JPH0386215A - Metal vapor generator - Google Patents

Metal vapor generator

Info

Publication number
JPH0386215A
JPH0386215A JP1223227A JP22322789A JPH0386215A JP H0386215 A JPH0386215 A JP H0386215A JP 1223227 A JP1223227 A JP 1223227A JP 22322789 A JP22322789 A JP 22322789A JP H0386215 A JPH0386215 A JP H0386215A
Authority
JP
Japan
Prior art keywords
electron beam
metal
metal vapor
generator
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1223227A
Other languages
Japanese (ja)
Inventor
Hitoshi Yabuta
薮田 均
Yorio Tsunoda
角田 順男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1223227A priority Critical patent/JPH0386215A/en
Publication of JPH0386215A publication Critical patent/JPH0386215A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To drastically improve efficiency in vaporizing raw metal by irradiating the plural bodies impregnated with molten metal alternately with the electron beam emitted from an electron beam generator. CONSTITUTION:A vaporizing crucible 12 contg. raw metal 13 and an electron beam generator 14 for emitting an electron beam for heating and vaporizing the raw metal 13 are placed in a vacuum vessel 11. Plural porous bodies 21 and 22 to be impregnated with the molten metal are set in the crucible 12, and the bodies 21 and 22 are alternately irradiated with the electron beam emitted from the generator 14. Consequently, the amt. of the metal to be vaporized is stably secured, and efficiency in vaporizing raw metal is improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は同位体分離装置に適用される金属蒸気発生装置
に係り、特に金属原料を効率よく蒸発させる金属蒸気発
生装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a metal vapor generator applied to an isotope separation device, and particularly relates to a metal vapor generator that efficiently evaporates metal raw materials. .

(従来の技術) レーザ法を使用した金属原子の同位体分離装置は、従来
のガス拡散法や遠心分離法等と比較すると同位体の分離
効率が非常に高く、優れている。
(Prior Art) A metal atom isotope separation apparatus using a laser method has a very high isotope separation efficiency and is superior to conventional gas diffusion methods, centrifugation methods, and the like.

このため、原子レーザ法を採用した同位体分離装置は、
特定の同位体を所定の濃度レベルに達するまで同一の分
離工程を多段のカスケード方式によって繰り返す必要が
なく、同位体分離装置全体が小型でコンパクト化され、
経済性に優れている。
For this reason, isotope separation equipment that uses the atomic laser method is
There is no need to repeat the same separation process in a multi-stage cascade method until a specific isotope reaches a predetermined concentration level, and the entire isotope separation device can be made smaller and more compact.
Excellent economy.

このレーザ法を採用した同位体分離装置には、同位体分
離を行なうために、金属蒸気を発生させる金属蒸気発生
装置が組み込まれており、この金属蒸気発生装置で金属
原料を効率よく蒸発させることが、同位体分離装置の分
離効率の向上につながることが知られている。
Isotope separation equipment that uses this laser method incorporates a metal vapor generator that generates metal vapor in order to perform isotope separation, and this metal vapor generator can efficiently evaporate metal raw materials. is known to improve the separation efficiency of isotope separation devices.

従来の金属蒸気発生装置は真空容器内に金属原料を収容
した蒸発用るつぼと、この蒸発用るつぼに収容された金
属原料を加熱、溶融し、蒸発させる電子銃とをそれぞれ
収容し、電子銃から射出される電子ビームを金属原料に
照射し、加熱、溶融し、蒸発させていた。
A conventional metal vapor generator includes an evaporation crucible containing a metal raw material in a vacuum container and an electron gun that heats, melts, and evaporates the metal raw material contained in the evaporation crucible. The emitted electron beam was irradiated onto the metal raw material, heating it, melting it, and vaporizing it.

