constant current of 10 AH, the voltage was set to 4.3 to 4.5 ■, and the temperature of the solution was set to 30 to 30. Electrolysis was performed at 50° C. for 60 minutes. Hydrogen sulfide was not detected in the gas generated during electrolysis, but 20 to 30 ppm was detected in the liquid supply tank.

通電停止後、前記カートリッジフィルターを取り出し銀
回収量を測定したところ4079mgで銀回収率は99
.97%、電解尾液中の銀含有量は0.4 mg/lで
あった。又電解槽内に銀の沈澱は検出されず、陰極電流
密度は10.1%であった。
After the electricity was stopped, the cartridge filter was removed and the amount of silver recovered was measured, and it was found to be 4079 mg, and the silver recovery rate was 99.
.. 97%, and the silver content in the electrolytic tailings was 0.4 mg/l. Further, no silver precipitation was detected in the electrolytic cell, and the cathode current density was 10.1%.

本実施例における電圧と銀濃度の経時変化を第2図に示
した。
FIG. 2 shows the changes in voltage and silver concentration over time in this example.

大豊班1 実施例1と同様の電解槽を使用し、該電解槽の陰極室に
全量が6.O4で銀含有量が1360mg/ lである
写真現像廃液を90cc1分の速度で供給し循環を行わ
ずに、電流量をl0AHの定電流、電圧を5.2〜6.
OV、液温を25〜30℃として60分間電解を行った
。電解中に発生するガスの中に硫化水素は検出されなか
ったが、給液槽内では40〜50ppm検出された。
Otoyo Group 1 An electrolytic cell similar to that in Example 1 was used, and the total amount of 6.5% was placed in the cathode chamber of the electrolytic cell. A photographic developing waste solution containing 1360 mg/l of silver in O4 was supplied at a rate of 90 cc/min without circulation, with a constant current of 10 AH and a voltage of 5.2-6.
Electrolysis was performed for 60 minutes at OV and liquid temperature of 25 to 30°C. Hydrogen sulfide was not detected in the gas generated during electrolysis, but 40 to 50 ppm was detected in the liquid supply tank.

通電停止後、前記カートリッジフィルターを取り出し銀
回収量を測定したところ8094mgで銀回収率は99
.19%、電解尾液中の銀含有量は11.0mg/lで
あり、陰極電流密度は20.1%であった。
After stopping the electricity supply, the cartridge filter was taken out and the amount of silver recovered was measured, and it was 8094 mg, and the silver recovery rate was 99.
.. 19%, the silver content in the electrolytic tailings was 11.0 mg/l, and the cathode current density was 20.1%.

本実施例における電圧とSR?a度の経時変化を第3図
に示した。
Voltage and SR in this example? Figure 3 shows the change in a degree over time.

大旌拠主 実施例1と同様の電解槽を使用し、該電解槽の陰極室に
全量が3.6βで銀含有量が4850mg/ Itであ
る写真現像廃液を2.On!/分の速度で供給し循環さ
せながら、電流量を20AHの定電流、電圧を5.1〜
6.3V、液温を33〜52℃として180分間電解を
行った。電解中に発生するガスの中に硫化水素は検出さ
れなかったが、給液槽内では3〜5ppm検出された。
Using the same electrolytic cell as in Example 1, a photographic developing waste solution having a total amount of 3.6β and a silver content of 4850 mg/It was added to the cathode chamber of the electrolytic cell. On! While supplying and circulating at a speed of /min, the current amount is a constant current of 20AH, and the voltage is 5.1 ~
Electrolysis was performed for 180 minutes at 6.3 V and a liquid temperature of 33 to 52°C. Hydrogen sulfide was not detected in the gas generated during electrolysis, but 3 to 5 ppm was detected in the liquid supply tank.

