JPH0385680A - Manufacture of optimally shaped structure - Google Patents

Manufacture of optimally shaped structure

Info

Publication number
JPH0385680A
JPH0385680A JP1223738A JP22373889A JPH0385680A JP H0385680 A JPH0385680 A JP H0385680A JP 1223738 A JP1223738 A JP 1223738A JP 22373889 A JP22373889 A JP 22373889A JP H0385680 A JPH0385680 A JP H0385680A
Authority
JP
Japan
Prior art keywords
shape
stress
temperature
calculated
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1223738A
Other languages
Japanese (ja)
Inventor
Man Suu Chiyan
チャン マン スー
Hideo Yamamuro
山室 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP1223738A priority Critical patent/JPH0385680A/en
Publication of JPH0385680A publication Critical patent/JPH0385680A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the number of arithmetic circuits and time for determining an optimum shape by converting calculated stress to a temperature, calculating the thermal deformation amount of a construction based on the converted temperature and correcting shape data. CONSTITUTION:Concerning respective elements for which it is assumed to constitute the initially designed construction, the stress is calculated according to a finite element method by an arithmetic unit 2 and a coefficient, which is set in advance with yield stress as a reference, is multiplied to the calculated stress and converted to the temperature by a converter 3. Then, the stress distribution in the internal part of the construction is converted to temperature distribution. The construction is deformed by thermal expansion and thermal shrinkage based on the temperature distribution and concerning the shape after the thermal deformation, the stress distribution is calculated again and converted to the temperature distribution. Then, the shape is successively thermally deformed and finally converged to the objective optimum shape. Based on the data of the final shape, work is executed by an NC working machine 3 and the construction in the objective optimum shape is manufactured. Thus, the number of times for the arithmetic to determine the optimum shape is decreased and the time required for the arithmetic can be shortened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、初期設計された構造物の形状を、有限要素法
により演算される応力もしくは歪エネルギを均一化する
ように修正し、該修正された最適形状に基づき加工する
最適形状構造物の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention corrects the initially designed shape of a structure so as to equalize the stress or strain energy calculated by the finite element method, and The present invention relates to a method for manufacturing a structure with an optimal shape, which is processed based on the optimal shape obtained.

(従来の技術) 構造物を製造する際には、該構造物を最適形状に加工し
なければならない。最適形状とは、該構造物が実際に使
用されている状態で作用する外力による発生応力が、構
造物内部のどの部分においても降伏応力より優生となる
形状である。すなわち、必要とされる強度を最小限の体
積で実現することができる形状である。
(Prior Art) When manufacturing a structure, the structure must be processed into an optimal shape. The optimum shape is a shape in which the stress generated by external forces acting on the structure when it is actually used is more dominant than the yield stress at any part inside the structure. In other words, the shape is such that the required strength can be achieved with a minimum volume.

従来の構造物を製造する際の形状を決定する方法は、対
象となる構造物を単純な梁もしくは平面に置き換え該梁
もしくは平面に作用する応力を演算し、応力の不均一部
分や降伏応力以上の応力が作用する部分が有ると形状を
変更し、該変更された形状に構造物を加工していた。
The conventional method for determining the shape when manufacturing a structure is to replace the target structure with a simple beam or plane, calculate the stress acting on the beam or plane, and calculate the stress that is uneven or exceeds the yield stress. If there is a part on which stress acts, the shape is changed and the structure is processed into the changed shape.

しかしながら、応力を演算する際に実際の形状を単純な
梁もしくは平面に置き換えているため、最適な形状を求
めるためには経験に依存する部分が大きく、また、必ず
しも最適形状が選られるとは限らないという問題があっ
た。
However, since the actual shape is replaced with a simple beam or plane when calculating stress, finding the optimal shape relies heavily on experience, and the optimal shape is not always selected. The problem was that there was no.

