JPH0385358A - Gas injector - Google Patents

Gas injector

Info

Publication number
JPH0385358A
JPH0385358A JP22087489A JP22087489A JPH0385358A JP H0385358 A JPH0385358 A JP H0385358A JP 22087489 A JP22087489 A JP 22087489A JP 22087489 A JP22087489 A JP 22087489A JP H0385358 A JPH0385358 A JP H0385358A
Authority
JP
Japan
Prior art keywords
gas
diaphragm
chamber
negative pressure
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22087489A
Other languages
Japanese (ja)
Inventor
Mitsuru Sekiya
満 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP22087489A priority Critical patent/JPH0385358A/en
Publication of JPH0385358A publication Critical patent/JPH0385358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To improve accuracy for an air fuel ratio control by connecting a first diaphragm to which an intake negative pressure is applied and a second disphragm to which the negative pressure corresponding to the pressure loss generated by means of measure contraction is applied, together through a connecting member provided with a valve, and by opening/closing a gas discharge port through the valve. CONSTITUTION:In a gas injecting means 4 provided on a venturi 2 which is provided on an intake tube 1, a first diaphragm 8 is provided so as to partition an air pressure chamber 6 communicating to the upper stream side of the venturi 2, and a negative pressure chamber 7 to which venturi negative pressure is applied through an opening port 7a, to one another. The negative pressure chamber 7 is communicated to the upper and lower stream sides of a throttle valve 3 by a communicating path 9 provided with an idle adjusting screw 10. A second diaphragm 23 is provided so as to partition an upper chamber 21 connected to a gas passage 13 on which a regulator 14 is placed, and a lower chamber 22 communicating to the venturi 2 through a discharge port 22a, to one another, and both of the diaphragms 8, 23 are connected together by a rod 25 provided with a valve 26 by which the discharge port 22a is opening/closed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸入空気流量に応じて供給すべきガス流量を
精度良く計量するようにした、内燃機関における圧力バ
ランス型のガス噴射装置1こ関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure-balanced gas injection device for an internal combustion engine that accurately measures the flow rate of gas to be supplied according to the flow rate of intake air. related.

〔従来の技術及び発明が解決しようとする課題〕CNG
 (圧縮天然ガス)やLNG (液化天然ガス)等を燃
料として用いた内燃機関のガス噴射装置においては、従
来は吸入空気流量を圧力として検出する手段と、この空
気流量に応じた量のガスを圧力として計量して噴射せし
める手段とが夫々別個に設けられていて、空気流量とガ
ス流量との混合比を制御するようにしていた。
[Problems to be solved by conventional technology and invention] CNG
Conventionally, gas injection devices for internal combustion engines that use compressed natural gas (compressed natural gas) or LNG (liquefied natural gas) as fuel have a means of detecting the intake air flow rate as pressure and an amount of gas corresponding to this air flow rate. Separate means for metering and injecting as pressure were provided to control the mixing ratio of the air flow rate and the gas flow rate.

ところが吸気管内へ漏れ出すブローバイガスに含まれて
いるガム質やカーボン等が、燃料であるガスの吐出口に
付着するため、時間の経過により吐出口の面積が小さく
なってガス噴射量が減少し、供給される混合気の混合比
が変動してしまうという問題があった。
However, the gum and carbon contained in the blow-by gas that leaks into the intake pipe adheres to the fuel gas discharge port, and as time passes, the discharge port area becomes smaller and the amount of gas injected decreases. However, there was a problem in that the mixture ratio of the supplied air-fuel mixture fluctuated.

