JPH0385448A - Ion analyser - Google Patents

Ion analyser

Info

Publication number
JPH0385448A
JPH0385448A JP22390289A JP22390289A JPH0385448A JP H0385448 A JPH0385448 A JP H0385448A JP 22390289 A JP22390289 A JP 22390289A JP 22390289 A JP22390289 A JP 22390289A JP H0385448 A JPH0385448 A JP H0385448A
Authority
JP
Japan
Prior art keywords
solution
ions
ion
ion exchange
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22390289A
Other languages
Japanese (ja)
Inventor
Terufumi Iwata
照史 岩田
Satoshi Takaiwa
聡 高岩
Miwako Sasaki
佐々木 美和子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP22390289A priority Critical patent/JPH0385448A/en
Publication of JPH0385448A publication Critical patent/JPH0385448A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance concn. efficiency and analytical sensitivity by providing a pH control means for allowing a speciman solution to approach neutrality at the position on the upstream side of the concn. means in the flow passage of the specimen solution. CONSTITUTION:In an analyser, an ion exchanger 11 is newly provided between the pump in a specimen supply system and the change-over valve on the upstream side of a concn. means. This exchanger 11 is constituted by providing an ion exchange memberane 13 in a container 12 in concentric relation to a supply pipe 2. When a specimen solution with pH of about 1.0 is introduced into the exchanger 11 by 0.2N hydrochloric acid containing metal ions and a neutralizing solution is supplied from a supply pipeline 14, ion exchange is performed through the exchange member 13. That is, when an alkaline neutralizing solution, for example, 0.1 - 1N tetramethylammonium hydroxide solution is used, chlorine ions transfer from the specimen solution to the neutralizing solution and hydroxyl ions move from the neutralizing solution to the specimen solution to perform ion exchange. Therefore, the hydrogen ions in the specimen solution decrease and pH rises to approach neutrality.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はイオンクロマト分析法による分析装置に係り、
特に中性(p H7)以外の試料、例えば強酸性の試料
液のイオン分析に用いて好適なイオン分析装置に関する
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to an analyzer using ion chromatography,
In particular, the present invention relates to an ion analyzer suitable for use in ion analysis of samples other than neutral (pH 7), such as strongly acidic sample solutions.

「従来の技術」 従来のイオンクロマト分析法にあっては、第6図(こ示
すように、例えば、試料容器(図示せず)から試料液供
給手段であるポンプlにより試料液を吸収し、供給管2
.切替バルブ3の流路を経由し、濃縮手段としての、イ
オン交換樹脂が充填された濃縮カラム4へ試料液を送っ
て、試料液中のイオンを捕獲し、イオンが捕獲された後
の水を切替弁5を介して排水流路6から排出するように
している。
"Prior Art" In the conventional ion chromatography analysis method, as shown in FIG. Supply pipe 2
.. The sample liquid is sent through the flow path of the switching valve 3 to a concentration column 4 filled with ion exchange resin, which serves as a concentration means, to capture ions in the sample liquid, and after the ions have been captured, the water is removed. He is trying to discharge from the drainage channel 6 via the switching valve 5.

このように試料液を一定時間にわたって濃縮カラム4へ
供給した後、停止させ、切替弁3,5の流路を切替え、
溶離液ポンプ7を動作させて、溶離液槽8から切替弁3
の流路を介して溶離液を流入させ、濃縮カラム4中で捕
獲されたイオンを溶離液中に離脱させ、脱離切替バルブ
5内の流路を経て、分離手段としての分離カラム9へ送
り込むと、分離カラム9では、溶離液の流れによってイ
オンがイオン種の別に時系列的に流出する。その結果、
検出器lOから、第7図に示すような出力I IJ<得
られる。そして、溶離開始からピーク(P1〜ps)が
表われるまでの時間によりイオンの種類を知ることがで
きるとともに、ピーク(P、〜P、)の面積や高さ(H
,〜H,)によりイオンの量を知ることができる。
After supplying the sample liquid to the concentration column 4 for a certain period of time, it is stopped, and the flow paths of the switching valves 3 and 5 are switched.
By operating the eluent pump 7, the switching valve 3 is removed from the eluent tank 8.
The eluent is caused to flow in through the channel, and the ions captured in the concentration column 4 are released into the eluent, and then sent through the channel in the desorption switching valve 5 to the separation column 9 as a separation means. In the separation column 9, ions flow out in time series according to the ion type due to the flow of the eluent. the result,
From the detector IO, an output IJ< as shown in FIG. 7 is obtained. The type of ion can be determined from the time from the start of elution until the peak (P1~ps) appears, as well as the area and height (H
, ~H,) can determine the amount of ions.