そこで上記問題を解決するために、有限要素法すなわち
構造物を微小な有限個の要素から構成されていると仮想
し、該要素の各々について連立条件式を作成し、該連立
条件式を演算する解析方法を用いて、構造物に作用する
応力を求める。そして、該演算された応力を降伏応力径
小値で均一化する方向に構造物を変形させ、該変形後の
形状について再び応力を演算し、順次形状を変形させ目
的とする最適形状に収束させる最適形状構造物の製造方
法が用いられている。
Therefore, in order to solve the above problem, the finite element method is used, in which the structure is assumed to be composed of a finite number of minute elements, a simultaneous conditional expression is created for each of the elements, and the simultaneous conditional expression is calculated. Determine the stress acting on the structure using an analytical method. Then, the structure is deformed in a direction that makes the calculated stress uniform with a small value of the yield stress diameter, the stress is calculated again for the shape after the deformation, and the shape is sequentially deformed to converge to the desired optimal shape. A method of manufacturing an optimally shaped structure is used.

(発明が解決しようとする課題) このような従来の最適形状構造物の製造方法においては
、各要素について演算される応力は3個の主応力、すな
わちUl、02、σ3であり、該σ1、σ2、σ3から
演算される降伏応力以下になる方向に形状を変更しなけ
ればならない。該降伏応力を定義する説は数種あるが、
例えば、八面体剪断応力説によると、 τ。=堝[(02−0g)2+(Ois−01)2+(
01−02) 2 ] 1/2 であり、形状歪エネルギ説によると、 Ul o =1/12G [(σ2−03) 2+(σ
3−01)2+(σ1−02)2コ=374G・τ。
(Problem to be Solved by the Invention) In such a conventional method for manufacturing an optimally shaped structure, the stresses calculated for each element are three principal stresses, that is, Ul, 02, and σ3; The shape must be changed so that the yield stress is less than or equal to the yield stress calculated from σ2 and σ3. There are several theories that define the yield stress.
For example, according to the octahedral shear stress theory, τ. = 堝[(02-0g)2+(Ois-01)2+(
01-02) 2 ] 1/2, and according to the shape distortion energy theory, Ulo = 1/12G [(σ2-03) 2+(σ
3-01)2+(σ1-02)2=374G·τ.

である。It is.

よって、要素形状をどのように変形させるかについては
、上記O工、Q2、σ3の複数個ある組合わせについて
て。もしくはUl、を演算しなければならず、変形後の
形状を決定するためには複数回の演算を行なわなければ
ならない。
Therefore, regarding how to transform the element shape, we will discuss the multiple combinations of the above-mentioned O-work, Q2, and σ3. or Ul, must be calculated, and the calculation must be performed multiple times in order to determine the shape after deformation.

そして、最終的に形状が収束し決定されるまてには、該
演算を繰り返さなυれならないため、演算に要する総時
間が膨大となり、構造物の最適形状を決定するためのコ
ストが高騰するという問題がある。
Since the calculation must be repeated until the shape is finally converged and determined, the total time required for the calculation becomes enormous, and the cost for determining the optimal shape of the structure increases. There is a problem.

本発明は、上記の点に鑑みてなされたもので、構造物の
最適形状を決定するための演算回数を減少させ、該演算
に要する時間を短縮する最適形状構造物の製造方法を提
供しようとするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a method for manufacturing an optimally shaped structure that reduces the number of calculations for determining the optimal shape of a structure and shortens the time required for the calculations. It is something to do.

(課題を解決するための手段) 本発明によれば、初期設計された構造物の形状データを
複数個の要素に仮想分解するステップと、該要素の各々
についての応力を演算するステップと、該演算された応
力に該構造物を構成する材料の降伏応力を基準とする所
定係数を乗算し温度に変換するステップと、該変換され
た温度に基づき構造物の熱変形量を演算し、前記初期設
計された構造物の形状データを修正するステップと、該
修正された形状データを基に構造物を加工するステップ
とを有することを特徴とする最適形状構造物の製造方法
を提供できる。
(Means for Solving the Problems) According to the present invention, the steps of virtually decomposing the shape data of an initially designed structure into a plurality of elements, calculating the stress for each of the elements, and A step of multiplying the calculated stress by a predetermined coefficient based on the yield stress of the material constituting the structure and converting it into temperature, and calculating the amount of thermal deformation of the structure based on the converted temperature, and calculating the amount of thermal deformation of the structure based on the converted temperature. It is possible to provide a method for manufacturing a structure with an optimal shape, which comprises the steps of modifying the shape data of the designed structure and processing the structure based on the modified shape data.