通電停止後、前記カートリッジフィルターを取り出し銀
回収量を測定したところ17455mgで銀回収率は9
9.97%、電解尾液中の銀含有量は0.8mg/lで
あった。又電解槽内に銀の沈澱は検出されず、陰極の電
流効率は7.2%であった。
After the electricity was stopped, the cartridge filter was taken out and the amount of silver recovered was measured, and it was 17,455 mg, and the silver recovery rate was 9.
9.97%, and the silver content in the electrolytic tailings was 0.8 mg/l. Further, no silver precipitation was detected in the electrolytic cell, and the current efficiency of the cathode was 7.2%.

本実施例における電圧と銀濃度の経時変化を第4図に示
した。
FIG. 4 shows the changes in voltage and silver concentration over time in this example.

(発明の効果) 本発明は、成形後に繊維状に維持されている炭素を電極
として使用しかつ両極室を区画する隔膜が濾過機能を有
するようにした単極式電解槽と該電解槽を使用する電解
方法である。
(Effects of the Invention) The present invention uses a monopolar electrolytic cell in which carbon maintained in a fibrous form after molding is used as an electrode, and the diaphragm that partitions the bipolar chambers has a filtering function, and the electrolytic cell. This is an electrolytic method.

該繊維状炭素電極は、対極に面する部分のみが電極作用
を発現する従来の炭素電極等の多孔質電極と異なり、繊
維状炭素の長さが十分に長く電極内における電位勾配が
なく該電極のどの部分でも電位が等しいため、電解反応
が前記電極のどの部分でも生じ該電極のほぼ全面が電極
として機能し電流密度の低減をはじめとする電解条件を
有利にすることができるものと推測することができる。
The fibrous carbon electrode differs from porous electrodes such as conventional carbon electrodes in which only the part facing the counter electrode exhibits an electrode effect, and the fibrous carbon is sufficiently long so that there is no potential gradient within the electrode. Since the potential is the same in all parts of the electrode, it is assumed that electrolytic reactions occur in any part of the electrode, and almost the entire surface of the electrode functions as an electrode, making the electrolytic conditions more favorable, including reducing the current density. be able to.

このような特性を有する繊維状炭素電極と濾過機能を有
する隔膜を使用する本発明の単極式電解槽は、前記繊維
状炭素電極の有する膨大な表面積により回収すべき金属
イオン等を該電極上に電析させあるいは極室内に浮遊さ
せ又は沈澱させて、該浮遊物等を含む電解液を前記隔膜
を透過させ対極側へ移行させる際に、前記浮遊又は沈澱
している析出物を前記隔膜により濾過して、特に電極上
に電析しない固形分を効率良く回収できるようにしてい
る。
The monopolar electrolytic cell of the present invention uses a fibrous carbon electrode having such characteristics and a diaphragm having a filtering function. When the electrolytic solution containing the suspended matter is passed through the diaphragm and transferred to the opposite electrode, the floating or precipitated precipitate is removed by the diaphragm. By filtering, solids that are not deposited on the electrodes can be efficiently recovered.

例えば銀イオンと硫黄含有化合物又はイオンを含む写真
廃液や写真現像用定着液では、通常の電解反応では前記
銀イオン及び硫黄含有化合物等が反応して硫化銀の浮遊
物又は沈澱等の固形分を生じ、極性を反転させ再溶解さ
せる方法では回収することが困難であるのに対し、本発
明に係わる電解槽を使用すると、電解液が前記隔膜を通
して移行する際に前記固形分が前記隔膜により捕捉され
て蓄積し、前記隔膜を電解槽から外すことにより該隔膜
に付着した目的とする成分を回収することができる。又
他の金属イオンの回収や有機電解又は陽極酸化の生成物
の回収にも本発明は有用である。
For example, in a photographic waste solution or a fixer for photographic development that contains silver ions and sulfur-containing compounds or ions, the silver ions and sulfur-containing compounds react with each other in a normal electrolytic reaction to remove solids such as floating particles or precipitates of silver sulfide. However, when the electrolytic cell according to the present invention is used, the solid content is captured by the diaphragm when the electrolyte moves through the diaphragm. By removing the diaphragm from the electrolytic cell, the target component adhering to the diaphragm can be recovered. The present invention is also useful for recovering other metal ions and products of organic electrolysis or anodic oxidation.