(発明が解決しようとする課題) 従来の金属蒸気発生装置においては、電子銃から出射さ
れる電子ビームにより蒸発用るつぼ内に収容された金属
原料が金属原料が加熱、溶融せしめられるが、蒸発用る
つぼ内で加熱、溶融されると、溶融金属の対流が生じ、
この対流により高温加熱された溶融金属が蒸発用るつぼ
側壁面で冷却されるため、電子ビームによる加熱が金属
原料の蒸発に効果的に機能せず、金属原料の蒸発効率を
悪化させる恐れがあった。
(Problems to be Solved by the Invention) In conventional metal vapor generators, the metal raw material contained in the evaporation crucible is heated and melted by the electron beam emitted from the electron gun. When heated and melted in the crucible, convection of the molten metal occurs,
Due to this convection, the molten metal heated to a high temperature is cooled on the side wall of the evaporation crucible, so the heating by the electron beam does not effectively evaporate the metal raw material, and there is a risk that the evaporation efficiency of the metal raw material may deteriorate. .

金属原料の蒸発効率は、蒸発用るつぼ内に対流が発生す
る場合と、無い場合とでは例えば10倍程度の大きな開
きがあり、対流発生が金属原料の蒸発効率を悪化させる
原因となっていた。
There is a large difference in the evaporation efficiency of the metal raw material, for example, about 10 times, between when convection is generated in the evaporation crucible and when it is not, and the generation of convection has been a cause of deteriorating the evaporation efficiency of the metal raw material.

本発明は、上述した事情を考慮してなされたもので、電
子ビームを溶融金属を含浸させた多孔質体に交互に照射
させることにより、金属原料の蒸発効率を大幅に向上さ
せた金属蒸気発生装置を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and generates metal vapor that greatly improves the evaporation efficiency of metal raw materials by alternately irradiating a porous body impregnated with molten metal with an electron beam. The purpose is to provide equipment.

本発明の他の目的は、溶融金属の蒸発量の変動を有効的
に防止し、金属蒸気を安定的に発生させることができる
金属蒸気発生装置を提供するにある。
Another object of the present invention is to provide a metal vapor generator that can effectively prevent fluctuations in the amount of evaporation of molten metal and stably generate metal vapor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る金属蒸気発生装置は従来技術が有する技術
的課題を解決するために、金属原料を収容した蒸発用る
つぼと、上記金属原料を加熱・蒸発させる電子ビームを
出射させる電子ビーム発生装置とを真空容器内に収容し
た金属蒸気発生装置において、前記蒸発用るつぼ内に溶
融金属を含浸させる多孔質体を複数個設置し、電子ビー
ム発生装置から射出される電子ビームを上記多孔質体に
交互に照射させたものである。
(Means for Solving the Problems) In order to solve the technical problems of the prior art, the metal vapor generator according to the present invention includes an evaporation crucible containing a metal raw material, and an electronic device for heating and evaporating the metal raw material. In a metal vapor generation device in which an electron beam generation device for emitting a beam and an electron beam generation device are housed in a vacuum container, a plurality of porous bodies impregnated with molten metal are installed in the evaporation crucible, and the metal vapor is emitted from the electron beam generation device. The porous body is alternately irradiated with electron beams.

また、本発明の金属蒸気発生装置は、上述した課題を解
決するために、多孔質体は、1台の蒸発用るつぼ内に2
個が間隔をおいて一体あるいは一体的に並設され、上記
各多孔質体に電子ビーム発生装置からの電子ビームを交
互に照射させたり、さらに、上述した課題解決のために
、蒸発用るつぼは真空容器内に複数台が近接して収容さ
れ、上記各蒸発用るつぼ内に多孔質体がそれぞれ収容さ
れたものである。
Further, in order to solve the above-mentioned problems, the metal vapor generator of the present invention has two porous bodies in one evaporation crucible.
In order to solve the above-mentioned problems, an evaporation crucible is used in which the porous bodies are arranged integrally or integrally in parallel at intervals, and the electron beams from the electron beam generator are alternately irradiated onto each porous body. A plurality of crucibles are housed in close proximity to each other in a vacuum container, and a porous body is housed in each of the evaporation crucibles.