(作用) 本発明の最適形状構造物の製造方法では、初期設計され
た構造物を構成すると仮想した各要素について有限要素
法にて応力を演算し、降伏応力を基準とする予め設定さ
れた係数を該演算された応力に乗算して温度に変換する
。すなわち、高応力が印加されている要素は高温度であ
り、低応力の要素は低温度であるとし、構造物内部の応
力分布を温度分布に変換する。そして、該温度分布に基
づく熱変形すなわち熱膨張及び熱収縮によって構造物を
変形させる。そして、該熱変形後の形状について、再び
、応力分布を演算し温度分布に変換して、順次形状を熱
変形させ最終的に目的とする最適形状に収束させる。そ
して、該最終形状のデータの基づいて加工を行ない目的
とする最適形状の構造物を製造する。
(Function) In the method for manufacturing an optimally shaped structure of the present invention, stress is calculated using the finite element method for each element that is assumed to constitute the initially designed structure, and a preset coefficient based on the yield stress is calculated. is multiplied by the calculated stress to convert it into temperature. That is, it is assumed that elements to which high stress is applied are at high temperature, and elements to which low stress is applied are at low temperature, and the stress distribution inside the structure is converted into a temperature distribution. Then, the structure is deformed by thermal deformation, that is, thermal expansion and thermal contraction based on the temperature distribution. Then, for the shape after the thermal deformation, the stress distribution is again calculated and converted into a temperature distribution, and the shape is sequentially thermally deformed to finally converge to the desired optimal shape. Then, processing is performed based on the final shape data to manufacture a structure having the desired optimal shape.

(実施例) 以下、本発明の一実施例を図面に従って詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の構造物の製造方法を示す構成図、第
2図は、本発明の構造物の製造方法を示すフロー図であ
る。
FIG. 1 is a block diagram showing a method of manufacturing a structure of the present invention, and FIG. 2 is a flow diagram showing a method of manufacturing a structure of the present invention.

1は、設計者によって設計される構造物の初期形状デー
タである。
1 is initial shape data of a structure designed by a designer.

2は、汎用の有限要素法による解析プログラムを実行す
る演算装置であり、初期形状データ1を入力し、各要素
の応力状態を演算し、かつ形状データを修正する。
Reference numeral 2 denotes a calculation device that executes an analysis program using a general-purpose finite element method, which inputs initial shape data 1, calculates the stress state of each element, and corrects the shape data.

3は、応力データを温度データに変換するプログラムを
実行する変換装置であり、演算装置2で演算された応力
データを温度データに変換した後、再び演算装置2へ温
度データを転送する。
3 is a conversion device that executes a program for converting stress data into temperature data, and after converting the stress data calculated by the calculation device 2 into temperature data, transfers the temperature data to the calculation device 2 again.

4は、NC加工機であり、演算装置2で修正された形状
データに基づき、金型もしくは直接構造物を加工するも
のである。
Reference numeral 4 denotes an NC processing machine, which processes a mold or a structure directly based on the shape data corrected by the calculation device 2.

ステップ1において、汎用の有限要素法による解析プロ
グラムにより、初期設計された構造物の形状データを複
数個の要素に分割すると共に、実際の使用時に作用する
外力状態を設定する。
In step 1, an analysis program based on a general-purpose finite element method is used to divide the shape data of the initially designed structure into a plurality of elements, and to set the external force state that will be applied during actual use.

次に、ステップ2において、上記汎用の有限要素法によ
る解析プログラムによる演算を実行し、各要素における
応力状態を求める。そして、該演算された応力状態をユ
ニバーサルファイルに一旦格納する。
Next, in step 2, calculations are performed using the analysis program using the general-purpose finite element method, and the stress state in each element is determined. Then, the calculated stress state is temporarily stored in a universal file.

次に、ステップ3において、上記ユニバーサルファイル
から演算された応力状態を読み込む。上記汎用の有限要
素法による解析プログラムにより演算される応力が主応
力01、σ2、σ3であれば、構造物を構成する材料の
特性に応し、該σ1.02.03を基に新たな数値を演
算する。
Next, in step 3, the stress state calculated from the universal file is read. If the stress calculated by the general-purpose finite element method analysis program mentioned above is the principal stress 01, σ2, σ3, then a new numerical value is calculated based on σ1, 02, 03 according to the characteristics of the material that makes up the structure. Calculate.

