JPH038524B2 - - Google Patents

Info

Publication number
JPH038524B2
JPH038524B2 JP55501328A JP50132880A JPH038524B2 JP H038524 B2 JPH038524 B2 JP H038524B2 JP 55501328 A JP55501328 A JP 55501328A JP 50132880 A JP50132880 A JP 50132880A JP H038524 B2 JPH038524 B2 JP H038524B2
Authority
JP
Japan
Prior art keywords
display
electrochromic
cell
diphthalocyanine
displays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55501328A
Other languages
Japanese (ja)
Other versions
JPS56500822A (en
Inventor
Maajii Emu Nikoruson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing North American Inc
Original Assignee
Rockwell International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell International Corp filed Critical Rockwell International Corp
Publication of JPS56500822A publication Critical patent/JPS56500822A/ja
Publication of JPH038524B2 publication Critical patent/JPH038524B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

請求の範囲 1 50ミリ秒以下の応答時間で、−11℃以下の温
度で複数の視覚的に区別できる光学状態をとり得
るエレクトロクロミツク表示セルであつて、 透明な電気伝導性の表示電極と、 前記表示電極に対して電位差を印加するための
対向電極と、 前記表示電極上に配置された、希土類ジフタロ
シアニン錯体からなる一層のエレクトロクロミツ
ク材料と、 イオン流を通過させるために前記表示電極上の
前記層と前記対向電極との間に介挿された電解質
材料とを備え、 前記電解質材料はその水溶液が−11℃以下の温
度で凝固する金属塩化物の高濃度水溶液であるこ
とを特徴とする、エレクトロクロミツク表示セ
ル。
Claim 1: An electrochromic display cell capable of assuming multiple visually distinguishable optical states at temperatures below -11°C with a response time of 50 milliseconds or less, comprising: a transparent electrically conductive display electrode; , a counter electrode for applying a potential difference to the display electrode, a layer of electrochromic material made of a rare earth diphthalocyanine complex disposed on the display electrode, and a counter electrode for passing an ion flow through the display electrode. an electrolyte material interposed between the upper layer and the counter electrode, and the electrolyte material is a highly concentrated aqueous solution of metal chloride that solidifies at a temperature of -11°C or lower. An electrochromic display cell.

2 前記希土類ジフタロシアニン錯体の希土類は
ランタノイド系列の希土類元素、イツトリウム、
およびスカンジウムからなるグループから選択さ
れる、請求の範囲第1項記載の表示セル。
2 The rare earth of the rare earth diphthalocyanine complex is a lanthanide series rare earth element, yttrium,
2. The display cell of claim 1, wherein the display cell is selected from the group consisting of: and scandium.

3 前記電解質材料が塩化カルシウム水溶液を含
むことを特徴とする、請求の範囲第1項記載の表
示セル。
3. The display cell according to claim 1, wherein the electrolyte material contains an aqueous calcium chloride solution.

4 前記電解質材料が塩化リチウム水溶液を含む
ことを特徴とする、請求の範囲第1項記載の表示
セル。
4. The display cell according to claim 1, wherein the electrolyte material contains an aqueous lithium chloride solution.

5 前記塩化カルシウムが重量で前記溶液の30%
であることを特徴とする、請求の範囲第3項記載
の表示セル。
5 The calcium chloride is 30% by weight of the solution.
The display cell according to claim 3, characterized in that:

6 前記塩化リチウムが前記溶液の重量で25%で
あることを特徴とする、請求の範囲第4項記載の
表示セル。
6. Display cell according to claim 4, characterized in that the lithium chloride is 25% by weight of the solution.

発明の分野 この発明は一般的に電気的に制御可能なデイス
プレイの分野に関し、より特定的にはエレクトロ
クロミツク・デイスプレイの分野に関する。
FIELD OF THE INVENTION This invention relates generally to the field of electrically controllable displays, and more particularly to the field of electrochromic displays.