「発明が解決しようとする課題」 しかしながら、上記従来技術の分析にあっては、分析の
対象とするイオンを含む試料液が中性(pH7)から大
きくはずれている場合、例えば塩酸(pH1前後)中の
金属イオンの分析を行なおうとする場合には、濃縮カラ
ム4でイオンの捕獲と酸による脱離が競合的に同時に起
こるため、濃縮用のイオン交換樹脂表面に残留する分析
対象イオンの量が実際に供給された試料液に含まれるイ
オンの量に比べて少なくなるため、結果として金属イオ
ンの分析が不確実となる。また濃縮開始直後に、試料液
に含まれる多量のH°イオン(水素イオン)などが濃縮
カラム4内のイオン交換樹脂に積極的に付着してその交
換能力が早期に飽和してしまうから、検出対象のイオン
の濃縮作用を充分に行うことができず、結果として分析
の感度の低下をきたすという問題があった。
``Problems to be Solved by the Invention'' However, in the analysis of the above-mentioned prior art, when the sample solution containing the ions to be analyzed is significantly deviated from neutrality (pH 7), for example, hydrochloric acid (pH around 1) When attempting to analyze metal ions in the ion exchange resin, the amount of analyte ions remaining on the surface of the ion-exchange resin for concentration is reduced because ion capture and acid desorption occur simultaneously in the concentrating column 4 in a competitive manner. Since the amount of ions is smaller than the amount of ions actually contained in the supplied sample liquid, the analysis of metal ions becomes uncertain as a result. In addition, immediately after the start of concentration, a large amount of H° ions (hydrogen ions) contained in the sample solution actively adheres to the ion exchange resin in the concentration column 4, and its exchange capacity is quickly saturated. There was a problem in that the target ions could not be sufficiently concentrated, resulting in a decrease in analytical sensitivity.

本発明は上記事情に鑑みて提案されたもので、試料液の
pHにかかわらずイオン濃度の高精度・高感度の測定が
可能な分析装置を得ることを目的とするものである。
The present invention was proposed in view of the above circumstances, and an object of the present invention is to provide an analyzer capable of measuring ion concentration with high precision and high sensitivity regardless of the pH of a sample liquid.

「課題を解決するための手段」 上記問題を解決するため、本発明は、分析すべきイオン
を含む試料液を供給する供給手段と、該供給手段から供
給された試料液中のイオンを一時保持する濃縮手段と、
該濃縮手段に溶離液を供給してイオンを離脱させる溶離
液供給手段と、濃縮手段から離脱したイオンを溶離液の
流れによりイオン種別に時系列的に溶出させる分離手段
と、溶出したイオンをイオン種別に検出する検出手段と
を備える分析装置において、試料液の流路における前記
濃縮手段の上流側の位置に試料液を中性に近付けるため
のpH調整手段を設けるようにしたものである。
"Means for Solving the Problems" In order to solve the above problems, the present invention provides a supply means for supplying a sample liquid containing ions to be analyzed, and a temporary storage of ions in the sample liquid supplied from the supply means. a concentration means for
an eluent supply means for supplying an eluent to the concentration means to release ions; a separation means for eluting ions separated from the concentration means into ion types in time series by a flow of the eluent; The analyzer is equipped with a detection means for detecting each type, and a pH adjustment means for bringing the sample liquid close to neutrality is provided at a position on the upstream side of the concentration means in the flow path of the sample liquid.

