JPH0372917A - Metal vapor generator - Google Patents

Metal vapor generator

Info

Publication number
JPH0372917A
JPH0372917A JP20797789A JP20797789A JPH0372917A JP H0372917 A JPH0372917 A JP H0372917A JP 20797789 A JP20797789 A JP 20797789A JP 20797789 A JP20797789 A JP 20797789A JP H0372917 A JPH0372917 A JP H0372917A
Authority
JP
Japan
Prior art keywords
raw material
metal
metal raw
convection
convection prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20797789A
Other languages
Japanese (ja)
Inventor
Yorio Tsunoda
角田 順男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20797789A priority Critical patent/JPH0372917A/en
Publication of JPH0372917A publication Critical patent/JPH0372917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To enhance the evaporation efficiency of a metal raw material by arranging a plurality of convection preventing plates to the receiving recessed part of a evaporation crucible in parallel at a required interval, and forming each of the convection preventing plates from a heating body for heating the metal raw material in order to separate an isotope in the receiving recessed part. CONSTITUTION:A plurality of convection preventing plates 16 are arranged in the receiving recessed part 14 of an evaporation crucible 13 in parallel at a required interval and formed from heating bodies for heating the metal raw material 15 for separating an isotope in the receiving recessed part 14 and the metal raw material is heated, melted and evaporated by the beating bodies. As a result, the generation of a convection in the evaporation crucible is effectively suppressed and the evaporation efficiency of the metal raw material is enhanced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は同位体分離装置に適用される金属蒸気発生装置
に係り、特に金属原料を効率よく蒸発させる金属蒸気発
生装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a metal vapor generator applied to an isotope separation device, and particularly relates to a metal vapor generator that efficiently evaporates metal raw materials. .

(従来の技術) レーザビームを使用した金属原子の同位体分離装置は、
従来のガス拡散法や遠心分離法による同位体分離装置と
比較して同位体の分離効率が非常に高く、優れている。
(Prior technology) Isotope separation equipment for metal atoms using a laser beam is
Compared to conventional isotope separation devices using gas diffusion methods or centrifugation methods, the isotope separation efficiency is extremely high and superior.

このため、原子レーザ法を採用した同位体分離装置は、
特定の同位体を所定濃度レベルに達するまで同一の分離
工程を多段にカスケード方式によって繰り返す必要がな
く、分離装置全体が小型でコンパクト化され、経済性に
優れている。
For this reason, isotope separation equipment that uses the atomic laser method is
There is no need to repeat the same separation process in multiple stages in a cascade system until a specific isotope reaches a predetermined concentration level, and the entire separation device is compact and economical.

従来のレーザ法による金属原子の同位体分離装置は、第
5図に概念的に示すように構成され、真空容器1内に蒸
気封入容器2を収容しており、この蒸気封入容器2の下
方に熱化学的耐性を有する蒸発用るつぼ3が設置される
。蒸発用るつぼ3は上方に開口した収納凹部内に同位体
分離される金属原料4が収容される。
A conventional isotope separation apparatus for metal atoms using a laser method is constructed as conceptually shown in FIG. A thermochemically resistant evaporation crucible 3 is installed. In the evaporation crucible 3, a metal raw material 4 to be isotopically separated is accommodated in an upwardly opened storage recess.

蒸発用るつぼ3内には電子銃5から発射された電子ビー
ムaが偏向磁場6により偏向されて照射され、この電子
ビームaの照射により金属原料4は、例えば3000に
の高温に加熱され、溶融されて蒸発せしめられ、金属蒸
気流すを発生させる。
An electron beam a emitted from an electron gun 5 is deflected by a deflecting magnetic field 6 and is irradiated into the evaporation crucible 3. By irradiating the electron beam a, the metal raw material 4 is heated to a high temperature of, for example, 3,000 ℃, and is melted. The metal is then evaporated, producing a metal vapor stream.