又回収率も通常99%を越える良好な値を示し、目的と
する成分を固形あるいは溶液のいずれの形でも得ること
ができる。
Moreover, the recovery rate usually shows a good value exceeding 99%, and the target component can be obtained in either solid or solution form.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の単極式電解槽の一実施例を示す縦断
面図、第2図は、実施例1における電解時間と、電圧及
び銀濃度の関係を示すグラフ、第3図は、実施例2にお
ける電解時間と、電圧及び銀濃度の関係を示すグラフ、
第4図は、実施例3における電解時間と、電圧及び銀濃
度の関係を示すグラフである。 1 ・ 3 ・ 4 ・ 6 ・ 8 ・ 10・ 12・ 14・ 16・ 電解槽 2・・・蓋体 カートリフシフイルター 陽極室 5・・・陰極室 陽極 7・・・陰極集電体 繊維状炭素陰極 9・・・給液槽 廃液槽 11・・・給液ポンプ 給液ライン 13・・・廃液ライン 排出ポンプ 15・・・排出ライン 循環用ライン へ丁 三七J 図 第 図 電 解 時間 (オノ 第 う 図 で。 解 崎M/幻 第 図 Xl  to  デ0  /、JOBD  trb i
t。 官界θ手、ff (砂
FIG. 1 is a vertical cross-sectional view showing an example of a monopolar electrolytic cell of the present invention, FIG. 2 is a graph showing the relationship between electrolysis time, voltage, and silver concentration in Example 1, and FIG. 3 is a graph showing the relationship between electrolysis time, voltage, and silver concentration in Example 1. , a graph showing the relationship between electrolysis time, voltage and silver concentration in Example 2,
FIG. 4 is a graph showing the relationship between electrolysis time, voltage, and silver concentration in Example 3. 1 ・ 3 ・ 4 ・ 6 ・ 8 ・ 10 ・ 12 ・ 14 ・ 16 Electrolytic cell 2... Lid body cartridge filter anode chamber 5... Cathode chamber anode 7... Cathode current collector fibrous carbon cathode 9...Liquid supply tank waste liquid tank 11...Liquid supply pump liquid supply line 13...Waste liquid line discharge pump 15...Discharge line to circulation line In the figure. Kasaki M/Gendaizu Xl to de0/, JOBD trb i
t. Official world θ hand, ff (suna

Claims (2)

【特許請求の範囲】[Claims] (1)隔膜で2個の極室に区画された単極式電解槽にお
いて、前記隔膜に濾過機能を持たせ、かつ集電体に接続
された繊維状炭素を少なくとも一方の極室で電極として
使用して電解を行うことを特徴とする単極式電解槽。
(1) In a monopolar electrolytic cell divided into two electrode chambers by a diaphragm, the diaphragm has a filtration function, and fibrous carbon connected to a current collector is used as an electrode in at least one electrode chamber. A monopolar electrolytic cell that is used to perform electrolysis.
(2)濾過機能を有する隔膜を介して2個の極室に区画
された単極式電解槽の少なくとも一方の極室に集電体が
接続された繊維状炭素を収容して電極とした単極式電解
槽に通電しながら、前記繊維状炭素が収容された電極室
へ処理すべき電解液を供給し、電解により生じた該電解
液中の固形分を前記繊維状炭素電極上及び/又は該繊維
状炭素電極が収容された電極室内に析出させ、該電解液
を前記隔膜を通して対極室内に移行させて前記固形分を
前記隔膜により捕集し回収することを特徴とする電解方
法。
(2) Fibrous carbon connected to a current collector is housed in at least one electrode chamber of a monopolar electrolytic cell divided into two electrode chambers through a diaphragm having a filtration function, and a single electrode is used as an electrode. While supplying electricity to the polar electrolytic cell, an electrolytic solution to be treated is supplied to the electrode chamber containing the fibrous carbon, and the solid content in the electrolytic solution generated by electrolysis is transferred onto the fibrous carbon electrode and/or An electrolysis method characterized in that the fibrous carbon electrode is deposited in an electrode chamber containing the electrode, the electrolyte is transferred through the diaphragm into the counter electrode chamber, and the solid content is collected and recovered by the diaphragm.
JP1223671A 1989-08-30 1989-08-30 Single-electrode electrolytic cell and electrolyzing method Pending JPH0387400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223671A JPH0387400A (en) 1989-08-30 1989-08-30 Single-electrode electrolytic cell and electrolyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223671A JPH0387400A (en) 1989-08-30 1989-08-30 Single-electrode electrolytic cell and electrolyzing method