「作用」 上記構成であると、pH調整手段により、濃縮に先立っ
て試料液のpHが中性に近付けられ、その後の濃縮手段
におけるイオンの捕獲が確実なものとなる。
"Function" With the above configuration, the pH of the sample liquid is brought close to neutrality by the pH adjustment means prior to concentration, and subsequent capture of ions by the concentration means is ensured.

「実施例」 以下本発明の一実施例を第1図ないし第4図により説明
する。なお、図中従来例と共通の部分には同一符号を付
し、説明を簡略化する。
"Embodiment" An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. In the figure, parts common to the conventional example are given the same reference numerals to simplify the explanation.

第1図は本発明の分析装置を示すもので、この分析装置
は、従来のイオンクロマト分析装置の試料供給系統にお
けるポンプlと切替バルブ3との間にイオン交換器11
を新たに設けた構成となっている。
FIG. 1 shows an analyzer according to the present invention, in which an ion exchanger 11 is connected between a pump l and a switching valve 3 in a sample supply system of a conventional ion chromatography analyzer.
It has a new configuration.

次いで、イオン交換器1■の具体的構造を第2図により
説明する。符号12は中空状の容器であって、この容器
12の内部には、供給管2と同心の筒状に形成されたイ
オン交換膜13が設けられ、このイオン交換膜13の両
端は前記供給管2に接続されて試料液の供給を受けるよ
うになっている。
Next, the specific structure of the ion exchanger 12 will be explained with reference to FIG. Reference numeral 12 denotes a hollow container, and an ion exchange membrane 13 formed in a cylindrical shape concentric with the supply pipe 2 is provided inside the container 12, and both ends of the ion exchange membrane 13 are connected to the supply pipe 2. 2 to receive the supply of sample liquid.

また前記容器12内のイオン交換膜13の外側の空間に
は給液管路14と排液管路15とが接続されており、給
液管路14には、中和液槽16からポンプ17により吸
い上げられた中和液が供給されるようになっている。す
なわち前記室612の内部は、前記イオン交換膜13に
よって試料流路18と中和液流路19とに区分されてい
る。
Further, a liquid supply pipe 14 and a drain liquid pipe 15 are connected to a space outside the ion exchange membrane 13 in the container 12, and a pump 17 is connected to the liquid supply pipe 14 from a neutralization liquid tank 16. The neutralizing liquid sucked up by the tank is supplied. That is, the interior of the chamber 612 is divided into a sample flow path 18 and a neutralizing liquid flow path 19 by the ion exchange membrane 13.

さらに、前記分析装置の分離カラム9と検出器10との
間の管路には、発色剤20からポンプ21により吸引さ
れた発色剤が供給されるようになっている。
Furthermore, the color former sucked by the pump 21 from the color former 20 is supplied to the conduit between the separation column 9 and the detector 10 of the analyzer.

次に、本発明の実施例による遷移金属イオン(以下単に
金属イオンという)の酸性溶液の分析について説明する
Next, analysis of an acidic solution of transition metal ions (hereinafter simply referred to as metal ions) according to an example of the present invention will be described.

例えば、金属イオンを含むO62規定の塩酸を試料液と
すると、この試料液はp)(t、O程度の強酸性であり
、通常の金属イオン用濃縮カラムのイオン交換樹脂では
十分に捕獲濃縮ができない。
For example, if a sample solution is hydrochloric acid with an O62 standard containing metal ions, this sample solution is as strong as p)(t,O), and cannot be sufficiently captured and concentrated using the ion exchange resin of a normal concentration column for metal ions. Can not.

