JPH0386221A - Polysulfone laminated membrane - Google Patents

Polysulfone laminated membrane

Info

Publication number
JPH0386221A
JPH0386221A JP22308889A JP22308889A JPH0386221A JP H0386221 A JPH0386221 A JP H0386221A JP 22308889 A JP22308889 A JP 22308889A JP 22308889 A JP22308889 A JP 22308889A JP H0386221 A JPH0386221 A JP H0386221A
Authority
JP
Japan
Prior art keywords
polysulfone
oxygen
membrane
nitrogen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22308889A
Other languages
Japanese (ja)
Inventor
Shingo Kazama
伸吾 風間
Takeo Teramoto
武郎 寺本
Tsutomu Kaneda
勉 金田
Masaya Furukawa
古川 雅也
Masao Sakashita
坂下 雅雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP22308889A priority Critical patent/JPH0386221A/en
Priority to US07/526,431 priority patent/US5049169A/en
Publication of JPH0386221A publication Critical patent/JPH0386221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain a polysulfone laminated membrane having a high rate of permeation of oxygen and high oxygen-nitrogen selectivity by forming a layer of soluble arom. polysulfone represented by a specified general formula as a gas selective active layer on a porous support having a specified thickness and a specified pore diameter. CONSTITUTION:A layer of soluble arom. polysulfone represented by formula I [where X is structural units represented by formula II (where each of R1-R4 is H, CH3 or C2H5) and Y is structural units represented by formula III (where each of R5 and R6 is H, Cl or NO2)] is formed as a gas selective active layer on a porous support having 10nm-1mum thickness and 1mum surface pore diameter to obtain a polysulfone laminated membrane having a high rate of permeation of oxygen, high oxygen-nitrogen selectivity, superior heat and chemical resistances and mechanical strength.

Description

【発明の詳細な説明】 産業上の利用分野 H3 L 、C2H5のいずれかで NO2のいずれかであ 本発明は、従来にない高い酸素透過速度と高い酸素窒素
選択率を示し、耐熱性、耐薬品性に優れた複合型気体分
lIl膜に関するものである。特にその高い酸素窒素選
択性により、医療用などに用いることのできる酸素濃度
40%以上の酸素富化空気の製造、または、窒素濃度3
5%以上の窒素富化空気の製造に適するものである。
Detailed Description of the Invention The present invention exhibits an unprecedented high oxygen permeation rate and high oxygen/nitrogen selectivity in either H3, C2H5 or NO2, and has excellent heat resistance and resistance. This invention relates to a composite type gaseous IIl membrane with excellent chemical properties. In particular, its high oxygen and nitrogen selectivity makes it possible to produce oxygen-enriched air with an oxygen concentration of 40% or more, which can be used for medical purposes, or with a nitrogen concentration of 3.
It is suitable for producing air enriched with nitrogen of 5% or more.

従来の技術 近年、窒素濃度85〜98.5%の窒素富化空気の利用
が注目を集めている。このような窒素富化空気の用途の
一例としては、可燃性液体保存タンク内に不活性ガスで
ある窒素富化空気を充項し、爆発防止対策を施す試みが
知られている。
BACKGROUND OF THE INVENTION In recent years, the use of nitrogen-enriched air with a nitrogen concentration of 85 to 98.5% has attracted attention. As an example of the use of such nitrogen-enriched air, there is a known attempt to fill a flammable liquid storage tank with nitrogen-enriched air, which is an inert gas, to prevent explosions.

ここで、窒素富化空気の供給に膜分離技術を用い、一般
空気から直接に窒素富化空気を製造することが行なわれ
ている。膜分離技術を用いて窒素富化空気を得るために
は、酸素選択透過膜を用い供給気体の膜を透過する比率
を多くし、酸素濃度・が低下した非透過ガスを用いるこ
とが考えられ、この場合、酸素窒素選択率の大きい膜が
あれば、より少ないエネルギーで効率的に所定の窒素濃
度を有する窒素富化空気を製造することが可能となる。
Here, membrane separation technology is used to supply nitrogen-enriched air to directly produce nitrogen-enriched air from general air. In order to obtain nitrogen-enriched air using membrane separation technology, it is possible to use an oxygen selective permeation membrane to increase the ratio of supply gas that permeates through the membrane, and to use a non-permeable gas with a reduced oxygen concentration. In this case, if there is a membrane with a high oxygen/nitrogen selectivity, it becomes possible to efficiently produce nitrogen-enriched air having a predetermined nitrogen concentration with less energy.

更に、膜分離技術を用いて、工業的規模で窒素富化空気
を得るためには大量の気体を処理することが必要となり
、酸素透過速度が大きい膜が要求される。
Furthermore, in order to obtain nitrogen-enriched air on an industrial scale using membrane separation technology, it is necessary to process a large amount of gas, and a membrane with a high oxygen permeation rate is required.

しかし、現在市販されている酸素富化膜には、高い酸素
窒素選択率と高い酸素透過速度を合わせ持つものがなく
、膜を利用した窒素富化空気の製造は普及していない。
However, none of the oxygen-enriching membranes currently on the market have both high oxygen-nitrogen selectivity and high oxygen permeation rate, and the production of nitrogen-enriched air using membranes is not widespread.