本発明はこのような課題に鑑み、本出願人の提案による
実開平1−74362号公報に記載された圧力バランス
型の燃料噴射装置の原理を採用して、混合気の空燃比を
精度良く制御できて、劣化の少ないガス噴射装置を提供
することを目的とする。
In view of these problems, the present invention adopts the principle of a pressure-balanced fuel injection device proposed by the applicant and described in Japanese Utility Model Application Publication No. 1-74362, to accurately control the air-fuel ratio of the air-fuel mixture. It is an object of the present invention to provide a gas injection device that is easy to use and has little deterioration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるガス噴射装置は、吸入空気流量に応じた負
圧が印加される第一ダイアフラムと、ガス通路を介して
ガス供給源からガスが供給される上室とベンチュリに吐
出口が設けられている下室とを仕切る第二ダイアフラム
と、王室と下室を連通ずる計量絞りと、第一及び第二ダ
イアフラムを連結すると共に吐出口を開閉し得るバルブ
が設けられている連結部材とを備えている。
The gas injection device according to the present invention includes a first diaphragm to which a negative pressure corresponding to the flow rate of intake air is applied, an upper chamber to which gas is supplied from a gas supply source through a gas passage, and a venturi provided with a discharge port. a second diaphragm that partitions the lower chamber, a metering orifice that communicates the royal chamber with the lower chamber, and a connecting member that connects the first and second diaphragms and is provided with a valve that can open and close the discharge port. There is.

又、ガス通路に下1側の圧力を調整するレギュレータが
設けられていてもよい。
Further, a regulator may be provided in the gas passage to adjust the pressure on the lower side.

〔作 用〕[For production]

ベンチュリを流れる吸入空気流量に応じた負圧が印加さ
れると、その荷重によって第一ダイアフラムが変位して
連結部材と第二ダイアフラムを移動させ、計量絞りを通
過して計量されたガス流量が、バルブが退いた吐出口か
ら噴射され、同時に計量絞りの圧力損失によって第二ダ
イアフラムに第一ダイアフラムと反対方向の荷重が生じ
て両ダイアフラムの荷重がバランスし、吸入空気流量に
応じたガス流量が噴射されることによって混合気の空燃
比が一定に制御される。
When a negative pressure corresponding to the intake air flow rate flowing through the venturi is applied, the first diaphragm is displaced by the load, moving the connecting member and the second diaphragm, and the metered gas flow rate passing through the metering orifice is Gas is injected from the discharge port when the valve has retreated, and at the same time, due to the pressure loss of the metering orifice, a load is generated on the second diaphragm in the opposite direction to the first diaphragm, the loads on both diaphragms are balanced, and the gas flow rate is injected according to the intake air flow rate. As a result, the air-fuel ratio of the air-fuel mixture is controlled to be constant.

又、レギュレータによって、その下流側のガス通路の圧
力が一定になるから、計量絞りにおけるガスの計量のバ
ラツキが防止される。
Furthermore, since the pressure in the gas passage on the downstream side of the regulator is kept constant, variations in the amount of gas in the metering orifice are prevented.

〔実施例〕〔Example〕

以下、本発明の好適な一実施例を添付図面に基づいて説
明する。
Hereinafter, a preferred embodiment of the present invention will be described based on the accompanying drawings.

図中、lは吸気管、2は吸気管1に設けられたベンチュ
リ、3はベンチュリ2の下流側に配設されたスロットル
バルブ、4はベンチュリ2に設けられたガス噴射手段で
ある。ガス噴射手段4において、6はベンチュリ2の上
流側に連通していて例えばエアホーンの大気圧P0が印
加される大気圧室、7は開ロアaを介してベンチュリ2
に連通していて吸入空気流量に応じた負圧P、が印加さ
れる負圧室、8は両室6,7を仕切る第一ダイアフラム
、9は一端が負圧室7に連通し且つ他端が調整口9aを
介して分岐されてスロットルバルブ3の上流側及び下流
側で吸気管lに連通ずる連通路、lOは調整口9aに対
して進退して負圧室7の負圧P、の大きさを調整し得る
アイドルアジャストスクリューである。
In the figure, 1 is an intake pipe, 2 is a venturi provided in the intake pipe 1, 3 is a throttle valve provided on the downstream side of the venturi 2, and 4 is a gas injection means provided in the venturi 2. In the gas injection means 4, 6 is an atmospheric pressure chamber that communicates with the upstream side of the venturi 2 to which, for example, the atmospheric pressure P0 of an air horn is applied, and 7 is an atmospheric pressure chamber that communicates with the upstream side of the venturi 2.
8 is a first diaphragm that partitions both chambers 6 and 7; 9 is a first diaphragm that communicates with the negative pressure chamber 7 at one end and has the other end; is branched through the adjustment port 9a and communicates with the intake pipe 1 on the upstream and downstream sides of the throttle valve 3, and the communication path 10 moves back and forth with respect to the adjustment port 9a to control the negative pressure P in the negative pressure chamber 7. This is an idle adjustment screw whose size can be adjusted.