この金属蒸気流すは蒸気封入容器2内を上昇し、この上
昇する金属蒸気流すに選択励起レーザ光Cが照射される
。このレーザ光照射により金属蒸気流すは回収を特徴と
する特定の同位体金属原子(金属蒸気)dが選択的に励
起され、イオン化(電離)される。イオン化された同位
体dは、陽電極7aと陰電極7bとが交互に配設された
電極間を通過する際に、イオン化同位体dのみが電圧印
加の回収板である陰電極表面に引き寄せられて吸着され
、回収される。
This metal vapor stream rises inside the vapor enclosure container 2, and the selective excitation laser beam C is irradiated onto this rising metal vapor stream. By this laser light irradiation, specific isotope metal atoms (metal vapor) d, which are characterized by recovery, are selectively excited and ionized (ionized). When the ionized isotope d passes between the positive electrodes 7a and the negative electrodes 7b, which are arranged alternately, only the ionized isotope d is attracted to the surface of the negative electrode, which is a collection plate for voltage application. It is adsorbed and recovered.

一方、イオン化されない同位体金属原子(金属蒸気)は
中性原子として電極間の電界の影響を受けずに、電極間
を素通りし、電極の2次側に配置された中性原子捕集用
回収板8に吸引され、回収される。
On the other hand, isotope metal atoms (metal vapor) that are not ionized pass through between the electrodes without being affected by the electric field between the electrodes as neutral atoms, and are recovered by a neutral atom collection device placed on the secondary side of the electrodes. It is sucked into the plate 8 and collected.

(発明が解決しようとする課題) 従来の同位体分離装置に備えられる金属蒸気発生装置に
おいては、電子銃5から出射された電子ビームaが金属
原料4に照射され、この金属原料4を例えば3000K
に高温加熱し、溶融させる。このとき、金属原料4は加
熱・溶融を受けて蒸発用るつぼ3表面より蒸気流すを発
生させつつ、るつぼ内部では溶融された液状金属の対流
が、第6図に符号eで示すように生じる。
(Problems to be Solved by the Invention) In a metal vapor generator included in a conventional isotope separation apparatus, an electron beam a emitted from an electron gun 5 is irradiated onto a metal raw material 4, and the metal raw material 4 is heated to a temperature of, for example, 3000K.
Heat to high temperature and melt. At this time, the metal raw material 4 is heated and melted to generate vapor flow from the surface of the evaporation crucible 3, and convection of the molten liquid metal occurs inside the crucible as shown by the symbol e in FIG. 6.

蒸発用るつぼ3内に生じる液状金属4の対流は、基本的
にはるつぼ横断面の中心線を境に左右それぞれループ状
をなしており、第6図の右サイドに着目すると、金属原
料4の溶融金屑の対流eは、中心部で加熱されて上昇し
、表面では蒸発用るつぼ3の側壁の方向に流れ、るつぼ
側壁にて冷却されて下降し、蒸発用るつぼ3の底面部を
通って再び中心部に案内される。
The convection of the liquid metal 4 occurring in the evaporation crucible 3 basically forms a loop on each side with the center line of the cross section of the crucible as the border, and if we focus on the right side of FIG. The convection e of the molten gold chips is heated at the center and rises, flows toward the side wall of the evaporation crucible 3 at the surface, is cooled at the crucible side wall, descends, and passes through the bottom of the evaporation crucible 3. You will be guided back to the center.

蒸発用るつぼ3から蒸発される金属蒸気流すを大きくす
るためには、金属原料4を高温加熱させる必要がある。
In order to increase the flow of metal vapor evaporated from the evaporation crucible 3, it is necessary to heat the metal raw material 4 to a high temperature.

一方、蒸発用るつぼ3はるつぼ材を冷却する必要がある
ため、金属原料4を高温加熱しても、るつぼ側壁面特に
るつぼ横断面の側壁面で冷却せざるを得ず、この冷却が
エネルギ効率、ひいては金属原料の蒸発効率を悪化させ
るおそれがあった。
On the other hand, since the crucible material in the evaporation crucible 3 needs to be cooled, even if the metal raw material 4 is heated to a high temperature, it must be cooled on the side wall surface of the crucible, especially on the side wall surface of the cross section of the crucible, and this cooling is energy efficient. In addition, there was a fear that the evaporation efficiency of the metal raw material would be deteriorated.