(作用) この金属蒸気発生装置は、蒸発用るつぼ内に金属原料の
溶融金属を含浸させる多孔質体を複数個設置し、電子銃
等の電子ビーム発生装置から出射される電子ビームを上
記各多孔質体に交互に照射し、多孔質体表面をたたくこ
とにより、各多孔質体表面からの金属蒸気の発生を交互
に行ない、全体として金属蒸気を安定的に蒸発させ、金
属原料の蒸発効率を大幅に改善したものである。
(Function) This metal vapor generator has a plurality of porous bodies impregnated with molten metal as a metal raw material in an evaporation crucible, and an electron beam emitted from an electron beam generator such as an electron gun is passed through each of the above porous bodies. By alternately irradiating the solid body and hitting the surface of the porous body, metal vapor is generated from the surface of each porous body alternately, and the metal vapor is stably evaporated as a whole, increasing the evaporation efficiency of the metal raw material. This is a significant improvement.

(実施例) 以下、本発明に係る金属蒸気発生装置の一実施例につい
て添付図面を参照して説明する。
(Example) Hereinafter, an example of the metal vapor generator according to the present invention will be described with reference to the accompanying drawings.

第1図および第2図、同位体分離装置に本発明の金属蒸
気発生装置を適用した例を示す。この金属蒸気発生装置
10は真空容器11内にジルコニウム、ウラン、ハフニ
ウム、白金、ガドリウム等の同位体金属の金属原料を収
容する蒸発用るつぼ12と、この蒸発用るつぼ12内に
収容された金属原料13を加熱、溶融し、蒸発させる電
子ビーム発生装置としての電子銃14とを有する。
FIG. 1 and FIG. 2 show an example in which the metal vapor generating device of the present invention is applied to an isotope separation device. This metal vapor generator 10 includes an evaporation crucible 12 that stores metal raw materials of isotopic metals such as zirconium, uranium, hafnium, platinum, and gadolinium in a vacuum container 11, and a metal raw material contained in the evaporation crucible 12. It has an electron gun 14 as an electron beam generator that heats, melts, and evaporates the electron beam 13.

金属原料13の加熱、溶融、蒸発により発生した金属蒸
気流Aは、所定の角度の拡がりをもって案内され、上昇
する。上昇する金属蒸気流Aにレーザ装置15から出力
される選択励起レーザ光16が照射される。このレーザ
光16は分離しようとする特定同位体の金属原子(金属
蒸気)を選択的に励起させるために、特定同位体の共鳴
吸収線に相当する周波数のレーザ光である。
A metal vapor flow A generated by heating, melting, and evaporating the metal raw material 13 is guided to spread at a predetermined angle and rises. The rising metal vapor flow A is irradiated with a selective excitation laser beam 16 output from a laser device 15. This laser beam 16 has a frequency corresponding to the resonance absorption line of the specific isotope in order to selectively excite the metal atoms (metal vapor) of the specific isotope to be separated.

選択励起レーザ光16の照射を受けた特定同位体は励起
されてイオン化され、正電荷を有するイオン化同位体と
なる。このイオン化同位体は陽電極と陰電極のプレート
を交互に配置した電極17間を通過する際に、陰電極側
に引き寄せられて吸着され、陰電極表面に回収される。
The specific isotope irradiated with the selective excitation laser beam 16 is excited and ionized, and becomes an ionized isotope with a positive charge. When this ionized isotope passes between electrodes 17 in which positive and negative electrode plates are arranged alternately, it is attracted to the negative electrode side, adsorbed, and collected on the surface of the negative electrode.

一方、イオン化されない同位体の金属原子(金属蒸気)
は、電界の影響を受けないために電極17間の電界空間
を素通りし、電極17の二次側に配設された捕集用回収
板18に捕集され、回収される。
On the other hand, isotopic metal atoms that are not ionized (metal vapor)
Since it is not affected by the electric field, it passes through the electric field space between the electrodes 17 and is collected and collected by the collection plate 18 disposed on the secondary side of the electrode 17.