すなわち該材料が延性を有する場合には、上記τ。もし
くはUl、を演算する。そして、降伏値以下の所定値が
Oとなるように設定された係数な該τ。もしくはUl、
に乗算し、τ。もしくはUl、を温度に変換する。該変
換された温度状態をユニバーサルファイルに格納する。
That is, when the material has ductility, the above τ. Or, calculate Ul. The coefficient τ is set such that a predetermined value below the yield value is O. Or Ul,
Multiply by τ. Or convert Ul to temperature. The converted temperature state is stored in a universal file.

次に、ステップ4において、再び上記汎用の有限要素法
による解析プログラムに戻り、ステップ3で変換された
温度状態を読み込む。そして、構造物の形状に対して変
形させない部分があれば拘束条件を設定し、温度が十で
あれが膨張、−であれば収縮するよう各要素について熱
変形量を演算し、演算後の形状データをユニバーサルフ
ァイルに出力して、構造物の形状データを更新する。
Next, in step 4, the process returns to the analysis program using the general-purpose finite element method, and reads the temperature state converted in step 3. Then, if there is a part that will not be deformed in the shape of the structure, constraint conditions are set, and the amount of thermal deformation is calculated for each element so that if the temperature is 0, it will expand, and if the temperature is negative, it will contract. Output the data to a universal file and update the shape data of the structure.

尚、温度状態に基づく熱変形は、温度変数のみに依存す
るため、応力に基ずく変形量の演算より演算回数は遥か
に少ない回数でよい。
Note that, since thermal deformation based on the temperature state depends only on the temperature variable, the number of calculations may be far smaller than the calculation of the amount of deformation based on stress.

次に、ステップ5において、ユニバーサルファイルから
更新された形状データを読み込み、該形状データに基づ
いて、新たに構造物を要素に分解し直す。設計者は、該
構造物の形状をチエツクし、以後の演算を継続するか否
かを判断することができる。継続する場合すなわち形状
が最適形状に収束していない場合には、上記ステップ2
へ戻り上記ステップし示したフローを繰り返す。
Next, in step 5, the updated shape data is read from the universal file, and the structure is newly decomposed into elements based on the shape data. The designer can check the shape of the structure and decide whether to continue the calculations. If it continues, that is, if the shape has not converged to the optimal shape, step 2 above.
Go back and repeat the steps and flow shown above.

そして、形状が収束した場合にはステップ5で得られた
最適形状データをNC加工機に転送し、加工を行なう。
When the shape has converged, the optimum shape data obtained in step 5 is transferred to the NC processing machine and processed.

次に、上記フロー内の形状決定部分についての実施例に
ついて説明する。
Next, an example of the shape determining part in the above flow will be described.

第3図は、構造物の形状を決定する工程を示す図である
FIG. 3 is a diagram showing the process of determining the shape of a structure.

図中の破線にて示すのもは構造物の外形及び要素の外形
である。そして、実線による曲線で示すものは等混線で
ある。
What is shown by broken lines in the figure is the outer shape of the structure and the outer shape of the elements. What is shown by a solid curve is a homomixer.

(a)は、初期形状における応力を演算し、該応力の大
小に応じて温度に変換した後の温度分布状態を示してい
る。尚、左右端の直線部分に左右方向の引張分布荷重が
作用し、かつ該左右端は水平方向に拘束され、構造物の
左右方向の長さは変化しないものとする。本図に示すよ
うに、構造物の中央部分が高温度となり、両端方向に温
度は低下している。
(a) shows the temperature distribution state after calculating the stress in the initial shape and converting it into temperature according to the magnitude of the stress. It is assumed that a tensile distributed load in the left and right direction acts on the straight line portions of the left and right ends, that the left and right ends are restrained in the horizontal direction, and that the length of the structure in the left and right direction does not change. As shown in this figure, the temperature is high at the center of the structure, and the temperature decreases toward both ends.

(b)は、初期形状から熱変形を1度実行した後の形状
である。温度勾配は(a)より緩和されているものの、
依然として温度分布が認められるため、再度熱変形を行
なう。
(b) shows the shape after performing thermal deformation once from the initial shape. Although the temperature gradient is more relaxed than in (a),
Since temperature distribution is still observed, thermal deformation is performed again.