金属原料の蒸発効率は、蒸発用るつぼ内に対流が発生す
る場合と、無い場合とでは例えば10倍程度の大きな開
きがあり、対流発生が金属原料の蒸発効率を悪化させる
原因となっていた。
There is a large difference in the evaporation efficiency of the metal raw material, for example, about 10 times, between when convection is generated in the evaporation crucible and when it is not, and the generation of convection has been a cause of deteriorating the evaporation efficiency of the metal raw material.

本発明は、上述した事情を考慮してなされたもので、蒸
発用るつぼ内で対流が発生するのを有効的に抑制し、金
属原料の蒸発効率を向上させた金属蒸気発生装置を提供
することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and an object of the present invention is to provide a metal vapor generating device that effectively suppresses the generation of convection within an evaporation crucible and improves the evaporation efficiency of metal raw materials. With the goal.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る金属蒸気発生装置は、上述した従来技術が
有する課題を解決するために、蒸発用るつぼの収納凹部
内に同位体分離用金属原料を収容した金属蒸気発生装置
において、前記蒸発用るつぼの収納凹部に対流防止板を
複数枚所要間隔をおいて並設し、上記対流防止板は金属
原料を加熱する発熱体として形成され、この発熱体で金
属原料を加熱・溶融し、蒸発させたものである。
(Means for Solving the Problems) In order to solve the problems of the prior art described above, the metal vapor generator according to the present invention provides a metal vapor generator in which a metal raw material for isotope separation is accommodated in a storage recess of an evaporation crucible. In the steam generator, a plurality of convection prevention plates are arranged in parallel at required intervals in the storage recess of the evaporation crucible, the convection prevention plates are formed as heating elements that heat the metal raw materials, and the heating elements heat the metal raw materials. It is heated, melted, and evaporated.

また、上述した課題を解決するために、本発明に係る金
属蒸気発生装置は、対流防止板が蒸発用るつぼの収納凹
部を多層構造に仕切るとともに、上記対流防止板の頂部
に切欠きが形成され、この切欠き形成位置が隣接する対
流防止板同士で整列しないように形成したものであり、
さらにまた、対流防止板は、多孔質タングステン材等の
多孔質材料で形成したものである。
Further, in order to solve the above-mentioned problems, the metal vapor generator according to the present invention has a convection prevention plate that partitions the storage recess of the evaporation crucible into a multilayer structure, and a notch is formed at the top of the convection prevention plate. , the notch formation positions are formed so that adjacent convection prevention plates are not aligned with each other,
Furthermore, the convection prevention plate is formed of a porous material such as porous tungsten material.

(作用) この金属蒸気発生装置は、蒸発用るつぼの収納凹部に対
流防止板を複数枚並設して内部を多層構造に仕切る一方
、上記対流防止板は金属原料を加熱する発熱体として構
成したので、蒸発用るつぼの収納凹部に収納される金属
原料は発熱体で有効的に加熱・溶融され、対流防止板で
対流が防止されるので、蒸発用るつぼから効率よく蒸発
せしめられ、金属原料の蒸発効率を向上させることがで
きる。
(Function) This metal vapor generator has a plurality of convection prevention plates placed side by side in the storage recess of the evaporation crucible to partition the interior into a multilayer structure, and the convection prevention plates are configured as a heating element to heat the metal raw material. Therefore, the metal raw material stored in the storage recess of the evaporation crucible is effectively heated and melted by the heating element, and convection is prevented by the convection prevention plate, so that the metal raw material is efficiently evaporated from the evaporation crucible. Evaporation efficiency can be improved.

(実施例) 本発明に係る金属蒸気発生装置の一実施例について添付
図面を参照して説明する。
(Example) An example of a metal vapor generator according to the present invention will be described with reference to the accompanying drawings.

第1図は本発明の同位体分離装置10に適用した例を示
す。この同位体分離装置10は真空容器11内に蒸気封
入容器12を収容しており、この蒸気封入容器12の下
方に蒸発用るつぼ13が設置される。蒸発用るつぼ13
は上方に開口する収納凹部14を有し、この収納凹部1
4内に同位体金属である金属原料15が収容される。
FIG. 1 shows an example in which the present invention is applied to an isotope separation apparatus 10. This isotope separation apparatus 10 houses a steam enclosure 12 within a vacuum vessel 11, and an evaporation crucible 13 is installed below this vapor enclosure 12. Evaporation crucible 13
has a storage recess 14 that opens upward, and this storage recess 1
A metal raw material 15, which is an isotope metal, is housed in the chamber 4.