高い酸素透過速度と高い酸素窒素選択率を右する気体分
離膜の製造は、高分子材料の開発と分離膜製造法の開発
で可能となる。高分子材料の開発目標は、(1)酸素透
過係数が高く、(2)酸素窒素選択率が大きく、 (3
)薄膜化が可能であり、 0)高温ガスの使用に耐える
膜素材を得ることである。
The production of gas separation membranes with high oxygen permeation rates and high oxygen/nitrogen selectivity becomes possible through the development of polymeric materials and separation membrane manufacturing methods. The development goals for polymer materials are (1) high oxygen permeability coefficient, (2) high oxygen and nitrogen selectivity, (3)
0) To obtain a membrane material that can withstand the use of high-temperature gas.

また分離膜製造法の開発目標は、気体選択活性層の厚さ
と膜単位面積当りの透過速度とは逆比例の関係があると
ころから、気体選択活性層の薄膜化を達成することであ
る0問題を解決する方法として、薄膜化した気体選択活
性層を多孔質支持体上に有する複合膜の製造が試みられ
ている。
In addition, the goal of developing a separation membrane manufacturing method is to achieve a thinner gas-selective active layer, since the thickness of the gas-selective active layer and the permeation rate per unit area of the membrane are inversely proportional. As a method to solve this problem, attempts have been made to manufacture a composite membrane having a thin gas-selective active layer on a porous support.

例えば、特開昭81−35803号公報には、酸素透過
速度2.7 X 10−’ N+s3/ rn’ 11
hr e ate 、酸素窒素選択率2.8の分離膜が
、また、特開昭81−107922号公報には、酸素透
過速度25Nm’ / m’ e hr * ate、
酸素窒素選択率2.8の分#膜が開示されている。
For example, JP-A-81-35803 discloses that the oxygen permeation rate is 2.7 x 10-'N+s3/rn' 11
hr e ate , a separation membrane with an oxygen/nitrogen selectivity of 2.8 is disclosed in JP-A-81-107922, an oxygen permeation rate of 25 Nm'/m' e hr * ate,
A membrane with an oxygen nitrogen selectivity of 2.8 is disclosed.

しかし、いずれも酸素窒素選択率が低く、特性の向上が
要求されていた。
However, all of them had low oxygen-nitrogen selectivity, and improvements in their properties were required.

発明が解決しようとする課題 本発明の目的は、高い酸素透過速度と高い酸素窒素選択
率を有し、耐熱性、耐薬品性と機械的強度に優れ、簡便
な製膜法で容易に製膜でき、取扱が容易な複合型気体分
離膜を提供することである。
Problems to be Solved by the Invention The purpose of the present invention is to provide a film that has a high oxygen permeation rate and high oxygen/nitrogen selectivity, has excellent heat resistance, chemical resistance, and mechanical strength, and can be easily formed using a simple film forming method. It is an object of the present invention to provide a composite gas separation membrane that can be easily handled.

課題を解決するための手段および作用 本発明は、実質的に、弐%X−Y+で示され、X、Yが
下記に示す構成単位からなる可溶性芳香族ポリスルホン
を気体選択活性層とし、前記気体選択活性層を厚さIo
ns〜Ig、mで、表面の孔径が1gm以下である多孔
質支持体上に設けてなるポリスルホン複合膜である。
Means and Effects for Solving the Problems The present invention substantially consists of a soluble aromatic polysulfone represented by 2% Select active layer with thickness Io
It is a polysulfone composite membrane provided on a porous support with a surface pore size of 1 gm or less and a particle diameter of ns to Ig, m.

Y (ただし、R,−丸はH,CH3,C2H5のいずれか
であり、R9−R6はH,C1,NO2のいずれかであ
る。) 本発明の詳細な説明においてポリスルホンは、構成単位
の種類によって表わす、すなわち、実質的に式(X−Y
)で示される芳香族ポリスルホンの構成単位を下記に示
すようにXr、、r2、r3r4.Yrs、r6と表わ
し、本発明に用いたボXr1.r2.r3.r4Yr5
.、r’0リスルホンを、 [Xrl、r2、r3、r
、/Yr5、r6]と表示する。ここで、r、〜r4は
数字l、2.3を用い、構成単位Xr1.r2、r3.
r4中のR+ 〜R4が数字1.2,3の順にH1CH
3,C2H,であることを示し、r5、r6は数字l、
2.3を用い、構成単位Yr5、r6中(r) Rs〜
R6が数字l、2.3の順にH,CIl、 NO2であ
ることを示す。
Y (However, R, - circle is either H, CH3, C2H5, R9-R6 is either H, C1, NO2.) In the detailed description of the present invention, polysulfone is defined by the type of structural unit. , i.e. substantially the formula (X-Y
) The structural units of the aromatic polysulfone represented by Xr, , r2, r3r4 . Xr1. r2. r3. r4Yr5
.. , r'0 risulfone, [Xrl, r2, r3, r
, /Yr5, r6]. Here, the numbers l and 2.3 are used for r, to r4, and the structural units Xr1. r2, r3.
R+ in r4 ~ R4 is H1CH in the order of numbers 1, 2, 3
3, C2H, and r5 and r6 are numbers l,
2.3, in the structural units Yr5 and r6 (r) Rs~
R6 indicates the number 1, followed by 2.3, which in that order is H, CI1, and NO2.