ところで、金属蒸気発生装置10の蒸発用るつぼ12は
、銅あるいはタングステン材料等で形成され、内部に冷
却水を案内する図示しない冷却通路が形成される。タン
グステン材料で蒸発用るつぼ12を形成する場合には、
タングステンを例えば2000kg/cnf程度の高圧
にて成形加工する必要がある。
Incidentally, the evaporation crucible 12 of the metal vapor generator 10 is made of copper, tungsten, or the like, and has a cooling passage (not shown) formed therein for guiding cooling water. When forming the evaporation crucible 12 with tungsten material,
It is necessary to mold tungsten at a high pressure of about 2000 kg/cnf, for example.

蒸発用るつぼ12の頂部には金属原料を収納する収納凹
部20が形成され、この収納凹部20内にブロック状の
多孔質体21.22が複数個、例えば2個収容される。
A storage recess 20 for storing a metal raw material is formed at the top of the evaporation crucible 12, and a plurality of block-shaped porous bodies 21, 22, for example two, are stored in this storage recess 20.

多孔質体21.22はタングステン材料あるいはセラミ
ック材料で連続気孔を有するように成形され、その気孔
率は例えば約70%程度に成形される。同位体金属原料
の溶融金属は大きな気孔率の多孔質体21.22に毛細
管現象により迅速に吸い込まれ、含浸せしめられる。例
えば、2個の多孔質体21.22は第3図に示すように
スペーサ24を介して一体的に並設しても、第4図に示
すようにブリッジ25を介して一体的に並設した構造と
してもよい。また、各多孔質体21は収納凹部20に第
3図に示すように台スペーサ26を介して設置しても、
第4図に示すようにベタ置きとしてもよい。
The porous bodies 21 and 22 are formed of tungsten material or ceramic material so as to have continuous pores, and the porosity thereof is, for example, about 70%. The molten metal of the isotope metal raw material is quickly sucked into the porous body 21, 22 with a large porosity by capillary action and is impregnated therein. For example, the two porous bodies 21 and 22 may be integrally arranged side by side with a spacer 24 in between as shown in FIG. It is also possible to have a similar structure. Moreover, even if each porous body 21 is installed in the storage recess 20 via a stand spacer 26 as shown in FIG.
It may also be placed solidly as shown in FIG.

多孔質体21.22は例えば細長いブロック状をなし、
頂部のほぼ中央部に長平方向に延びる溝28が形成され
る。この溝28は溝幅が電子ビームのビーム径を考慮し
て例えば10+n+++程度に形成され、溝形状は金属
蒸気流の拡散率(拡散角度)を考慮して決定される。金
属蒸気流の拡散率は溝形状と加熱温度とから主に定めら
れる。
The porous bodies 21 and 22 have, for example, an elongated block shape,
A groove 28 extending in the longitudinal direction is formed approximately at the center of the top. The groove 28 is formed to have a groove width of, for example, about 10+n+++ in consideration of the beam diameter of the electron beam, and the groove shape is determined in consideration of the diffusion rate (diffusion angle) of the metal vapor flow. The diffusivity of metal vapor flow is mainly determined by the groove shape and heating temperature.

しかして、電子銃14から射出された電子ビームBはへ
ルムホルツコイル等の外部磁場コイル30により形成さ
れる偏向磁界により例えば約180度偏向されて多孔質
体21.22の溝部に交互に照射される。この電子ビー
ムBの照射により多孔質体21.22に含浸せしめられ
た溶融金属は加熱され、多孔質体21.22の表面から
蒸発せしめられる。その際、多孔質体21.22に含浸
された溶融金属は、電子ビームBの照射を受けて、自然
対流を生じさせることがないので、電子ビームBの照射
が、加熱された溶融金属の蒸発に有効的に寄与し、金属
原料の蒸発効率を大幅に、例えば従来の金属蒸気発生装
置より数倍向上させることができる。
The electron beam B emitted from the electron gun 14 is deflected, for example, by about 180 degrees by a deflection magnetic field formed by an external magnetic field coil 30 such as a Helmholtz coil, and is alternately irradiated onto the grooves of the porous body 21 and 22. be done. The molten metal impregnated into the porous body 21.22 by the irradiation with the electron beam B is heated and evaporated from the surface of the porous body 21.22. At this time, the molten metal impregnated in the porous body 21, 22 is irradiated with the electron beam B and does not cause natural convection, so that the irradiation with the electron beam B causes the evaporation of the heated molten metal. The evaporation efficiency of the metal raw material can be significantly improved, for example, several times higher than that of conventional metal vapor generators.