蒸発用るつぼ13の収納凹部14には、第2図および第
3図に示すように、複数枚の対流防止板16が所要間隔
、例えば5rnm程度の間隔をおいて長手方向を向くよ
うに並設され、この対流防止板16で収納四部14内を
多層構造に仕切っている。
In the storage recess 14 of the evaporation crucible 13, as shown in FIGS. 2 and 3, a plurality of convection prevention plates 16 are arranged side by side with required intervals, for example, about 5 nm, so as to face the longitudinal direction. The inside of the four storage parts 14 is partitioned into a multilayer structure by the convection prevention plate 16.

対流防止板16は通常タングステンや多孔質タングステ
ン等のように耐熱性に優れた矩形板からなり、蒸発用る
つぼ13の収納凹部14にビスやコイル等の固定保持手
段で保持される。各対流防止板16の間隔は、図示しな
い間隔保持スペーサ等により保持される。
The convection prevention plate 16 is usually made of a rectangular plate with excellent heat resistance such as tungsten or porous tungsten, and is held in the storage recess 14 of the evaporation crucible 13 by fixed holding means such as screws or coils. The distance between each convection prevention plate 16 is maintained by a distance maintaining spacer (not shown) or the like.

また、対流防止板16は両端から引き出されたリード線
17を介して図示しない電源に接続され、その通電によ
り発熱体として構成される。対流防止板16の発熱によ
り、同位体金属である金属原料15は加熱・溶融され、
蒸発せしめられる。
Further, the convection prevention plate 16 is connected to a power source (not shown) via lead wires 17 drawn out from both ends, and is configured as a heating element by being energized. Due to the heat generated by the convection prevention plate 16, the metal raw material 15, which is an isotope metal, is heated and melted.
evaporated.

金属原料15の加熱・溶融・蒸発により発生した金属蒸
気流Aは、蒸気封入容器12内に案内されて上昇する。
A metal vapor flow A generated by heating, melting, and evaporating the metal raw material 15 is guided into the vapor enclosure container 12 and rises.

上昇する金属蒸気流に図示しないレーザ装置から選択励
起レーザ光20が照射される。このレーザ光20は分離
しようとする特定同位体の金属原子(金属蒸気)を選択
的に励起させるために、特定同位体の共鳴吸収線に相当
する周波数のレーザ光である。選択励起励起レーザ光2
0の照射を受けた特定同位体はイオン化され、正電荷を
有するイオン化同位体21となる。このイオン化同位体
21は陽電極22と陰電極23とを交互に配置した電極
間の電界空間を通過する際に、陰電極側に引き寄せられ
て吸着され、陰電極表面に回収される。
A selective excitation laser beam 20 is irradiated onto the rising metal vapor flow from a laser device (not shown). This laser beam 20 has a frequency corresponding to the resonance absorption line of the specific isotope in order to selectively excite the metal atoms (metal vapor) of the specific isotope to be separated. Selective excitation excitation laser beam 2
The specific isotope irradiated with zero is ionized and becomes an ionized isotope 21 having a positive charge. When this ionized isotope 21 passes through the electric field space between the positive electrodes 22 and negative electrodes 23 arranged alternately, it is attracted to the negative electrode side, adsorbed, and collected on the surface of the negative electrode.

一方、イオン化されない同位体の金属原子(金属蒸気)
は、電界の影響を受けないために電極間を素通りし、電
極の二次側に配設した中性原子捕集用回収板25に捕集
され、回収される。
On the other hand, isotopic metal atoms that are not ionized (metal vapor)
Since they are not affected by the electric field, they pass between the electrodes and are collected and collected by the collection plate 25 for collecting neutral atoms disposed on the secondary side of the electrodes.