また、r1〜r4が、同じ数字である場合は。Also, if r1 to r4 are the same number.

Xrl、r2、r3、r4をXr、と示し、同様にr5
、r6が、同じ数字である場合はYrs、r6をYrs
と示し、表示の簡略化を行なう0例えば、R,/−/)
l、がすべてHであるポリスルホンは、 [X1/Y+
]と表示する。
Xrl, r2, r3, r4 are denoted as Xr, and similarly r5
, r6 are the same number, then Yrs, r6 is Yrs
0 (for example, R, /-/) to simplify the display.
The polysulfone in which l, are all H is [X1/Y+
] is displayed.

更に、3種類以上の構成単位からなるポリスルホンの表
示には、併せて式(−X−Y−)−における各構成単位
のモル比を示す6例えば、[xI/YIY2 (0,9
−0,1)] と表示し、構成単位のモル比が、 X、
  :Y、  :Y2 =l :OjJ :Q、1−t
’あるポリスルホンを示す、ここで、モル比は、6系(
Xrl、r2、r3、r4系、Yr5、r6系)の構成
単位のモル比の合計が1となるように表示し、基糸の構
成単位が1種類の場合は、省略することとする。以下、
合成法と表示法の例を示す。
Furthermore, when displaying a polysulfone consisting of three or more types of structural units, the molar ratio of each structural unit in the formula (-X-Y-)- is also shown6. For example, [xI/YIY2 (0,9
−0,1)], and the molar ratio of the constituent units is X,
:Y, :Y2=l :OjJ :Q, 1-t
' indicates a certain polysulfone, where the molar ratio is 6 series (
Xrl, r2, r3, r4 series, Yr5, r6 series) are expressed so that the sum of the molar ratios of the constituent units is 1, and if there is only one type of constituent unit in the base yarn, it will be omitted. below,
Examples of synthesis and presentation methods are shown.

本発明の複合膜の膜材料となるポリスルホンの合成法は
、例えば、ar&単位x1、構成単位Y。
The method for synthesizing polysulfone, which is the membrane material of the composite membrane of the present invention, is, for example, ar & unit x1, structural unit Y.

からなる芳香族ポリスルホンは、9.9−ビス(4−ヒ
ドロキシフェニル)フルオレン20m1+ole。
The aromatic polysulfone consisting of 9,9-bis(4-hydroxyphenyl)fluorene 20ml+ole.

4.4°−ジクロロジフェニルスルホン20mmole
、炭酸カリウム22mmole、 N、N−ジメチルア
セトアミド68己、トルエン8B−を200−の三ロフ
ラスコに入れ、ディーンシュターク管を用いて脱水した
後、反応温度が150℃になるまで留出するトルエンを
除き、15時間反応させ室温まで冷却し、副生酸物であ
るKCIを禮過で取り除き、i!!掖をメタノール中に
注ぎ再沈させ、インヘレント粘度が0.59 d i/
gである重合物を定量的に得ることができる。得ら訃た
ポリマーは、[X1/Y+ 1 と表わす、ポリスルホ
ン[X+ /Y l]の均一膜の酸素透過係数は、 P
O2−4,18X10−9a1(STP)am/cm2
* sea e cmHgであり、酸素窒素選択率は、
P02/PN2=8.4である。
4.4°-dichlorodiphenylsulfone 20 mmole
, 22 mmole of potassium carbonate, 68 units of N,N-dimethylacetamide, and 8B of toluene were placed in a 200-mm three-Low flask, dehydrated using a Dean-Stark tube, and then distilled off until the reaction temperature reached 150°C, excluding toluene. , reacted for 15 hours, cooled to room temperature, removed KCI as a by-product acid by filtration, and i! ! Pour the slurry into methanol and reprecipitate, and the inherent viscosity is 0.59 di/
g can be quantitatively obtained. The oxygen permeability coefficient of a uniform film of polysulfone [X+ /Y l], expressed as [X1/Y+ 1 ], is P
O2-4, 18X10-9a1 (STP) am/cm2
* sea cmHg, and the oxygen nitrogen selectivity is
P02/PN2=8.4.

また、構成単位xIと構成単位Y1.Y2(構成単位Y
l/Y2のモル比= 9971)からなるポリスルホン
は、9.9−ビス(4−ヒドロキシフェニル)フルオレ
ン20m+5ole、4.4゛−ジクロロジフェニルス
ルホン 4゛−テトラクロロジフェニルスルホン0.2mmol
e,炭酸カリウム22mmole, N 、 N−ジメ
チルアセトアミド88a.)ルエン86−を20G−の
三ロフラスコに入れ、前述の[X+ /Yt ]の合成
法と同様の操作によりインヘレント粘度1.09 d 
l /gである重合物を得ることができる.得られたポ
リマーは、[X+ /YI  Y2 (0.99−0.
01) ] と表示する.ボ!J スル*7 [Xt 
/Yr −Y2 (0.99−0.01) ]の均一膜
の酸素透過係数は、5.9×10”cm’ (STP)
am/am2m sec e cmHgであり、酸素窒
素選択率は、PO2/PN2=12である。
Furthermore, the constituent unit xI and the constituent unit Y1. Y2 (constituent unit Y
The polysulfone consisting of 9.9-bis(4-hydroxyphenyl)fluorene 20m+5ole, 4.4゛-dichlorodiphenylsulfone 4゛-tetrachlorodiphenylsulfone 0.2 mmol
e, 22 mmole of potassium carbonate, N, N-dimethylacetamide 88a. ) Luene 86- was placed in a 20 G- three-ring flask, and the inherent viscosity was 1.09 d by the same procedure as the synthesis method of [X+ /Yt] described above.
1/g can be obtained. The obtained polymer had [X+ /YI Y2 (0.99-0.
01) ] is displayed. Bo! J Suru*7 [Xt
/Yr - Y2 (0.99-0.01)] The oxygen permeability coefficient of a uniform film is 5.9 x 10"cm' (STP)
am/am2m sec cmHg, and the oxygen nitrogen selectivity is PO2/PN2=12.