なお、蒸発用るつぼ12内に収容された金属原料は、電
子ビームBの照射による熱を受けて溶融させても、ある
いは導電性多孔質体21.22に直接通電し、ヒータ加
熱により溶融させてもよい。
Note that the metal raw material accommodated in the evaporation crucible 12 can be melted by receiving heat from irradiation with the electron beam B, or by directly applying electricity to the conductive porous body 21 and 22 and melting it by heating with a heater. Good too.

また、蒸発用るつぼ12に収容された1つの多孔質体2
1または22に電子ビームBを照射することにより、こ
の多孔質体21または22に含浸せしめられた溶融金属
が加熱、蒸発せしめられるが、この加熱蒸発による金属
蒸気発生後、再度溶融金属が毛細管現象により多孔質体
表面まで含浸せしめられる間に、金属蒸気の蒸発量が低
下してしまう恐れがある。
Moreover, one porous body 2 accommodated in the evaporation crucible 12
By irradiating the electron beam B onto the porous body 21 or 22, the molten metal impregnated into the porous body 21 or 22 is heated and evaporated. There is a risk that the amount of evaporation of metal vapor may decrease while the surface of the porous body is impregnated.

このため、この金属蒸気発生装置10においては、蒸発
用るっぽ12内に複数個、図示例では2個の多孔質体2
1.22を設置し、各多孔質体21.22に電子銃14
から出射させる電子ビームBを交互に切替えて照射する
ことにより、金属蒸気の蒸発量の低下を抑制し、安定し
た金属蒸気流を得ることができる。
Therefore, in this metal vapor generator 10, a plurality of porous bodies 2, two in the illustrated example, are installed in the evaporating loop 12.
1.22 is installed, and an electron gun 14 is installed in each porous body 21.22.
By alternately switching and irradiating the electron beams B emitted from the base plate, it is possible to suppress a decrease in the amount of evaporation of metal vapor and obtain a stable metal vapor flow.

蒸発用るつぼ12に収納された各多孔質体21゜22に
交互に照射させるためには、外部磁場コイル30へ印加
される電圧を切り換えればよい。その切換速度は、数H
zから数十Hzであり、各多孔質体21.22の1回当
りの照射時間は200p sec以上で、−例として1
0mm5ec程度が考えられる。照射時間が200μs
ec以下では、溶融金属の蒸発に寄与しないためである
In order to alternately irradiate each of the porous bodies 21 and 22 housed in the evaporation crucible 12, the voltage applied to the external magnetic field coil 30 may be switched. The switching speed is several H
z to several tens of Hz, and the irradiation time per time of each porous body 21.22 is 200 p sec or more, - for example, 1
Approximately 0mm5ec is considered. Irradiation time is 200μs
This is because if it is less than ec, it does not contribute to the evaporation of the molten metal.

蒸発用るつぼ12内に2個の多孔質体21,22を収容
した場合、具体的な電子ビームBの照射は、初めに一方
の多孔質体21に例えば3500にの電子ビームBを照
射して溶融金属を加熱、蒸発させる。多孔質体表面から
の金属蒸気の蒸発量が低下したり、または無くなると、
電子ビームBの照射を切り替えて他方の多孔質体22に
照射し、他方の多孔質体表面から溶融金属を加熱、蒸発
させる。この他方の多孔質体22に電子ビームBを照射
している間に、一方の多孔質体21の表面まで再び溶融
金属が含浸してくる。この溶融金属の含浸速度を考慮し
、この含浸後に電子ビームBの照射を一方の多孔質体2
1に切替える切替速度が調節され、以下、この切替えが
繰り返される。
When two porous bodies 21 and 22 are housed in the evaporation crucible 12, specific electron beam B irradiation is performed by first irradiating one of the porous bodies 21 with an electron beam B of, for example, 3500 mm. Heating and vaporizing molten metal. When the amount of evaporation of metal vapor from the surface of the porous material decreases or disappears,
The irradiation of the electron beam B is switched to irradiate the other porous body 22 to heat and evaporate the molten metal from the surface of the other porous body. While the other porous body 22 is being irradiated with the electron beam B, the surface of the one porous body 21 is once again impregnated with molten metal. Considering the impregnation speed of this molten metal, after this impregnation, the electron beam B is irradiated on one of the porous bodies 2.
The switching speed for switching to 1 is adjusted, and this switching is repeated thereafter.