又、I2はガスボンベ即ちガス供給源、13はガスポン
ベ12から供給されるガスを後述の上室へ送り込むガス
通路、14はガス通路13の途中に設けられていてその
下流側のガス圧を所定の大きさP2に制御するレギュレ
ータであって、ガス通路13のガスが流入及び流出する
室15と、大気圧P0が印加される室16とがダイアフ
ラム17によって仕切られ、このダイアフラム17には
室15のガス流入口15aの開口量を制御し得るバルブ
18が連結されていると共に、スプリング19の弾力に
よってバルブ18の開弁方向に弾圧されている。21は
ガス通路13の他端と接続されていて圧力P2に制御さ
れる上室、22は吐出口22aを介してベンチュリ2に
連通ずる下室、23は上室21と下室22を仕切る第二
ダイアフラム、24は上室21と下室22を連通するガ
ス計量用の固定絞り即ち計量絞りであり、この絞り24
を通過するガス流量によって生じる圧力損失即ち圧力降
下により、下室22に負圧P。
Further, I2 is a gas cylinder, that is, a gas supply source, 13 is a gas passage that sends gas supplied from the gas cylinder 12 to an upper chamber described later, and 14 is provided in the middle of the gas passage 13 to maintain the gas pressure on the downstream side. The regulator controls the size P2, and a diaphragm 17 partitions a chamber 15 into which gas flows into and out of the gas passage 13 from a chamber 16 to which atmospheric pressure P0 is applied. A valve 18 that can control the opening amount of the gas inlet 15a is connected to the valve 18, and is pressed in the opening direction by the elasticity of a spring 19. 21 is an upper chamber connected to the other end of the gas passage 13 and controlled by pressure P2, 22 is a lower chamber that communicates with the venturi 2 via the discharge port 22a, and 23 is a chamber that partitions the upper chamber 21 and the lower chamber 22. The second diaphragm 24 is a fixed or metering orifice for gas measurement that communicates the upper chamber 21 and the lower chamber 22.
A negative pressure P is created in the lower chamber 22 due to the pressure loss or drop caused by the gas flow rate passing through the chamber.

(くP2)が印加されるようになっている。25は開ロ
アa及び吐出口22aを貫通すると共に両端で第一及び
第二ダイアフラム8,23を連結せしめるロッド即ち連
結部材、26はロッド25に形成されていてロッド25
に連動して吐出口22aを開閉し得るバルブである。
(P2) is applied. 25 is a rod or connecting member that passes through the opening lower a and the discharge port 22a and connects the first and second diaphragms 8 and 23 at both ends; 26 is formed on the rod 25;
This is a valve that can open and close the discharge port 22a in conjunction with the discharge port 22a.

28は上室21において第二ダイアフラム23をバルブ
26の閉弁方向へ弾圧するスプリング、29はスプリン
グ28の弾力を調整する初期荷重セットスクリューであ
る。アイドルアジャストスクリュー10と初期荷重セラ
トスクリ:L−29とによって夫々第一及び第二ダイア
フラム8,23にかかる荷重を調整してバルブ26の位
置即ち開口面積を制御し、吸入空気流量に対するガス流
量の混合比の初期誤差を調整できるようになっている。
28 is a spring that presses the second diaphragm 23 in the direction of closing the valve 26 in the upper chamber 21, and 29 is an initial load set screw that adjusts the elasticity of the spring 28. The load applied to the first and second diaphragms 8 and 23 is adjusted by the idle adjustment screw 10 and the initial load Serato screw L-29, respectively, to control the position of the valve 26, that is, the opening area, and to mix the gas flow rate with respect to the intake air flow rate. The initial error in the ratio can be adjusted.

本実施例は上述のように構成されており、次に作用を説
明する。
The present embodiment is constructed as described above, and its operation will be explained next.