ポリスルホ7 [X+ /Y+ −Y2 (0.99−
0.01) ]で例示したように.構成単位X,.X2
,X3間のモル比.am単位y,、y2,y3間のモル
比は任意でよく、構成単位X,Yのモル数の合計が一致
すればよい。
Polysulfo 7 [X+ /Y+ -Y2 (0.99-
0.01) ] as exemplified. Constituent unit X, . X2
, X3. The molar ratio between the am units y, y2, and y3 may be arbitrary, as long as the total number of moles of the constituent units X and Y match.

以上に述べた合成法は一例に過ぎず、本発明のポリスル
ホン複合膜の膜素材の合成法は以上に述べた合成法に限
定されるものではない。
The synthesis method described above is only an example, and the method for synthesizing the membrane material of the polysulfone composite membrane of the present invention is not limited to the synthesis method described above.

また、本発明で複合膜の気体選択活性層の膜素材とする
ポリスルホンの溶液安定性を改善する目的で、ポリマー
末端の水酸基をベンゾイル基等で置換することが望まし
い。
Furthermore, in order to improve the solution stability of the polysulfone used as the membrane material for the gas-selective active layer of the composite membrane in the present invention, it is desirable to replace the hydroxyl group at the end of the polymer with a benzoyl group or the like.

本発明の分離膜の膜素材とするポリスルホンはいずれも
メタクレゾール等の有機溶媒に可溶である.また、ポリ
スルホン[Xr,、r2、r3、r 4 / Y r 
5、r61における構成単位+7) R+ ” Raカ
H 、 CH3 、 C2Hs チッチも、R5〜R,
がH.Cll。
All polysulfones used as membrane materials for the separation membrane of the present invention are soluble in organic solvents such as metacresol. In addition, polysulfone [Xr,, r2, r3, r 4 / Y r
5. Constituent unit in r61 +7) R+ ”RakaH, CH3, C2Hs Chitch also, R5~R,
is H. Cll.

NO2であっても、溶解性に大きな差はない.表1に、
本発明に用いたポリスルホンの溶解性の一例を示す。
Even with NO2, there is no big difference in solubility. Table 1 shows
An example of the solubility of polysulfone used in the present invention is shown.

表1 測定濃度 ポリマー10重量部、溶媒100重量部DM
AC.N.N−ジメチルアセトアミドNMP  ;N−
メチル−2−ピロリドン表1かられかるように、本発明
に用いるポリスルホンは優れた溶解性を示すことから,
コーティング法、水上延展法等で多孔質支持体上に,均
一なFl膜として形成することができる。
Table 1 Measured concentration: 10 parts by weight of polymer, 100 parts by weight of solvent DM
A.C. N. N-dimethylacetamide NMP; N-
Methyl-2-pyrrolidone As shown in Table 1, the polysulfone used in the present invention exhibits excellent solubility.
A uniform Fl film can be formed on a porous support by a coating method, a water spreading method, or the like.

更に、本発明で用いるポリスルホンは、いずれも優れた
耐熱性、耐薬品性と機械的強度を有する。
Furthermore, the polysulfones used in the present invention all have excellent heat resistance, chemical resistance, and mechanical strength.

例えば、ポリスルホン[X+/Ytlのガラス転移温度
は280℃であり、分解開始温度は400℃である。ま
た、このポリスルホン[X1/Yt ]のフィルムは1
種々の有機溶媒、酸、アルカリ溶液(試験に用いた薬品
は、表2に示す、)に48時間浸せき後も、フィルム形
状に変化は認められない。
For example, the glass transition temperature of polysulfone [X+/Ytl is 280°C and the decomposition onset temperature is 400°C. Moreover, this polysulfone [X1/Yt] film is 1
No change in the film shape was observed even after 48 hours of immersion in various organic solvents, acids, and alkaline solutions (chemicals used in the tests are shown in Table 2).

更に、ポリスルホン[x+/y+]の引張強度は、 1
1kg/am2であり機械的強度に優れた膜素材であり
、この値は種々の有機溶媒、強酸、強アルカリに48時
間浸せき後も変化なく、上述の形状変化がないことと併
せて高い耐薬品性を有していることが確認される。
Furthermore, the tensile strength of polysulfone [x+/y+] is 1
1 kg/am2, it is a membrane material with excellent mechanical strength, and this value does not change even after 48 hours of immersion in various organic solvents, strong acids, and strong alkalis.In addition to the above-mentioned absence of shape change, it has high chemical resistance. It is confirmed that it has sex.