このような試料液を、陰イオン交換膜を用いたイオン交
換器11に導入し、一方、供給管路14から中和液を供
給すると、イオン交換膜13を介してイオン交換が行な
れる。すなわち、アルカリ性の中和液、例えば0.1−
1規定の水酸化テトラメチルアンモニウム溶液を用いる
と、試料液から中和液中に塩素イオン<Ca−>が移動
し、また中和液から試料液中へは水酸イオン(OH−)
が移動し、すなわちイオン交換が行なわれることになり
、 試料液中では、 2H”+OH−→ HtO 中和液中では、 Na ++CQ−→  NaCg といずれも中性の水や中性の塩を生ずる。
When such a sample liquid is introduced into the ion exchanger 11 using an anion exchange membrane and a neutralizing liquid is supplied from the supply pipe 14, ion exchange can be performed via the ion exchange membrane 13. That is, an alkaline neutralizing solution, e.g.
When a 1N tetramethylammonium hydroxide solution is used, chloride ions <Ca-> move from the sample solution into the neutralization solution, and hydroxide ions (OH-) move from the neutralization solution into the sample solution.
In other words, ion exchange occurs, and in the sample solution, 2H"+OH-→HtO In the neutralizing solution, Na++CQ-→NaCg, both of which produce neutral water and neutral salts. .

かくして試料液中の水素イオン濃度が低下し、pHが上
昇し中性に近づく。
In this way, the hydrogen ion concentration in the sample solution decreases, and the pH increases, approaching neutrality.

中和の程度はイオン交換膜の交換能力により決まるが、
さらに試料液の酸性の強さ、中和液のアルカリ性の強さ
およびそれぞれの液の流量によっても大きく左右される
The degree of neutralization is determined by the exchange capacity of the ion exchange membrane;
Furthermore, it is greatly influenced by the acidity strength of the sample solution, the alkalinity strength of the neutralizing solution, and the flow rate of each solution.

なお実際の金属イオンの分析においては、弱酸性すなわ
ちpH2〜7の範囲で調整されるのが好ましい。
In the actual analysis of metal ions, it is preferable to adjust the pH to a weak acidity, that is, within a pH range of 2 to 7.

また、中和のためにイオン交換を行なわずに酸性試料液
に直接アルカリを注入することも考えられるが、この場
合、アルカリ金属イオン(、Na”K’)などが発生し
て分析に悪影響をおよぼすことが多い。なおまた、イオ
ン交換樹脂により試料液中の水素イオンを吸着させても
良いが、実用上はイオン交換樹脂の飽和や、分析対象イ
オンまで吸着されてしまうなどといった問題の解決が必
要となる。
It is also possible to directly inject alkali into the acidic sample solution without performing ion exchange for neutralization, but in this case, alkali metal ions (Na"K') etc. will be generated and have a negative impact on the analysis. In addition, hydrogen ions in the sample solution may be adsorbed using an ion exchange resin, but in practice this is difficult to solve problems such as saturation of the ion exchange resin and analyte ions being adsorbed. It becomes necessary.

このようにしてイオン中和された金属イオンを含む試料
液は、イオン交換器11から濃縮カラム4へ送られ、一
方、中和液は排液管路15を介して排液貯留槽(図示路
)へ排出される。
The sample solution containing metal ions that has been ion-neutralized in this way is sent from the ion exchanger 11 to the concentration column 4, while the neutralized solution is passed through the drain pipe 15 to a drain reservoir tank (as shown in the diagram). ).

そして、濃縮カラム4において通常のイオンクロマト法
と同様の濃縮が行なわれた後、溶離液が流されて、分離
カラム9でイオン種ごとに分離され、これらのイオンが
時系列的に分離カラム9から溶出する。そして、溶出し
た試料液には発色剤(P A R=ピリジルアゾレゾル
シンなと)が発色剤供給ポンプ21により添加され、こ
の発色剤の供給によって、金属イオン濃度とともに着色
の程度が増減する度合を吸光液検出器10で検出すると
、第4図の場合と同様のクロマトグラムが得られる。
After the concentration column 4 performs the same concentration as in normal ion chromatography, the eluent is passed through the separation column 9 to separate each ion species, and these ions are passed through the separation column 9 in chronological order. It is eluted from. Then, a coloring agent (P A R = pyridylazoresorcin) is added to the eluted sample solution by the coloring agent supply pump 21, and by supplying this coloring agent, the degree to which the degree of coloring increases or decreases with the metal ion concentration is determined. When detected by the absorbing liquid detector 10, a chromatogram similar to that shown in FIG. 4 is obtained.