(C)は、2度目の変形後の状態を示している。中央部
分はすでに、はぼ均一な温度状態となっているが、両端
部分に若干温度勾配が認められる。よって、再度熱変形
を行なう。
(C) shows the state after the second deformation. The temperature in the center is already almost uniform, but there is a slight temperature gradient at both ends. Therefore, thermal deformation is performed again.

(d)は、3度目の変形すなわち最終変形後の状態を示
している。構造物全体に温度分布が認められず、外力に
よる発生応力が均一状態に達していることがわかる。
(d) shows the state after the third deformation, that is, the final deformation. It can be seen that no temperature distribution is observed throughout the structure, and that the stress generated by external forces has reached a uniform state.

以上本発明の実施例について説明したが、本発明の精神
から逸れないかぎりで、種々の異なる実施例は容易に構
成できるから、本発明は前記特許0 請求の範囲において記載した限定以外、特定の実施例に
制約されるものではない。
Although the embodiments of the present invention have been described above, various different embodiments can be easily constructed without departing from the spirit of the present invention. The invention is not limited to the examples.

(発明の効果) 以上説明したように、本発明によれば、初期設計された
構造物を構成すると仮想した各要素について有限要素法
にて応力を演算し、降伏応力を基準とする予め設定され
た係数を該演算された応力に乗算して温度に変換する。
(Effects of the Invention) As explained above, according to the present invention, the stress is calculated using the finite element method for each element that is assumed to constitute the initially designed structure, and the stress is calculated in advance based on the yield stress. The calculated stress is multiplied by the calculated coefficient and converted into temperature.

すなわち、高応力が印加されている要素は高温度であり
、低応力の要素は低温度であるとし、構造物内部の応力
分布を温度分布に変換する。そして、該温度分布に基づ
く熱変形すなわち熱膨張及び熱収縮によって構造物を変
形させる。そして、該熱変形後の形状について、再び、
応力分布を演算し温度分布に変換して、順次形状を熱変
形させ最終的に目的とする最適形状に収束させる。そし
て、該最終形状のデータの基づいて加工を行ない目的と
する最適形状の構造物を製造するので、従来の加工方法
に対して構造物の最適形状を決定するための演算回数を
減少させることができ、該加工に要する時間が短縮1 された最適形状構造物の製造方法を提供できる。
That is, it is assumed that elements to which high stress is applied are at high temperature, and elements to which low stress is applied are at low temperature, and the stress distribution inside the structure is converted into a temperature distribution. Then, the structure is deformed by thermal deformation, that is, thermal expansion and thermal contraction based on the temperature distribution. Then, regarding the shape after the thermal deformation, again,
The stress distribution is calculated and converted to a temperature distribution, and the shape is sequentially thermally deformed to finally converge to the desired optimal shape. Then, processing is performed based on the final shape data to produce a structure with the desired optimal shape, so the number of calculations required to determine the optimal shape of the structure can be reduced compared to conventional processing methods. It is possible to provide a method for manufacturing an optimally shaped structure in which the time required for processing is shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の構造物の製造方法を示す構成国、第
2図は、本発明の構造物の製造方法を示すフロー図、第
3図は、構造物の形状を決定する工程を示す図である。 1・・・初期形状データ、2・・・演算装置、3・・・
変換装置、4・・・NC加工機。
Figure 1 shows the constituent countries showing the method of manufacturing the structure of the present invention, Figure 2 is a flow diagram showing the method of manufacturing the structure of the invention, and Figure 3 shows the process of determining the shape of the structure. FIG. 1... Initial shape data, 2... Arithmetic device, 3...
Conversion device, 4...NC processing machine.

Claims (1)

【特許請求の範囲】[Claims] 初期設計された構造物の形状データを複数個の要素に仮
想分解するステップと、該要素の各々についての応力を
演算するステップと、該演算された応力に該構造物を構
成する材料の降伏応力を基準とする所定係数を乗算し温
度に変換するステップと、該変換された温度に基づき構
造物の熱変形量を演算し、前記初期設計された構造物の
形状データを修正するステップと、該修正された形状デ
ータを基に構造物を加工するステップとを有することを
特徴とする最適形状構造物の製造方法。
A step of virtually decomposing the shape data of the initially designed structure into a plurality of elements, a step of calculating the stress for each of the elements, and a step of adding the yield stress of the material constituting the structure to the calculated stress. a step of multiplying by a predetermined coefficient based on the temperature and converting it into a temperature; a step of calculating the amount of thermal deformation of the structure based on the converted temperature and correcting the shape data of the initially designed structure; 1. A method for manufacturing an optimally shaped structure, comprising the step of processing the structure based on the corrected shape data.
JP1223738A 1989-08-30 1989-08-30 Manufacture of optimally shaped structure Pending JPH0385680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223738A JPH0385680A (en) 1989-08-30 1989-08-30 Manufacture of optimally shaped structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223738A JPH0385680A (en) 1989-08-30 1989-08-30 Manufacture of optimally shaped structure