表2に1本発明に用いたポリスルホンの耐熱性、耐薬品
性と機械的強度の一例を示す0本発明に用いたポリスル
ホンは、R1−R4がH,CH3、C2H1でも、R5
〜R6がH,CL NO,であっても耐熱性、耐薬品性
と機械的強度に大きな差はない、これら、ポリスルホン
素材の優れた耐熱性。
Table 2 shows an example of the heat resistance, chemical resistance and mechanical strength of the polysulfone used in the present invention.Even if R1-R4 are H, CH3, C2H1, R5
~Even if R6 is H or CL NO, there is no big difference in heat resistance, chemical resistance, and mechanical strength.These polysulfone materials have excellent heat resistance.

耐薬品性と機械的強度は、ポリスルホン気体選択活性層
の優れた耐熱性、耐薬品性と機械的強度に現われる。
The chemical resistance and mechanical strength are manifested in the excellent heat resistance, chemical resistance, and mechanical strength of the polysulfone gas-selective active layer.

表2 木 100s+mX 10tsの試験片フィルムを下記
に示した個々の薬品に0時間浸せき後、引っ張り試験を
行ないフィルムの強度を求めた。
Table 2 A test piece film of wood 100s+mX10ts was immersed in each of the chemicals shown below for 0 hours, and then a tensile test was conducted to determine the strength of the film.

試験ニ用イタ薬品;2%HCt、  0.5%HNO3
,5%H7SOn 、 2o%NaOH120%lll
3PO4,20%CH3CO0H1lO%(CH2CO
OH)2.28XNHaOH1次亜塩素sソーv(有効
塩素500PP論)、2%トリクロロ酢酸、 10%ホ
ルマリン、100%メタノール、  100%エチレン
グリコール、 100%エタノール、  100%グリ
セリン、 100%アセトン、 100%テトラヒドロ
フラン、 100%ジオキサン、  100%四塩化炭
素、 100%クロロホルム、100%トリクレン、 
 100%ヘキサン、100%ベンゼン、 100%ト
ルエン、 100%酢酸メチル、 100%酢酸エチル 本発明のポリスルホンの複合膜は、コーティング法、水
上延展法等で製膜されるが、製膜法には特に限定はない
0例えば、ポリスルホンを適当な溶媒に溶解し、その均
一溶液を多孔質支持体上に、バーコーターを用いて厚さ
が均一になるように塗布し、乾燥器で溶媒を蒸発させ複
合膜を得る。また、水と混和しない溶媒にポリスルホン
を溶解し、その均一溶液を水面に滴下することで得られ
る薄膜を、多孔質支持体上にすくいとり、複合膜を得る
Ita chemicals for testing; 2% HCt, 0.5% HNO3
, 5%H7SOn, 2o%NaOH120%lll
3PO4, 20% CH3CO0H11O% (CH2CO
OH) 2.28XNHaOH1 hypochlorite s sov (available chlorine 500PP theory), 2% trichloroacetic acid, 10% formalin, 100% methanol, 100% ethylene glycol, 100% ethanol, 100% glycerin, 100% acetone, 100% Tetrahydrofuran, 100% dioxane, 100% carbon tetrachloride, 100% chloroform, 100% trichlene,
100% hexane, 100% benzene, 100% toluene, 100% methyl acetate, 100% ethyl acetate The polysulfone composite membrane of the present invention is formed by a coating method, a water spreading method, etc. No limitation 0 For example, polysulfone is dissolved in a suitable solvent, the homogeneous solution is applied onto a porous support using a bar coater so that the thickness is uniform, and the solvent is evaporated in a dryer to form a composite. Obtain a membrane. Alternatively, a thin film obtained by dissolving polysulfone in a water-immiscible solvent and dropping the homogeneous solution onto the water surface is scooped onto a porous support to obtain a composite film.

得られたポリスルホン複合膜を、走査型電子顕m鏡(S
EM)を用いて観察すると、多孔質支持体上に、極薄で
ピンホールの無いポリスルホン均一膜の層を右する構造
であることが確認される。
The obtained polysulfone composite film was subjected to scanning electron microscopy (S
When observed using EM), it is confirmed that the structure consists of an extremely thin, pinhole-free polysulfone uniform film layer on a porous support.

この構造において、極薄でピンホールの無いポリスルホ
ン均一膜の層が、本発明のポリスルホン複合膜の気体選
択活性層である。
In this structure, the ultrathin, pinhole-free polysulfone uniform membrane layer is the gas-selective active layer of the polysulfone composite membrane of the present invention.

本発明のポリスルホン複合膜の気体選択活性層は、Io
n鵬〜Ig、mの膜厚を有している。複合膜において、
気体選択活性層はピンホールが無く可能な限り薄いこと
が理葱であるが、膜厚1one未渦のピンホールフリー
な超薄膜を製膜することは現実的に不可能である。また
、膜厚がIgmを越えると気体透過性が不十分となる。
The gas selective active layer of the polysulfone composite membrane of the present invention is Io
It has a film thickness of npeng to Ig,m. In the composite membrane,
The gas selective active layer should be pinhole-free and as thin as possible, but it is practically impossible to form a pinhole-free ultra-thin film with a thickness of 1. Furthermore, if the film thickness exceeds Igm, gas permeability will be insufficient.