なお実施例においては遷移金属イオンを検出の対象イオ
ンとしたが、本発明の検出対象はこれに限定されるわけ
ではなく、その他の金属イオンやその他イオンを検出の
対象とすることができるのはもちろんである。
In the examples, transition metal ions were the ions to be detected, but the detection targets of the present invention are not limited thereto, and other metal ions and other ions can be detected. Of course.

なおまた、イオン交換器として、前記一実施例のような
イオン交換膜を用いたものに代えて、第3図ないし第5
図に示すように、ホローファイバないしは中空糸と呼ば
れるイオン交換相樹脂製の中空状の繊維物質や半透性の
イオン透過膜を用いるようにしてもよい。
Furthermore, instead of using an ion exchange membrane as in the previous embodiment as an ion exchanger, the ion exchanger shown in FIGS.
As shown in the figure, a hollow fiber material made of ion exchange phase resin called hollow fiber or hollow fiber or a semipermeable ion-permeable membrane may be used.

すなわち、第3図に示すように多数の中空糸30を容器
31内に収納することによりイオン交換器を構成し、例
えば、前記中空糸30の内側を供給管路2に接続して試
料液流路18として用い、中空糸30の外側を中和液の
供給管路に接続して中和液流路19として用いるように
してもよい。
That is, as shown in FIG. 3, an ion exchanger is constructed by housing a large number of hollow fibers 30 in a container 31, and, for example, the inside of the hollow fibers 30 is connected to the supply pipe 2 to control the sample liquid flow. Alternatively, the outer side of the hollow fiber 30 may be connected to a neutralizing liquid supply pipe line to be used as a neutralizing liquid flow path 19.

そして、この場合各中空糸30がイオン交換膜として機
能することにより、イオン交換膜の面積を大きくするこ
とができる。
In this case, since each hollow fiber 30 functions as an ion exchange membrane, the area of the ion exchange membrane can be increased.

なお、上記実施例では試料液のpHが低いため、アルカ
リ液を中和液として用いたが、試料i(?DpHが高い
場合には中和液として酸を用いればよい。
In the above example, since the pH of the sample liquid was low, an alkaline solution was used as the neutralizing liquid, but if the pH of the sample i(?D) is high, an acid may be used as the neutralizing liquid.

またイオン交換器の設置位置は上記実施例に限定される
ものではなく、試料が流れる配管中における濃縮カラム
より上流側であれば、いずれの位置であってもよいのは
もちろんである。
Further, the installation position of the ion exchanger is not limited to the above embodiment, and it goes without saying that the ion exchanger may be installed at any position upstream of the concentration column in the piping through which the sample flows.

「発明の効果」 以上の説明で明らかなように、本発明は下記の効果を奏
する。
"Effects of the Invention" As is clear from the above description, the present invention has the following effects.

a3分析濃度範囲の拡大 (1)試料液のpHを一定範囲にすることができるので
、濃縮カラム4の能力が充分に発揮され、したがって、
濃縮効率を高めて分析感度を10〜100倍向上させる
ことができる。
a3 Expansion of analysis concentration range (1) Since the pH of the sample solution can be kept within a certain range, the ability of the concentration column 4 is fully demonstrated, and therefore,
Concentration efficiency can be increased and analytical sensitivity can be improved by 10 to 100 times.