吸入空気がベンチュリ2を通過すると、ベンチュリ2に
空気流量に応じた負圧P1が発生し、これが負圧室7に
印加される。すると大気圧室6の圧力P。とP、との差
圧(P、−P、)が第一ダイアフラム8に印加されて下
向きの荷重が生じるため、第一ダイアフラム8の下方へ
の変位によってロッド25はバルブ26を開弁せしめる
方向へ移動し、第二ダイアフラム23も下方へ変位して
下室22の容積が増大する。バルブ26が開くことによ
って吐出口22aからガスがベンチュリ2へ噴射され、
このガスが絞り24を通過して計量され、流量に応じて
生じる圧力損失によって負圧P、が発生して下室22へ
印加される。そして第二ダイアフラム23に上室21の
圧力P2とP8との差圧CP、−Pa )が印加され、
しかもこの差圧(Pz  P、)は第一ダイアフラム8
にかかる差圧(P、−P、)による荷重と逆方向(上向
き)の荷重であり、両ダイアフラム8,23の圧力がバ
ランスする位置で吐出口22aとバルブ26とによる開
口面積が決定され、絞り24で計量されて吐出口22a
から噴射されるガス流量が決定される。このガス流量は
吸入空気流量に対応するものであるから、混合気の空燃
比を一定に制御することができる。
When the intake air passes through the venturi 2, a negative pressure P1 is generated in the venturi 2 according to the air flow rate, and this is applied to the negative pressure chamber 7. Then, the pressure P in the atmospheric pressure chamber 6. Since the differential pressure (P, -P,) between , the second diaphragm 23 is also displaced downward, and the volume of the lower chamber 22 increases. When the valve 26 opens, gas is injected from the discharge port 22a to the venturi 2,
This gas passes through the throttle 24 and is metered, and a negative pressure P is generated due to the pressure loss that occurs depending on the flow rate and is applied to the lower chamber 22. Then, a differential pressure CP, -Pa) between the pressures P2 and P8 in the upper chamber 21 is applied to the second diaphragm 23,
Moreover, this differential pressure (Pz P,) is the first diaphragm 8
The load is in the opposite direction (upward) to the load due to the differential pressure (P, -P,) applied to the diaphragms 8 and 23, and the opening area of the discharge port 22a and the valve 26 is determined at a position where the pressures of both diaphragms 8 and 23 are balanced. It is measured by the throttle 24 and discharged from the discharge port 22a.
The flow rate of gas injected from is determined. Since this gas flow rate corresponds to the intake air flow rate, the air-fuel ratio of the air-fuel mixture can be controlled to be constant.

尚、絞り24のガス流量と、吐出口22aのガス流量と
の関係を更に説明すると、前者の方が後者より大きい場
合には負圧P、は小さくなるから、差圧(P、−P、’
)は差圧(P、−PI ’)より小さくなるためにバル
ブ26は更に開かれ、吐出口22aのガス流量が増大し
、逆に後者の方が大きい場合には負圧P、は大きくなる
から、差圧(Pg   P−)は差圧(p、−p、)よ
り大きくなるためにバルブ26は閉方向へ移動し、吐出
口22aのガス流量は減少する。従って、バランス状態
で絞り24のガス流量と吐出口22aのガス流量とが等
しく、絞り24で計量されたガス流量が吐出口22aか
ら噴射されることが理解できる。
To further explain the relationship between the gas flow rate of the throttle 24 and the gas flow rate of the discharge port 22a, if the former is larger than the latter, the negative pressure P becomes smaller, so the differential pressure (P, -P, '
) becomes smaller than the differential pressure (P, -PI'), so the valve 26 is further opened, and the gas flow rate at the discharge port 22a increases, and conversely, when the latter is larger, the negative pressure P, increases. Since the differential pressure (Pg P-) becomes larger than the differential pressure (p, -p,), the valve 26 moves in the closing direction and the gas flow rate at the discharge port 22a decreases. Therefore, it can be understood that in a balanced state, the gas flow rate of the throttle 24 and the gas flow rate of the discharge port 22a are equal, and the gas flow rate measured by the throttle 24 is injected from the discharge port 22a.