電子ビームBの照射を切り替えて金属蒸気の発生を交互
に行なうことにより、金属蒸気を安定的に発生させるこ
とができ、金属蒸気量の低下を防止することができる。
By alternately generating metal vapor by switching the irradiation of the electron beam B, metal vapor can be stably generated and a decrease in the amount of metal vapor can be prevented.

第5図は本発明の金属蒸気発生装置に用いられる蒸発用
るつぼの他の変形例を示す。この蒸発用るつぼ12Aは
収納凹部20内に収容される2個(複数個)の多孔質体
31.32の頂部に半円弧状の丸みを持たせ、電子ビー
ムBの照射時に、多孔質体31.32の構成材料が万一
溶融しても、溶融した構成材料の液を電子ビームBでた
たいて取り除き、流下させ、多孔質体31.32の表面
にたまるのを防止したものである。このために、多孔質
体31.32は頂部表面から下方に向って下り傾斜する
形状であればよく、円弧状の丸みに限定されない。
FIG. 5 shows another modification of the evaporation crucible used in the metal vapor generator of the present invention. This evaporation crucible 12A has two (plurality of) porous bodies 31 and 32 accommodated in the housing recess 20, each having a semicircular rounded top, so that when the electron beam B is irradiated, the porous bodies 31 and 32 Even if the constituent materials 31 and 32 should melt, the liquid of the melted constituent materials is removed by being struck with an electron beam B and allowed to flow down to prevent it from accumulating on the surface of the porous bodies 31 and 32. For this purpose, the porous bodies 31, 32 may have any shape that slopes downward from the top surface, and are not limited to an arcuate roundness.

第6図は本発明の金属蒸気発生装置の第2実施例を示す
ものである。
FIG. 6 shows a second embodiment of the metal vapor generator of the present invention.

この実施例に示された金属蒸気発生装置10Aは図示し
ない真空容器内に蒸発用るつぼ35,36を2台(複数
台でもよい。)近接状態に並設し、各蒸発用るつぼ35
.36内に1つの多孔質体37.38をそれぞれ収容し
、電子ビーム発生装置としての電子銃39から射出され
る電子ビームBを各蒸発用るつぼ35.36の多孔質体
37.38に交互に切替え照射させたものである。
The metal vapor generator 10A shown in this embodiment has two (or more than one) evaporation crucibles 35 and 36 arranged in close proximity in a vacuum container (not shown), and each evaporation crucible 35
.. One porous body 37, 38 is housed in each of the evaporation crucibles 35, 36, and the electron beam B emitted from the electron gun 39 as an electron beam generator is alternately applied to the porous body 37, 38 of each evaporation crucible 35, 36. This is the result of switching irradiation.

また、金属蒸気発生装置は第7図に示すように構成して
もよい。この金属蒸気発生装置10Bにおいては、2台
(複数台でもよい。)の蒸発用るつぼ35.36内に多
孔質体37.38を1個ずつそれぞれ収容するとともに
、各多孔質体37゜38に、各々対応する電子銃40.
41を使用したものである。この場合、電子銃40.4
1への通電を切換え、各電子銃40.41から電子ビー
ムB、  Bを交互に照射させ、対応する蒸発用るつぼ
35.36の多孔質体37.38に照射するようにした
ものである。
Further, the metal vapor generator may be configured as shown in FIG. In this metal vapor generator 10B, one porous body 37, 38 is housed in each of two (or more than one) evaporation crucibles 35, 36, and each porous body 37, 38 is , each corresponding electron gun 40.
41 was used. In this case, the electron gun 40.4
1, the electron beams B and B are alternately irradiated from each electron gun 40.41 onto the porous body 37.38 of the corresponding evaporation crucible 35.36.