Publications (1)

Publication Number Publication Date
JPH0385680A true JPH0385680A (en) 1991-04-10

Family

ID=16802920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223738A Pending JPH0385680A (en) 1989-08-30 1989-08-30 Manufacture of optimally shaped structure

Country Status (1)

Country Link
JP (1) JPH0385680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222219A (en) * 2001-01-25 2002-08-09 Honda Motor Co Ltd Linear object shape analysis device
US20100009124A1 (en) * 2008-07-10 2010-01-14 The Boeing Company Mandrel for Autoclave Curing Applications
US9327467B2 (en) 2008-07-10 2016-05-03 The Boeing Company Composite mandrel for autoclave curing applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222219A (en) * 2001-01-25 2002-08-09 Honda Motor Co Ltd Linear object shape analysis device
JP4646414B2 (en) * 2001-01-25 2011-03-09 本田技研工業株式会社 Linear object shape analyzer
US20100009124A1 (en) * 2008-07-10 2010-01-14 The Boeing Company Mandrel for Autoclave Curing Applications
US9238335B2 (en) * 2008-07-10 2016-01-19 The Boeing Company Mandrel for autoclave curing applications
US9327467B2 (en) 2008-07-10 2016-05-03 The Boeing Company Composite mandrel for autoclave curing applications
US10286577B2 (en) 2008-07-10 2019-05-14 The Boeing Company Composite mandrel for autoclave curing applications

Similar Documents

Publication Publication Date Title
JP4892701B2 (en) Method for processing input signal, configurable filter and computer program
CN109063234B (en) High-speed press force application part reliability design method considering multiple types of uncertainty
CN112476053B (en) Method for controlling machining deformation of workpiece
CN106777626B (en) A kind of trusses with discrete variables Multidisciplinary systems optimum design method
CN107169209B (en) Structural design and optimization method under bias concentration force
CN109902350B (en) Method for overcoming modal exchange in model correction of section moment of inertia of variable-section beam
Kirsch et al. Exact and accurate solutions in the approximate reanalysis of structures
CN113326582A (en) Variable density lattice structure based on stress distribution and design method thereof
JPH0385680A (en) Manufacture of optimally shaped structure
CN110807276A (en) Method and system for analyzing structural strength of casting by introducing residual stress
CN111350276A (en) Design method for initial prestress state of spoke type cable bearing grid steel structure
Pillinger et al. Use of a mean-normal technique for efficient and numerically stable large-strain elastic-plastic finite-element solutions
Kirsch et al. Accurate displacement derivatives for structural optimization using approximate reanalysis
Zhmud et al. Numerical optimization of PID-regulator for object with distributed parameters
CN110909500A (en) Unconditionally stable multi-point excitation collapse explicit analysis method for oversized bridge span
CN110705150A (en) Ultrahigh-dimension large-scale multi-constraint nonlinear optimization method for engineering structure
CN109543226B (en) Hybrid intelligent optimization method for spatial structure
CN111353226A (en) Multidimensional control system model order reduction method and device
CN112784460B (en) Stability analysis method for mechanical metamaterial compression bar
CN115600383A (en) Uncertainty data-driven computational mechanics method, storage medium and product
Whirley et al. Creep deformation structural analysis using an efficient numerical algorithm
JP2002318823A (en) Automatic generating method of structure lattice for fluid
Butler et al. Optimal control of infinite-order smart composite structural systems using distributed sensors
Iwazumi et al. Optimal feedback control of a nuclear reactor as a distributed parameter system
CN112036054B (en) Finite element calculation method, system and medium for structural performance of extruded aluminum alloy beam