(ii)飽和がおこりにくく、また濃縮と溶離との競合
的な同時進行がおこらないので、幅広い濃度時間に対し
ても、イオン捕獲量と濃縮時間とが直接的な関係を示す
ことができる。
(ii) Since saturation is unlikely to occur and concentration and elution do not occur simultaneously, a direct relationship can be shown between the amount of ion capture and the concentration time even over a wide range of concentration times.

b9分析対象の液性の拡大 中性水溶液だけでなく、酸性溶液アルカリ性溶液の他、
現在半導体製造プロセスなどで問題化されつつある塩酸
、硫酸、フッ酸などに含まれる微量の金属、アルカリ金
属、アルカリ土類金属などのイオンクロマト分析が可能
である。
b9 Expansion of liquid properties to be analyzed In addition to neutral aqueous solutions, acidic solutions and alkaline solutions,
It is possible to perform ion chromatography analysis of trace amounts of metals, alkali metals, alkaline earth metals, etc. contained in hydrochloric acid, sulfuric acid, hydrofluoric acid, etc., which are currently becoming a problem in semiconductor manufacturing processes.

C0分析性能の安定化 具体的なpH,I整手段として、例えばイオン交換膜を
用いる方式では、交換すべきイオンを含む中和液が補給
されるので、膜そのものを交換することなく長い期間に
わたって安定した中和が可能となり、分析機能も安定化
する。
Stabilization of C0 analysis performance For example, in a method that uses an ion exchange membrane as a specific pH and I adjustment means, a neutralizing solution containing ions to be exchanged is replenished, so it can be used for a long period of time without replacing the membrane itself. Stable neutralization becomes possible, and analytical functions are also stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示すもので、
第1図は分析装置の配管図、第2図はイオン交換器の縦
断面図、第3図ないし第5図は本発明の他の実施例を示
すもので、第3図はイオン交換器の横断面図、第4図は
中空糸部分を拡大した横断面図、第5図は中空糸部分を
拡大した縦断面図、第6図は従来の分析装置の配管図、
第7図は検出器の出力波形図である。 l・・・・・・試料液ポンプ、2・・・・・・試料液供
給管、3・・・・切替バルブ、4・・・・・・濃縮カラ
ム、5・・・・・・切替バルブ、6・・・・・・溶離液
容器、7・・・・・・溶離液ポンプ、9・・・・・・分
離カラム、10・・・・・・検出器、11・・・・・・
イオン交換器、12・・・・・・容器、13・・・・・
・イオン交換膜、18・・・・・・試料液流路、19・
・・・・・中和液流路、20・・・・・・発色液槽、2
1・・・・・・発色液供給ポンプ。
1 and 2 show an embodiment of the present invention,
Fig. 1 is a piping diagram of the analyzer, Fig. 2 is a vertical sectional view of the ion exchanger, Figs. 3 to 5 show other embodiments of the present invention, and Fig. 3 is a diagram of the ion exchanger. 4 is an enlarged cross-sectional view of the hollow fiber portion, FIG. 5 is an enlarged longitudinal sectional view of the hollow fiber portion, and FIG. 6 is a piping diagram of a conventional analyzer.
FIG. 7 is a diagram of the output waveform of the detector. l...Sample liquid pump, 2...Sample liquid supply pipe, 3...Switching valve, 4...Concentration column, 5...Switching valve , 6... Eluent container, 7... Eluent pump, 9... Separation column, 10... Detector, 11...
Ion exchanger, 12... Container, 13...
・Ion exchange membrane, 18...Sample liquid flow path, 19.
..... Neutralizing liquid flow path, 20 ..... Coloring liquid tank, 2
1...Coloring liquid supply pump.