なお、本発明の実施例では、電子ビーム発生装置として
の電子銃から射出される電子ビームを偏向磁場により1
80度偏向させて照射する例を示したが、この電子銃4
4から射出される電子ビームBを偏向磁場により、18
0度以上例えば第8図に示すように270度偏向させて
照射させてもよい。電子ビームBを例えば270度偏向
させて照射することにより、電子銃44は蒸発する金属
蒸気の影響を受けに<<、信頼性が向上し、メンテナン
スフリーとすることができる。
In the embodiment of the present invention, an electron beam emitted from an electron gun as an electron beam generator is deflected by a deflecting magnetic field.
An example of irradiation with an 80 degree deflection was shown, but this electron gun 4
The electron beam B emitted from 4 is deflected by a deflecting magnetic field,
The beam may be irradiated with a deflection of 0 degrees or more, for example, 270 degrees as shown in FIG. By irradiating the electron beam B with a deflection of, for example, 270 degrees, the electron gun 44 is not affected by the evaporating metal vapor, and its reliability is improved and it can be made maintenance-free.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明に係る金属蒸気発生装置にお
いては、蒸発用るつぼ内に溶融金属を含浸させる多孔質
体を複数個設置し、電子ビーム発生装置から射出される
電子ビームを各多孔質体に交互に照射させたから、各多
孔質体から金属蒸気の発生を交互に行なって金属蒸気発
生量を安定的に確保でき、金属原料の蒸発効率を向上さ
せることができる。
As described above, in the metal vapor generator according to the present invention, a plurality of porous bodies impregnated with molten metal are installed in the evaporation crucible, and the electron beam emitted from the electron beam generator is directed through each porous body. Since the body is irradiated alternately, metal vapor is generated alternately from each porous body, so that the amount of metal vapor generated can be stably ensured, and the evaporation efficiency of the metal raw material can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る金属蒸気発生装置を同位体分離装
置に適用した一実施例を示す断面図、第2図は第1図の
同位体分離装置を真空容器を取り除いて示す斜視図、第
3図は本発明に係る金属蒸黒発生装置を原理的に示す図
、第4図は、上記金属蒸気発生装置に用いられる蒸発用
るつぼの第1変形例を示す図、第5図は蒸発用るつぼの
第2変形例を示す図、第6図は本発明の金属蒸気発生装
置の第2実施例を示す原理図、第7図は本発明の金属蒸
気発生装置の第3実施例を示す原理図、第8図は、金属
蒸気発生装置に備えられる電子ビーム発生装置の変形例
を示す図である。 10、IOA、IOB・・・金属蒸気発生装置、11・
・・真空容器、12.12A、35.36・・・蒸発用
るつぼ、13・・・金属原料、14,39,40゜41
.44・・・電子銃(電子ビーム発生装置)、15・・
・レーザ装置、16・・・選択励起レーザ光、17・・
・電極、18・・・捕集回収板、20・・・収納凹部、
21.22.31,32.37.38・・・多孔質体。
FIG. 1 is a sectional view showing an embodiment in which the metal vapor generator according to the present invention is applied to an isotope separation device, and FIG. 2 is a perspective view showing the isotope separation device of FIG. 1 with the vacuum container removed. FIG. 3 is a diagram showing the principle of the metal vapor generator according to the present invention, FIG. 4 is a diagram showing a first modification of the evaporation crucible used in the metal vapor generator, and FIG. 5 is an evaporation crucible. FIG. 6 is a diagram showing the principle of the second embodiment of the metal vapor generator of the present invention, and FIG. 7 is a diagram showing the third embodiment of the metal vapor generator of the present invention. The principle diagram, FIG. 8, is a diagram showing a modification of the electron beam generator provided in the metal vapor generator. 10, IOA, IOB...metal vapor generator, 11.
...Vacuum container, 12.12A, 35.36...Evaporation crucible, 13...Metal raw material, 14,39,40゜41
.. 44...electron gun (electron beam generator), 15...
・Laser device, 16...Selective excitation laser beam, 17...
・Electrode, 18... Collection and recovery plate, 20... Storage recess,
21.22.31, 32.37.38...Porous body.