次に上述の関係を式によって説明すると、Q、:吸入空
気流量、Q、:ガス流量、Nl :第一ダイアフラム8
の荷重、 N2 :第二ダイアフラム23の荷重、K1・:ベンチ
ュリ2の流量係数Xベンチュリ2の面積、 K、二絞り24の流量係数X絞り24の面積、Ao :
第一及び第二ダイアフラム8,23の夫々の有効面積、 A/F :空燃比、とした場合、 A/F=Q−/Q+であるから、 Q、=に、1了 Q、=に、2、又、 Nl =Ao M (PG  PI )、N 2 =A
 o H(P 2  P s )である。
Next, to explain the above relationship using a formula, Q:: intake air flow rate, Q: gas flow rate, Nl: first diaphragm 8
load, N2: load on second diaphragm 23, K1: flow coefficient of venturi 2 x area of venturi 2, K, flow coefficient of second throttle 24 x area of throttle 24, Ao:
When the effective area of each of the first and second diaphragms 8 and 23, A/F is the air-fuel ratio, A/F=Q-/Q+, so Q,=, 1 completedQ,=, 2. Also, Nl = Ao M (PG PI ), N 2 = A
o H(P 2 P s ).

今、N、=N、となる位置で第一及び第二ダイアフラム
8,23がバランスするから、 Pa  P+=Pi  Ps 、°、Q、=に、rr7:1下トナリ、結局、A/F=
Q、/Qt  =に、(77’:下/KL  o   
+ =に−/ Kt = 一定、となる。
Now, since the first and second diaphragms 8, 23 are balanced at the position where N, = N, Pa P+ = Pi Ps , °, Q, =, rr7:1 lower, after all, A/F =
Q, /Qt = (77': lower /KL o
+ = to -/Kt = constant.

そして、吸入空気流量が増大すれば負圧P1も大きくな
り、第一ダイアフラム8にかかる差圧(PIl−Pl)
が増大して、第一及び第二ダイアフラム8,23の下方
への変位量及びバルブ26の開口面積も増大する。する
と吐出口22a及び絞り24のガス流量が増大して、圧
力損失により負圧P、も大きくなり、第二ダイアフラム
23にかかる上向きの差圧(pt −Ps )が増大す
るので、結局バランス状態を維持し、混合気の空燃比も
一定に維持される。
As the intake air flow rate increases, the negative pressure P1 also increases, resulting in a differential pressure (PIl-Pl) applied to the first diaphragm 8.
increases, and the amount of downward displacement of the first and second diaphragms 8, 23 and the opening area of the valve 26 also increase. Then, the gas flow rate at the discharge port 22a and the throttle 24 increases, and the negative pressure P also increases due to the pressure loss, and the upward differential pressure (pt - Ps) applied to the second diaphragm 23 increases, eventually resulting in a balanced state. The air-fuel ratio of the air-fuel mixture is also maintained constant.

尚、吐出口22aにガム質やカーボン等が付着する等し
て吐出口22aの開口面積が小さくなると、ガス流量が
減少して差圧(p2−Ps )が(P、−P、)より小
さくなるために第二ダイアフラム23が更に下方へ変位
せしめられ、バルブ26が更に吐出口22aから退いて
開口面積が増大し、ガス流量も増大するように補正され
るから、結局側ダイアフラム8,23はバランス状態を
維持し、空燃比も一定に制御される。
Note that if the opening area of the discharge port 22a becomes smaller due to adhesion of gum, carbon, etc. to the discharge port 22a, the gas flow rate decreases and the differential pressure (p2-Ps) becomes smaller than (P, -P,). As a result, the second diaphragm 23 is further displaced downward, the valve 26 is further retreated from the discharge port 22a, the opening area is increased, and the gas flow rate is corrected to increase. A balanced state is maintained, and the air-fuel ratio is also controlled at a constant level.

又、ロッド25は両ダイアフラム8,23によって常に
互いに反対方向へ押圧されているから、両ダイアフラム
8,23との接続位置が精密でなくてもよい。
Further, since the rod 25 is always pressed in opposite directions by the diaphragms 8 and 23, the connection position with the diaphragms 8 and 23 does not have to be precise.

上述のように本実施例によれば、混合気の空燃比を精度
良くしかもフィードバック制御として制御することが出
来、更にガスの吐出口22aにガム質やカーボン等が付
着して開口面積が小さくなったとしても、自動的に補正
することが出来て、混合比の変動を抑制することができ
る。
As described above, according to this embodiment, the air-fuel ratio of the air-fuel mixture can be controlled with high precision and feedback control, and furthermore, the opening area is reduced due to the adhesion of gum, carbon, etc. to the gas discharge port 22a. Even if there is a change in the mixing ratio, it can be automatically corrected and fluctuations in the mixing ratio can be suppressed.