Publications (1)

Publication Number Publication Date
JPH0387400A true JPH0387400A (en) 1991-04-12

Family

ID=16801826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223671A Pending JPH0387400A (en) 1989-08-30 1989-08-30 Single-electrode electrolytic cell and electrolyzing method

Country Status (1)

Country Link
JP (1) JPH0387400A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792186A (en) * 1980-11-29 1982-06-08 Katsuhiro Okubo Method and device for electrolytic treatment of dilute solution of noble metal salt
JPS6220891A (en) * 1985-07-19 1987-01-29 Sumitomo Metal Mining Co Ltd Method for electrolytically collecting metal from aqueous solution containing minor amount of metal
JPH01230791A (en) * 1988-03-09 1989-09-14 Sumitomo Metal Mining Co Ltd Apparatus for electrowinning metal and electrowinning method using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792186A (en) * 1980-11-29 1982-06-08 Katsuhiro Okubo Method and device for electrolytic treatment of dilute solution of noble metal salt
JPS6220891A (en) * 1985-07-19 1987-01-29 Sumitomo Metal Mining Co Ltd Method for electrolytically collecting metal from aqueous solution containing minor amount of metal
JPH01230791A (en) * 1988-03-09 1989-09-14 Sumitomo Metal Mining Co Ltd Apparatus for electrowinning metal and electrowinning method using same

Similar Documents

Publication Publication Date Title
US3764499A (en) Process for removal of contaminants from wastes
US4028199A (en) Method of producing metal powder
US4396474A (en) Modified carbon or graphite fibrous percolating porous electrode, its use in electrochemical reactions
KR890002751B1 (en) Electrolyzing process and electrolytic cell employing fluidized bed
CA1257222A (en) Removal of arsenic from acids
US4021319A (en) Electrolytic process for recovery of silver from photographic fixer solution
JPH0387400A (en) Single-electrode electrolytic cell and electrolyzing method
US5464506A (en) Electrolytic device and method having a porous and stirring electrode
EP0387907A1 (en) Method and apparatus for recovering silver from waste photographic processing solutions
JPH09103638A (en) Method for electrolytic removal of impurity from gas
JPH0688275A (en) Method for regenerating aqueous solution containing metal ion and sulfuric acid and method and device for using the same
JPH11158681A (en) Treatment of selenium-containing water to be treated
US4276134A (en) Method for removing chlorate from caustic solutions with electrolytic iron
JP2001029956A (en) Method for electrolysis
US4699701A (en) Electrochemical removal of chromium from chlorate solutions
JPH032959B2 (en)
RU2110472C1 (en) Method and installation for scrubbing gases to remove hydrogen sulfide
JPH10174975A (en) Fixed bed type porous electrode-containing electrolytic bath and method and apparatus for treating water using the same
JPH0413432B2 (en)
JPH02305987A (en) Single-electrode electrolytic cell and electrolytic method using the cell
KR850700262A (en) Metal recovery method
US5804044A (en) Electrolysis device and method using a porous electrode
JPH0596282A (en) Treatment of colored organic waste fluid
SU669701A1 (en) Method of electrochemical purification of waste water
JPH04318185A (en) Desilverizing method