Claims (1)

【特許請求の範囲】 1、金属原料を収容した蒸発用るつぼと、上記金属原料
を加熱・蒸発させる電子ビームを出射させる電子ビーム
発生装置とを真空容器内に収容した金属蒸気発生装置に
おいて、前記蒸発用るつぼ内に溶融金属を含浸させる多
孔質体を複数個設置し、電子ビーム発生装置から射出さ
れる電子ビームを上記多孔質体に交互に照射させたこと
を特徴とする金属蒸気発生装置。 2、多孔質体は、1台の蒸発用るつぼ内に2個が間隔を
おいて一体あるいは一体的に並設され、上記各多孔質体
に電子ビーム発生装置からの電子ビームを交互に照射さ
せた請求項1記載の金属蒸気発生装置。 3、蒸発用るつぼは真空容器内に複数台が近接して収容
され、上記各蒸発用るつぼ内に多孔質体がそれぞれ収容
された請求項1記載の金属蒸気発生装置。
[Scope of Claims] 1. A metal vapor generation device in which an evaporation crucible containing a metal raw material and an electron beam generator for emitting an electron beam for heating and evaporating the metal raw material are housed in a vacuum container, A metal vapor generator characterized in that a plurality of porous bodies impregnated with molten metal are installed in an evaporation crucible, and the porous bodies are alternately irradiated with electron beams emitted from an electron beam generator. 2. Two porous bodies are placed in one evaporation crucible integrally or in parallel at intervals, and each of the porous bodies is alternately irradiated with an electron beam from an electron beam generator. The metal vapor generator according to claim 1. 3. The metal vapor generating device according to claim 1, wherein a plurality of evaporation crucibles are housed in close proximity to each other in a vacuum container, and a porous body is housed in each of the evaporation crucibles.
JP1223227A 1989-08-31 1989-08-31 Metal vapor generator Pending JPH0386215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223227A JPH0386215A (en) 1989-08-31 1989-08-31 Metal vapor generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223227A JPH0386215A (en) 1989-08-31 1989-08-31 Metal vapor generator

Publications (1)

Publication Number Publication Date
JPH0386215A true JPH0386215A (en) 1991-04-11

Family

ID=16794787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223227A Pending JPH0386215A (en) 1989-08-31 1989-08-31 Metal vapor generator

Country Status (1)

Country Link
JP (1) JPH0386215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175311A (en) * 2007-01-19 2008-07-31 Jtekt Corp Retainer for rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175311A (en) * 2007-01-19 2008-07-31 Jtekt Corp Retainer for rolling bearing

Similar Documents

Publication Publication Date Title
CA1049160A (en) Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient
JPH0747235A (en) Isotope separator
JPS6254005A (en) Production of hyperfine particles
JPH0386215A (en) Metal vapor generator
US4035574A (en) Mixed phase evaporation source
US3996469A (en) Floating convection barrier for evaporation source
JPH0386216A (en) Metal vapor generator
US4262160A (en) Evaporator feed
JP3285150B2 (en) How to form a cluster
JPH0372917A (en) Metal vapor generator
JP2557886B2 (en) Isotope separation device
JPH03123626A (en) Driving method of metal vapor generating apparatus
JPS5842149A (en) Cesium ion source
JPH0546243B2 (en)
JPS6197024A (en) Uranium enriching device by laser method
US2821632A (en) Apparatus for producing ions of vaporizable materials
JP2672152B2 (en) Method and apparatus for producing metal vapor
Siefken et al. Direct production of H− from LiH
JPH0889762A (en) Separation of isotope and separator therefor
JPS63178832A (en) Isotope separation device
Ohba et al. Production of stable atomic beam in electron beam evaporation process
JP2960206B2 (en) Isotope separation method and apparatus
JPH03262519A (en) Method for heating metal raw material for isotope separator
JPS63158120A (en) Isotope separation and its device
JPS6312342A (en) Vapor generating vessel