又、ガス通路13においてレギュレータ14を接続し、
その下流側の圧力を一定の大きさP2に制御するように
したから、ガスボンベ12から供給されるガスの密度が
一定でなくても、絞り24で計量されるガス流量の計量
のバラツキを防止することができる。特に本実施例の場
合、ガスの計量手段として絞りを用いており、ベンチュ
リを用いた場合と比較して圧力損失が大きいから、その
上流側の圧力を一定にすることにより、計量精度が著し
く向上する。
In addition, a regulator 14 is connected to the gas passage 13,
Since the pressure on the downstream side is controlled to a constant level P2, even if the density of the gas supplied from the gas cylinder 12 is not constant, variations in the gas flow rate measured by the throttle 24 are prevented. be able to. In particular, in the case of this example, a throttle is used as the gas metering means, and the pressure loss is greater than when using a venturi, so by keeping the pressure on the upstream side constant, the metering accuracy is significantly improved. do.

尚、大気圧室6の圧力は負圧P1より大きい一定圧力で
あれば、大気圧P0でなくてもよい。
Note that the pressure in the atmospheric pressure chamber 6 may not be the atmospheric pressure P0 as long as it is a constant pressure greater than the negative pressure P1.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明に係るガス噴射装置は、吸入空気流量
に応じた負圧が印加される第一ダイアフラムと、噴射す
べきガス流量が計量される計量絞りと、計量絞りに生じ
る圧力損失に応じた負圧が印加される第二ダイアフラム
と、両ダイアフラムを低圧側で連結し且つバルブが設け
られた連結部材とを備えていて、バルブによってガスの
吐出口の開口面積を制御し得るようにしたから、混合気
の空燃比を精度良く制御出来、しかも劣化が少なく、ガ
スの吐出口にガム質やカーボン等が付着して開口面積が
小さくなったとしても、開口面積を自動的に補正して、
混合比の変動を抑制することができる。
As described above, the gas injection device according to the present invention includes a first diaphragm to which a negative pressure is applied depending on the intake air flow rate, a metering orifice that measures the flow rate of gas to be injected, and a metering orifice that measures the flow rate of gas to be injected, and A second diaphragm to which negative pressure is applied, and a connecting member connecting both diaphragms on the low pressure side and provided with a valve, so that the opening area of the gas discharge port can be controlled by the valve. Therefore, the air-fuel ratio of the air-fuel mixture can be controlled with high accuracy, and there is little deterioration.Even if the opening area becomes smaller due to gum or carbon deposits on the gas discharge port, the opening area can be automatically corrected. ,
Fluctuations in the mixing ratio can be suppressed.

又、ガス通路にレギュレータを接続したから、ガス流量
の計量のバラツキを防止できて、計量精度を更に向上さ
せることができる。
Furthermore, since the regulator is connected to the gas passage, it is possible to prevent variations in gas flow rate measurement, and further improve measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明によるガス噴射装置の一実施例を示す
概略断面図である。 ■・・・・吸気管、2・・・・ベンチュリ、4・・・・
ガス噴射手段、6・・・・大気圧室、7・・・・負圧室
、8・・・・第一ダイアフラム、12・・・・ガスボン
ベ、13・・・・ガス通路、14・・・・レギュレータ
、21・・・・上室、22・・・・下室、22a・・・
・吐出口、23・・・・第二ダイアフラム、25・・・
・ロッド、26・・・・バルブ。
The accompanying drawing is a schematic sectional view showing an embodiment of a gas injection device according to the present invention. ■...Intake pipe, 2...Venturi, 4...
Gas injection means, 6... atmospheric pressure chamber, 7... negative pressure chamber, 8... first diaphragm, 12... gas cylinder, 13... gas passage, 14...・Regulator, 21...Upper chamber, 22...Lower chamber, 22a...
・Discharge port, 23...Second diaphragm, 25...
・Rod, 26... Valve.