また、高い気体透過性と取扱易さの両立を考慮すると、
より好ましい膜厚は50〜300n重である。
In addition, considering both high gas permeability and ease of handling,
A more preferable film thickness is 50 to 300 nm.

ポリスルホン複合膜の多孔質支持体の目的は。What is the purpose of the porous support for polysulfone composite membranes?

気体分離の操作圧に対して、適正な膜形状を保つととも
に1機械的強度がそのままでは不十分な気体選択活性層
を、破損を生じさせることなく支持することにある。そ
のためには、多孔質支持体が操作圧に耐える十分な機械
的強度を有することと、支持体表面の孔が当該超薄膜を
支持するに十分な微細孔であることが必要とされる。ま
た、コーティング法で複合膜を製造する場合、支持体が
ポリマーの溶媒に対して安定であることが要求される。
The object of the present invention is to maintain a proper membrane shape against the operating pressure of gas separation and to support a gas selective active layer whose mechanical strength is insufficient as it is without causing damage. For this purpose, it is necessary that the porous support has sufficient mechanical strength to withstand the operating pressure, and that the pores on the surface of the support are sufficiently fine to support the ultra-thin film. Furthermore, when producing a composite membrane by a coating method, the support is required to be stable to the polymer solvent.

本発明のポリスルホン複合膜の多孔質支持体としては、
気体選択活性層の膜厚がl#Lmの場合、多孔質支持体
表面の孔径はIg、m以下であることが必要であり、孔
径が小さい方が操作圧にたいする耐性が向上する。また
、気体選択活性層の膜厚が薄くなるにしたがって、要求
される孔径も小さくなる。また、コーティング法で、複
合膜を製造する場合は1本発明で用いるポリスルホンの
溶媒であるメタクレゾール、DMAC等に安定であるこ
とが要求される。
The porous support for the polysulfone composite membrane of the present invention includes:
When the gas selective active layer has a thickness of l#Lm, the pore diameter on the surface of the porous support must be Ig,m or less, and the smaller the pore diameter, the better the resistance to operating pressure. Furthermore, as the thickness of the gas-selective active layer becomes thinner, the required pore diameter also becomes smaller. Furthermore, when a composite membrane is manufactured by a coating method, it is required to be stable to metacresol, DMAC, etc., which are the solvents for the polysulfone used in the present invention.

かかる多孔質支持体の例としては、住友電工製フロロボ
アフィルターに代表される多孔質テフロン膜、ポリプラ
スチック製ジュラガードに代表される多孔質ポリプロピ
レン膜、ミリボア製各種多孔質膜および不溶化処理を施
した多孔質非対称膜等をあげれるが1本発明のポリスル
ホン複合膜の多孔質支持体は、上記の孔径、溶媒安定性
の条件を満たせば、材質等の制限は受けない。
Examples of such porous supports include porous Teflon membranes typified by Sumitomo Electric's Fluorobor filter, porous polypropylene membranes typified by polyplastic Duraguard, various porous membranes manufactured by Millibore, and insolubilized membranes. The porous support for the polysulfone composite membrane of the present invention is not subject to any limitations on material, etc., as long as it satisfies the above-mentioned conditions of pore size and solvent stability.

本発明のポリスルホン複合膜は、気体分離の活性層がピ
ンホールの無いポリスルホン均一膜の層である為、本発
明で用いるポリスルホン素材の気体選択性をそのまま示
すことができる。
In the polysulfone composite membrane of the present invention, since the active layer for gas separation is a layer of a polysulfone uniform membrane without pinholes, it can directly exhibit the gas selectivity of the polysulfone material used in the present invention.

実施例 以下に本発明の実施例を挙げる。なお、以下の実施例に
おいて、酸素透過速度、酸素窒素選択率は、酸素濃度2
1%窒素濃度73%の人工空気を用い、1次側2気圧、
2次側大気圧として、2次側気体の透過速度、ガスクロ
マトグラフィを使って求めた酸素、窒素濃度から決定し
た。
Examples Examples of the present invention are listed below. In addition, in the following examples, the oxygen permeation rate and oxygen nitrogen selectivity are
Using artificial air with a 1% nitrogen concentration of 73%, the primary side is 2 atm,
The secondary atmospheric pressure was determined from the secondary gas permeation rate and the oxygen and nitrogen concentrations determined using gas chromatography.