ところで、蒸発用るつぼ(3の収納凹部14に配設され
る対流防止板16の頂部は適宜間隔をおいて、第4図(
A)および(B)に示すように切欠き26.27が形成
される。この切欠き26゜27の形成位置は隣接する対
流防止板i6.16同士が相互に整列されないように形
成される。この切欠き26.27は液化した金属原料(
5の補給路として機能する。
By the way, the top of the convection prevention plate 16 disposed in the storage recess 14 of the evaporation crucible (3) is spaced appropriately, as shown in FIG.
Cutouts 26,27 are formed as shown in A) and (B). The positions of the notches 26 and 27 are formed so that adjacent convection prevention plates i6 and 16 are not aligned with each other. These notches 26 and 27 are the liquefied metal raw material (
5 functions as a supply route.

次に、金属蒸気発生装置の作用を説明する。Next, the operation of the metal vapor generator will be explained.

蒸発用るつぼ13の収納凹部14に並設された対流防止
板16に通電し、対流防止板16をジュール熱により発
熱させる。この対流防止板16のジュール熱により金属
原料15が加熱され、溶融される。このようにして、金
属原料15は収納凹部14内で加熱・溶融され、蒸発せ
しめられる。
Electricity is applied to the convection prevention plate 16 arranged in parallel to the storage recess 14 of the evaporation crucible 13, and the convection prevention plate 16 is caused to generate heat by Joule heat. The metal raw material 15 is heated and melted by the Joule heat of the convection prevention plate 16. In this way, the metal raw material 15 is heated and melted within the storage recess 14 and evaporated.

その際、対流防止板16に多孔質のタングステン材を使
用し、金属原料としてウランを用いた場合を考慮する。
At this time, a case is considered in which a porous tungsten material is used for the convection prevention plate 16 and uranium is used as the metal raw material.

タングステンの融点は3683K。The melting point of tungsten is 3683K.

ウランの融点は1405にであるので、対流防止板16
の通電により金属原料15を例えば3000Kまで加熱
すると、対流防止板16は固体形状に維持され、金属原
料15は溶融して液体状態に保たれ、金属原料15の液
表面から3000Kに対応する温度の金属蒸気が蒸発せ
しめられる。
Since the melting point of uranium is 1405, the convection prevention plate 16
When the metal raw material 15 is heated to, for example, 3000K by applying current, the convection prevention plate 16 is maintained in a solid state, the metal raw material 15 is melted and kept in a liquid state, and a temperature corresponding to 3000K is released from the liquid surface of the metal raw material 15. The metal vapor is evaporated.

その際、対流防止板16は蒸発用るつぼ13の収納凹部
t4内に短手方向の横断面を遮るように小間隔を有して
密に配置されるので、収納凹部14内で溶融された金属
原料15の液面は、対流防止板16の表面摩擦等により
対流が防止され、対流による熱損失が少なくなり、エネ
ルギ効率が大幅に改善される。第2図は、対流防止板1
6の全てに通電する例を示したが、中央部の複数枚の対
流防止板(6だけに通電させるようにしてもよい。
At this time, since the convection prevention plates 16 are closely arranged at small intervals in the storage recess t4 of the evaporation crucible 13 so as to block the cross section in the transverse direction, the molten metal in the storage recess 14 is Convection is prevented on the liquid level of the raw material 15 by the surface friction of the convection prevention plate 16, and heat loss due to convection is reduced, resulting in a significant improvement in energy efficiency. Figure 2 shows the convection prevention plate 1.
Although an example has been shown in which all of the convection prevention plates 6 are energized, it is also possible to energize only the plurality of convection prevention plates (6) in the center.

また、対流防止板16を多孔質タングステン材で形成し
た場合、蒸発用るっぽ13の収納凹部14に複数枚の対
流防止板16を配置しても、この対流防止板16の多孔
質内に金属原料15の溶融金属を拡散させて浸透させる
ことができ、蒸発用るつぼ13の実質的な蒸発面積を大
きくとることができる。したがって、金属原料15の蒸
発効率を高めることができる。また、拡散により対流防
止板16の多孔質に浸透した溶融金属は、蒸発用るつぼ
13の側壁に接触することがなく、この側壁にて冷却さ
れないので、蒸発効率が向上する。
In addition, when the convection prevention plate 16 is formed of a porous tungsten material, even if a plurality of convection prevention plates 16 are placed in the storage recess 14 of the evaporation ruppo 13, the convection prevention plate 16 is made of a porous material. The molten metal of the metal raw material 15 can be diffused and permeated, and the substantial evaporation area of the evaporation crucible 13 can be increased. Therefore, the evaporation efficiency of the metal raw material 15 can be increased. Furthermore, the molten metal that has penetrated into the porosity of the convection prevention plate 16 due to diffusion does not come into contact with the side wall of the evaporation crucible 13 and is not cooled by this side wall, thereby improving the evaporation efficiency.