Claims (1)

【特許請求の範囲】 分析すべきイオンを含む試料液を供給する供給手段と、
該供給手段から供給された試料液中のイオンを一時保持
する濃縮手段と、該濃縮手段に溶離液を供給してイオン
を離脱させる溶離液供給手段と、濃縮手段から離脱した
イオンを溶離液の流れによりイオン種別に時系列的に溶
出させる分離手段と、溶出したイオンをイオン種別に検
出する検出手段とを備える分析装置において、 試料液の流路における前記濃縮手段の上流側の位置に試
料液を中性に近付けるためのpH調整手段を設けたこと
を特徴とするイオン分析装置。
[Scope of Claims] Supply means for supplying a sample liquid containing ions to be analyzed;
a concentration means for temporarily retaining ions in the sample solution supplied from the supply means; an eluent supply means for supplying an eluent to the concentration means to remove the ions; In an analyzer equipped with a separation means for eluting ion types in time series by flow, and a detection means for detecting the eluted ions according to ion type, the sample liquid is placed at a position on the upstream side of the concentrating means in the sample liquid flow path. An ion analyzer characterized by being provided with a pH adjusting means for bringing the pH value closer to neutrality.
JP22390289A 1989-08-30 1989-08-30 Ion analyser Pending JPH0385448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22390289A JPH0385448A (en) 1989-08-30 1989-08-30 Ion analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22390289A JPH0385448A (en) 1989-08-30 1989-08-30 Ion analyser

Publications (1)

Publication Number Publication Date
JPH0385448A true JPH0385448A (en) 1991-04-10

Family

ID=16805501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22390289A Pending JPH0385448A (en) 1989-08-30 1989-08-30 Ion analyser

Country Status (1)

Country Link
JP (1) JPH0385448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125967A (en) * 1989-10-09 1991-05-29 Nikkiso Co Ltd Method and apparatus for ion chromatograph analysis
JP2008520960A (en) * 2004-09-02 2008-06-19 ダイオネックス コーポレイション Sample stream parking and sample suppression

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125967A (en) * 1989-10-09 1991-05-29 Nikkiso Co Ltd Method and apparatus for ion chromatograph analysis
JP2008520960A (en) * 2004-09-02 2008-06-19 ダイオネックス コーポレイション Sample stream parking and sample suppression
JP4856077B2 (en) * 2004-09-02 2012-01-18 ダイオネックス コーポレイション Sample stream parking and sample suppression

Similar Documents

Publication Publication Date Title
Zheng et al. Antimony speciation in environmental samples by using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry
US4751189A (en) Method for balancing background conductivity for ion chromatography
US11906409B2 (en) Analyte concentrator system and methods of use
CN107340355A (en) A kind of method for directly detecting ammonia nitrogen in high salt and Complex water body
CN105806659A (en) Device for obtaining pore solution in cement-based material and method for analyzing components of pore solution
JPH0385448A (en) Ion analyser
CN201527389U (en) Detection device of performance of preventing infiltration of chemicals for relief protective clothing materials
JP2845698B2 (en) Method and apparatus for measuring anions contained in condensate in condensate circulation system
Yang et al. A multifunctional dual membrane electrodialytic eluent generator for capillary ion chromatography
Nieto et al. Single column ion chromatography: II. Analysis of ammonium, alkali metals, and alkaline earth cations in soils
Gobbi et al. Anion determination in damage layers of stone monuments
CN104914262B (en) The chromic automatic analysis method of trace in water sample
JP4962020B2 (en) Metal ion measuring method and measuring apparatus
CN111157666A (en) Method for simultaneously and quantitatively analyzing sulfite and sulfate ions in amine solution
Blanshard et al. A simple semi-automatic apparatus for the purification of amino acids from extracts of tissues and body fluids
KR101566400B1 (en) Analytical method of perchlorate in water with ion chromatography
JPH0329747Y2 (en)
CN106153965A (en) A kind of neutralization concentration test device
JP2006064591A (en) Sampling device for underwater component determination, and sampling method
EP1312917A1 (en) Method for separating hydroxide ion and method for analyzing hydroxide ion and ion chromatograph
JP2000214146A (en) Inorganic anion analyzing method
Wei et al. Simultaneous ion chromatographic determination of chloride and calcium contained in Ringer's injection using a chelating agent as eluent
JPS63144254A (en) Automatic anion analyzer
JPS6311857A (en) Method for quantifying very small amount of bromine ion in high concentration chlorine ion
Walford Ion chromatography of anions in cane sugar mill products