実施例1 精製したN、N−ジメチルアセトアミド 100重量部
にポリスルホン[X+/Ysl1重量部を、乾燥窒素雰
囲気のもとで溶解した溶液を、市販されている公称孔径
0.14m、膜厚10Ggmの多孔質テフロン平膜(住
友電工製フロロポアフィルター)上にバーコーターを用
いて膜厚15gmで塗布後、 140℃で乾燥し、複合
膜を作成した。得られたポリスルホン複合膜をサンプル
ホルダーにセットし、酸素透過速度、酸素窒素選択率を
測定した0表3に得られた結果を示す0本復合膜の気体
選択活性層の厚さは、SEM観察によれば約120n鵬
であった。
Example 1 A solution prepared by dissolving 1 part by weight of polysulfone [X+/Ysl in 100 parts by weight of purified N,N-dimethylacetamide under a dry nitrogen atmosphere was added to a commercially available solution with a nominal pore size of 0.14 m and a film thickness of 10 Ggm. It was applied onto a porous Teflon flat membrane (fluoropore filter manufactured by Sumitomo Electric Industries, Ltd.) using a bar coater to a film thickness of 15 gm, and then dried at 140°C to prepare a composite membrane. The obtained polysulfone composite membrane was set in a sample holder, and the oxygen permeation rate and oxygen/nitrogen selectivity were measured. Table 3 shows the results obtained. The thickness of the gas selective active layer of the composite membrane was determined by SEM observation. According to the book, it was about 120npeng.

表3 表3より、本発明のポリスルホン複合膜が優れた酸素透
過速度と酸素窒素選択率及び優れた耐熱性を有すること
が確認された。
Table 3 From Table 3, it was confirmed that the polysulfone composite membrane of the present invention had excellent oxygen permeation rate, oxygen and nitrogen selectivity, and excellent heat resistance.

実施例2 実施例1と同一の複合膜を、5%硫酸、 0.5%硝酸
、20%水酸化ナトリウム水溶液に48時間浸せきし、
風乾後、 140℃で乾燥させ、40℃で酸素透過速度
、酸素窒素選択率を測定した0表4に結果を示す。
Example 2 The same composite membrane as in Example 1 was immersed in an aqueous solution of 5% sulfuric acid, 0.5% nitric acid, and 20% sodium hydroxide for 48 hours.
After air drying, it was dried at 140°C, and the oxygen permeation rate and oxygen/nitrogen selectivity were measured at 40°C. The results are shown in Table 4.

(以下余白) 表4 表4により、ポリスルホン複合膜が優れた耐薬品性を有
することが確認された。
(The following is a blank space) Table 4 Table 4 confirms that the polysulfone composite membrane has excellent chemical resistance.

実施例3 精製したm−クレゾール100重量部にポリスル*7 
[X+ /Yt −Y2 (0,99−0,01) 1
1重量部を、乾燥窒素雰囲気で溶解した溶液を、市販さ
れている公称孔径0.1gm、膜厚100 u−mの多
孔質テフロン平膜(住友電工製フロロボアフィルター)
上に、バーコーダ−を用いて、膜厚15gmで塗布後、
 140℃で乾燥し、複合膜を作成した。得られたポリ
スルホン複合膜をサンプルホルダーにセットし、酸素透
過速度、酸素窒素選択率を測定した0表5に得られた結
果を示す0本復合膜の気体選択活性層の厚さは、SEM
観察によれば約120n+s であった。
Example 3 Add polysul*7 to 100 parts by weight of purified m-cresol
[X+ /Yt -Y2 (0,99-0,01) 1
A solution prepared by dissolving 1 part by weight in a dry nitrogen atmosphere was added to a commercially available porous Teflon flat membrane (Fluorobore filter manufactured by Sumitomo Electric Industries, Ltd.) with a nominal pore diameter of 0.1 gm and a membrane thickness of 100 μm.
After coating with a film thickness of 15gm using a barcoder,
It was dried at 140°C to produce a composite membrane. The obtained polysulfone composite membrane was set in a sample holder, and the oxygen permeation rate and oxygen/nitrogen selectivity were measured. Table 5 shows the results obtained. The thickness of the gas selective active layer of the composite membrane
According to observation, it was about 120n+s.

表5 表5より、本発明のポリスルホン複合膜が優れた酸素透
過速度と酸素窒素選択率を有することが確認された。
Table 5 From Table 5, it was confirmed that the polysulfone composite membrane of the present invention had excellent oxygen permeation rate and oxygen/nitrogen selectivity.

実施例4 精製したN、N−ジメチルアセトアミド 100重量部
に、ポリスルホン[X+ /Y+ 3 0.5重量部を
、乾燥窒素雰囲気で溶解し、加熱により不溶化処理を施
した外径0.7mm、内径0.4■の非対称ポリスルホ
ン多孔質中空糸膜の外表面に、前述の溶液中を中空糸膜
をすばやく通過させることで、ポリスルホン溶液を塗布
後、 140℃で乾燥し、中空糸膜外表面にポリスルホ
ン活性層を有する中空糸型複合膜を作成した。
Example 4 0.5 parts by weight of polysulfone [X+/Y+ 3 was dissolved in 100 parts by weight of purified N,N-dimethylacetamide in a dry nitrogen atmosphere, and an insolubilization treatment was performed by heating to obtain a solution with an outer diameter of 0.7 mm and an inner diameter. After applying the polysulfone solution to the outer surface of a 0.4■ asymmetric polysulfone porous hollow fiber membrane by quickly passing the solution through the hollow fiber membrane, it was dried at 140°C and coated on the outer surface of the hollow fiber membrane. A hollow fiber type composite membrane with a polysulfone active layer was created.