Claims (2)

【特許請求の範囲】[Claims] (1)吸入空気流量に応じた量のガスを吐出せしめるよ
うにした内燃機関のガス噴射装置において、ベンチュリ
に開口していて吸入空気流量に応じた負圧が印加される
負圧室と大気圧室とを仕切る第一ダイアフラムと、ガス
供給源からガスが供給されるガス通路と、該ガス通路に
接続されている上室と吐出口を介して前記ベンチュリに
連通する下室とを仕切る第二ダイアフラムと、前記上室
と下室を連通する計量絞りと、前記第一及び第二ダイア
フラムを連結すると共に吐出口を開閉し得るバルブが設
けられている連結部材とを備えたことを特徴とするガス
噴射装置。
(1) In a gas injection device for an internal combustion engine that discharges gas in an amount that corresponds to the intake air flow rate, there is a negative pressure chamber that opens in the venturi and applies negative pressure that corresponds to the intake air flow rate, and atmospheric pressure. a first diaphragm that partitions the chamber, a gas passage to which gas is supplied from the gas supply source, and a second diaphragm that partitions the upper chamber connected to the gas passage and the lower chamber that communicates with the venturi via the discharge port. It is characterized by comprising a diaphragm, a metering orifice that communicates the upper chamber and the lower chamber, and a connecting member that connects the first and second diaphragms and is provided with a valve that can open and close the discharge port. Gas injection device.
(2)前記ガス通路にその下流側の圧力を調整するレギ
ュレータが接続されていることを特徴とする特許請求の
範囲(1)に記載のガス噴射装置。
(2) The gas injection device according to claim (1), wherein a regulator is connected to the gas passage to adjust the pressure on the downstream side thereof.
JP22087489A 1989-08-28 1989-08-28 Gas injector Pending JPH0385358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22087489A JPH0385358A (en) 1989-08-28 1989-08-28 Gas injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22087489A JPH0385358A (en) 1989-08-28 1989-08-28 Gas injector

Publications (1)

Publication Number Publication Date
JPH0385358A true JPH0385358A (en) 1991-04-10

Family

ID=16757892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22087489A Pending JPH0385358A (en) 1989-08-28 1989-08-28 Gas injector

Country Status (1)

Country Link
JP (1) JPH0385358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559524A (en) * 1990-08-31 1993-03-09 Nkk Corp Stainless steel member for ultrahigh vacuum equipment and its production
WO2005103475A1 (en) * 2004-04-21 2005-11-03 Shanghai Optimum Power And Environment Co., Ltd Gas-controlling device of a small gas engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559524A (en) * 1990-08-31 1993-03-09 Nkk Corp Stainless steel member for ultrahigh vacuum equipment and its production
WO2005103475A1 (en) * 2004-04-21 2005-11-03 Shanghai Optimum Power And Environment Co., Ltd Gas-controlling device of a small gas engine

Similar Documents

Publication Publication Date Title
EP0363448B1 (en) Fluid servo system for fuel injection and other applications
US4018200A (en) Fuel injection system with fuel pressure control valve
SU634688A3 (en) Fuel injection system for internal combustion engine
US4084562A (en) Fuel metering device
US4243003A (en) Fuel injection system
JPH0385358A (en) Gas injector
US4038957A (en) Fuel control system for use in internal combustion engine
US4125100A (en) Method and apparatus for controlling the operating mixture supplied to an internal combustion engine
JPS5824627B2 (en) Fuel control device for internal combustion engines
JPH0385359A (en) Gas injector
US4364361A (en) Fuel injection system
JPH0374558A (en) Gas injection device
US4195814A (en) Continuously operable fuel injection device
US4002153A (en) Intake system in internal combustion engine
JPH0385360A (en) Gas injector
JPS5843583B2 (en) The staghorn snail
US4984547A (en) Fuel injection system for injection carburetors
JPH08531Y2 (en) Multi-point fuel injector
JP2512145Y2 (en) Fuel supply device
JPH04284145A (en) Fuel supply device for gas engine
JP2569649Y2 (en) Fuel injection device
JPH08532Y2 (en) Multi-point fuel injector
JPH03134263A (en) Air-fuel ratio adjusting mechanism for fuel injection device
JP2537037B2 (en) Vaporizer with idle adjustment device
JPH0826833B2 (en) Fuel injection valve