さらに、対流防止板16の頂部に補給路を形成する切欠
き26.27を形成したので、金属原料15の補給に場
所的な制約を受けない。
Furthermore, since the notches 26 and 27 forming supply paths are formed at the top of the convection prevention plate 16, the supply of the metal raw material 15 is not subject to any spatial restrictions.

しかして、蒸発用るつぼ13内に収納凹部14の長平方
向に対流防止板16を配置することで、短手方向の横断
面を遮断することができ、金属原料15の溶融金属の対
流を積極的に防止し、金属原料上5の蒸発効率を著しく
向上させることができる。
By arranging the convection prevention plate 16 in the longitudinal direction of the storage recess 14 in the evaporation crucible 13, it is possible to block the transverse cross section in the transverse direction, thereby actively preventing the convection of the molten metal of the metal raw material 15. This can significantly improve the evaporation efficiency of the metal raw material 5.

また、蒸発用るつぼ13に収容された金属原料15は、
通電による電気ジュール熱によって加熱させることがで
きるので、電子銃や電子銃からの電子ビームを偏向させ
る偏向磁場が不要となり、コスト面で有利となる。
Moreover, the metal raw material 15 accommodated in the evaporation crucible 13 is
Since heating can be performed using electric Joule heat generated by energization, there is no need for an electron gun or a deflection magnetic field for deflecting the electron beam from the electron gun, which is advantageous in terms of cost.

なお、本発明の一実施例では、蒸発用るつぼ内に配設さ
れる対流防止板にて金属原料で加熱・溶融・蒸発させる
例を示したが、金属原料の加熱・溶融・蒸発は従来の電
子銃から発射される電子ビームによって行なってもよく
、また、この電子ビームによる加熱を、対流防止板によ
る電気的ジュール加熱と併用させてもよい。
In one embodiment of the present invention, an example was shown in which the metal raw material is heated, melted, and evaporated using a convection prevention plate disposed in the evaporation crucible. Heating may be performed by an electron beam emitted from an electron gun, or heating by the electron beam may be combined with electric Joule heating by a convection prevention plate.

〔発明の効果〕〔Effect of the invention〕

以上に述べたよう、本発明に係る金属蒸気発生装置にお
いては、蒸発用るつぼの収納凹部内に対流防止板を複数
枚並設し、この対流防止板で発熱体を構成し、金属原料
をジュール熱により加熱・溶融し、蒸発させたから、蒸
発用るつぼ内で溶融金属による対流の発生を防止でき、
金属原料の蒸発効率を大幅に向上させることができる。
As described above, in the metal vapor generator according to the present invention, a plurality of convection prevention plates are arranged in parallel in the storage recess of the evaporation crucible, the convection prevention plates constitute a heating element, and the metal raw material is heated in joules. Because it is heated, melted, and evaporated by heat, it is possible to prevent the generation of convection by the molten metal in the evaporation crucible.
The evaporation efficiency of metal raw materials can be significantly improved.

また、蒸発用るつぼの収納四部を多層構造に仕切る対流
防止板の頂部に切欠きを形成した場合には、この切欠き
を介して所望位置から金属原料の補給が可能となる一方
、対流防止板を多孔質材で形成した場合には金属原料の
溶融金属が多孔質内に浸透して拡散され、蒸発用るつぼ
の蒸発面積を大きくとることができるので、蒸発効率を
向上させることができる。
In addition, if a notch is formed at the top of the convection prevention plate that partitions the four compartments of the evaporation crucible into a multilayered structure, metal raw materials can be replenished from a desired position through this notch, while the convection prevention plate When the material is made of a porous material, the molten metal of the metal raw material permeates and diffuses into the porous material, and the evaporation area of the evaporation crucible can be increased, so that the evaporation efficiency can be improved.