得られた中空糸型複合膜をミニモジュールに組み上げ、
酸素透過速度、酸素窒素選択率を測定した0表6に、得
られた結果を示す0本復合膜の気体選択活性層の厚さは
、SEM観察によれば約90n1であった。
The obtained hollow fiber composite membrane is assembled into a mini module,
The thickness of the gas-selective active layer of the composite membrane, whose results are shown in Table 6, where the oxygen permeation rate and oxygen/nitrogen selectivity were measured, was approximately 90n1 according to SEM observation.

表6 表6より本発明のポリスルホン複合型中空糸膜が、優れ
た酸素透過速度と酸素窒素選択率を有し、かつ優れた耐
熱性を有することが確認された。
Table 6 From Table 6, it was confirmed that the polysulfone composite hollow fiber membrane of the present invention had excellent oxygen permeation rate and oxygen/nitrogen selectivity, as well as excellent heat resistance.

発明の効果 本発明のポリスルホン複合膜は、優れた酸素透過速度と
優れた酸素窒素選択率を有し、かつ、200℃の耐熱性
、高い耐薬品性を有する極めて優秀な酸素富化膜であり
、医療用などに用いることのできる酸素濃度40%の酸
素富化空気の製造、または、窒素濃度85%以上の窒素
富化空気の製造を大量に安価で行なうことを可能とする
。その結果、膜を用いる気体分離技術を広く普及させる
ものである。
Effects of the Invention The polysulfone composite membrane of the present invention is an extremely excellent oxygen-enriching membrane that has excellent oxygen permeation rate and excellent oxygen-nitrogen selectivity, as well as heat resistance of 200°C and high chemical resistance. It is possible to produce oxygen-enriched air with an oxygen concentration of 40%, which can be used for medical purposes, or nitrogen-enriched air with a nitrogen concentration of 85% or more, in large quantities at low cost. As a result, gas separation technology using membranes will be widely used.

Claims (1)

【特許請求の範囲】 実質的に、式▲数式、化学式、表等があります▼で示さ
れ、X、Yが下 記に示す構成単位からなる可溶性芳香族ポリスルホンを
気体選択活性層とし、前記気体選択活性層を厚さ10n
m〜1μmで、表面の孔径が1μm以下である多孔質支
持体上に設けてなるポリスルホン複合膜。 X ▲数式、化学式、表等があります▼ Y ▲数式、
化学式、表等があります▼ (ただし、R_1〜R_4はH、CH_3、C_2H_
5のいずれかであり、R_5−R_6はH、Cl、NO
_2のいずれかである。)
[Claims] Substantially, a soluble aromatic polysulfone represented by the formula ▲ includes a mathematical formula, a chemical formula, a table, etc. The active layer has a thickness of 10n.
A polysulfone composite membrane provided on a porous support having a surface pore diameter of 1 μm or less. X ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Y ▲Mathematical formulas,
There are chemical formulas, tables, etc. ▼ (However, R_1 to R_4 are H, CH_3, C_2H_
5, and R_5-R_6 are H, Cl, NO
Either _2. )
JP22308889A 1989-05-23 1989-08-31 Polysulfone laminated membrane Pending JPH0386221A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22308889A JPH0386221A (en) 1989-08-31 1989-08-31 Polysulfone laminated membrane
US07/526,431 US5049169A (en) 1989-05-23 1990-05-22 Polysulfone separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22308889A JPH0386221A (en) 1989-08-31 1989-08-31 Polysulfone laminated membrane

Publications (1)

Publication Number Publication Date
JPH0386221A true JPH0386221A (en) 1991-04-11

Family

ID=16792651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22308889A Pending JPH0386221A (en) 1989-05-23 1989-08-31 Polysulfone laminated membrane

Country Status (1)

Country Link
JP (1) JPH0386221A (en)

Similar Documents

Publication Publication Date Title
US8303690B2 (en) Hollow fiber carbon membrane and method for production thereof
US4933085A (en) Method of manufacturing an integral asymmetrical membrane
JP2005516764A5 (en)
JP2509962B2 (en) Polyimide separation membrane
US4710204A (en) Polyphosphazene gas separation membranes
JPS6214916A (en) Manufacture of composite asymmetric membrane for mutually separating gas
US5049169A (en) Polysulfone separation membrane
JPH07114935B2 (en) Polyarylate separation membrane
US7303609B2 (en) Manufacture of polyimide-hollow fibres
JP2008173573A (en) Composite hollow fiber membrane
JPH0331093B2 (en)
JP2542533B2 (en) Fluorine-based separation membrane
JPH0386221A (en) Polysulfone laminated membrane
JPS5959220A (en) Preparation of composite permeable membrane for separating gas
JPS5895539A (en) Gas separating membrane
JP3878188B2 (en) Gas separation membrane
JPS6391122A (en) Separation of steam
CN112076636B (en) Preparation method of high-efficiency filtering porous metal composite membrane
EP4450150A1 (en) Separation functional layer, separation membrane, and method for producing separation functional layer
JP4883683B2 (en) Organopolysiloxane for gas separation membrane
JPH01123618A (en) Composite gas separation membrane
WO2024014285A1 (en) Separation membrane and method for manufacturing same
JPH03165821A (en) Production of gas separation membrane having asymmetric polysulfone
JPS60227804A (en) Manufacture of separation membrane
JPH0634910B2 (en) Method for producing polysulfone-based membrane