図、第6図は従来の金属蒸気発生装置の蒸発用るつぼ内
に生じる溶融金属の対流現象を説明する図である。
6 are diagrams for explaining the convection phenomenon of molten metal occurring in the evaporation crucible of a conventional metal vapor generator.

10・・・同位体分離装置、11・・・真空容器、12
・・・蒸気封入容器、13・・・蒸発用るつぼ、14・
・・収納凹部、15・・・金属原料、16・・・対流防
止板、17・・・リード線、26.27・・・切欠き。
10... Isotope separation device, 11... Vacuum container, 12
... Steam enclosure container, 13... Evaporation crucible, 14.
...Storage recess, 15...Metal raw material, 16...Convection prevention plate, 17...Lead wire, 26.27...Notch.

Claims (1)

【特許請求の範囲】 1、蒸発用るつぼの収納凹部内に同位体分離用金属原料
を収容した金属蒸気発生装置において、前記蒸発用るつ
ぼの収納凹部に対流防止板を複数枚所要間隔をおいて並
設し、上記対流防止板は金属原料を加熱する発熱体とし
て形成され、この発熱体で金属原料を加熱・溶融し、蒸
発させたことを特徴とする金属蒸気発生装置。 2、対流防止板は蒸発用るつぼの収納凹部を多層構造に
仕切るとともに、上記対流防止板の頂部に切欠きが形成
され、この切欠き形成位置が隣接する対流防止板同士で
整列しないように形成された請求項1記載の金属蒸気発
生装置。 3、対流防止板は、多孔質タングステン材等の多孔質材
料で形成した請求項1記載の金属蒸気発生装置。
[Scope of Claims] 1. In a metal vapor generator in which a metal raw material for isotope separation is stored in a storage recess of an evaporation crucible, a plurality of convection prevention plates are placed at required intervals in the storage recess of the evaporation crucible. A metal vapor generator characterized in that the convection prevention plates are arranged in parallel and are formed as a heating element that heats the metal raw material, and the metal raw material is heated, melted, and evaporated by the heating element. 2. The convection prevention plate partitions the storage recess of the evaporation crucible into a multilayer structure, and a notch is formed at the top of the convection prevention plate, and the notch formation position is formed so that adjacent convection prevention plates are not aligned with each other. The metal vapor generator according to claim 1. 3. The metal vapor generator according to claim 1, wherein the convection prevention plate is formed of a porous material such as porous tungsten material.
JP20797789A 1989-08-14 1989-08-14 Metal vapor generator Pending JPH0372917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20797789A JPH0372917A (en) 1989-08-14 1989-08-14 Metal vapor generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20797789A JPH0372917A (en) 1989-08-14 1989-08-14 Metal vapor generator

Publications (1)

Publication Number Publication Date
JPH0372917A true JPH0372917A (en) 1991-03-28

Family

ID=16548638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20797789A Pending JPH0372917A (en) 1989-08-14 1989-08-14 Metal vapor generator

Country Status (1)

Country Link
JP (1) JPH0372917A (en)

Similar Documents

Publication Publication Date Title
US3772519A (en) Method of and apparatus for the separation of isotopes
US4302676A (en) Isotope separation
US3939354A (en) Method and apparatus for separation of ions from a plasma
JPH0372917A (en) Metal vapor generator
JPH0546243B2 (en)
JPH0386215A (en) Metal vapor generator
JPH0386216A (en) Metal vapor generator
JP2557886B2 (en) Isotope separation device
JPH0286814A (en) Method and apparatus for separating isotope
Janes Method and apparatus for separation of ions from a plasma
JPH0586248B2 (en)
JPH0368423A (en) Isotope separator
JPH0259024A (en) Isotope separation apparatus
JPS6197021A (en) Uranium enriching device by laser method
JPH0889762A (en) Separation of isotope and separator therefor
JP2637133B2 (en) Isotope separation device
US4159421A (en) Method and apparatus for suppressing electron generation in a vapor source for isotope separation
Levy et al. Method of and apparatus for the separation of isotopes
JPH02191530A (en) Isotope separator
JPH0415010B2 (en)
JPS63158120A (en) Isotope separation and its device
JPS63178832A (en) Isotope separation device
JPS63218239A (en) Device for separating isotope
JPH0546245B2 (en)
JPH03135420A (en) Isotope separation device