発明の背景 多くの形式の電気的に制御可能なデイスプレイ
装置が存在する。多数のこのような装置はしばら
く前から商業的に利用されてきており、液晶デイ
スプレイ、発光ダイオード・デイスプレイ、プラ
ズマ・デイスプレイなどを含む。発光ダイオード
とプラズマ・デイスプレイパネルとは、駆動する
のに特別の電力を要する活性的な発光装置であ
る。さらに、周囲の明るい照明の下で容易に見わ
けられる発光ダイオード・デイスプレイを製作す
ることは、不可能ではないが、困難である。液晶
デイスプレイは限られた温度範囲でのみ作動さ
れ、かつ液晶材料内では実質的にメモリを有しな
い。のみならず、多くの液晶デイスプレイの視認
性は、観察者が軸から数度動くと、低下する。
BACKGROUND OF THE INVENTION Many types of electrically controllable display devices exist. A number of such devices have been commercially available for some time and include liquid crystal displays, light emitting diode displays, plasma displays, and the like. Light emitting diodes and plasma display panels are active light emitting devices that require extra power to operate. Additionally, it is difficult, if not impossible, to fabricate light emitting diode displays that are easily visible under bright ambient lighting. Liquid crystal displays operate only over a limited temperature range and have virtually no memory within the liquid crystal material. Additionally, the visibility of many liquid crystal displays decreases when the viewer moves a few degrees off-axis.

エレクトロクロミツク・デイスプレイは色の変
化を達成するための活性材料の電気化学反応によ
りデイスプレイにおける着色部分の変化を通じて
情報を表示するために開発された。酸化タングス
テンのエレクトロクロミツク材料の良く知られた
場合では、この色の変化は白から青である。ビオ
ロゲンのエレクトロクロミツク材料ではその変化
は白からバイオレツトである。これらの特定の電
気化学的機構のために、このようなデイスプレイ
は表示された情報を書き込みまたは消去するため
に実質的な電力と時間とを要する。要求される電
力量は不所望に大きく、特に電池で駆動する際に
大きく、かつ表示された情報を変化させるために
要求される時間は、このような材料を多くのデイ
スプレイ用途に対して好ましくないものとする。
これらの公知のデイスプレイはいずれも背景に対
して1以上の色を与えるものではない。
Electrochromic displays have been developed to display information through changes in the colored portions of the display by electrochemical reactions of active materials to achieve color changes. In the well-known case of tungsten oxide electrochromic materials, this color change is from white to blue. For viologen electrochromic materials, the change is from white to violet. Because of their specific electrochemical mechanisms, such displays require substantial power and time to write or erase the displayed information. The amount of power required is undesirably large, especially when powered by batteries, and the time required to change the displayed information makes such materials undesirable for many display applications. shall be taken as a thing.
None of these known displays provide more than one color to the background.

希土類ジフタロシアニンがエレクトロクロミツ
ク特性を有することは従来の刊行物により知られ
ている。それらの刊行物では、ジフタロシアニン
の色は、一方の電極上にジフタロシアニン・フイ
ルムを有する電気化学的セルに電位差を印加する
と約8秒間にわたり変化する。例として、P.N.
Moskalev and I.S.Kirin,“Effect of the
Electrode Potential on the Absorption
Spectrum of a Rare−Earth Diphthalo−
cyanine Layer,”Opt.i Spektrosk,29414
(1970)と、P.N.Moskalev and I.S.Kirin,
“The Electrochromism of Lanthanide
Diphthalocyanines”Russian J.Phys Chem,
46,1019(1972)とを参照されたい。ジフタロシ
アニンは色を変化させるのに大きな電力量は必要
としないが、色を変化させるために必要な長い時
間は、デイスプレイの必要条件として評価される
と、ジフタロシアニンの性能特性を好ましくない
ものとさせる。
It is known from previous publications that rare earth diphthalocyanines have electrochromic properties. In those publications, the color of diphthalocyanine changes over about 8 seconds when a potential difference is applied to an electrochemical cell having a diphthalocyanine film on one electrode. As an example, P.N.
Moskalev and ISKirin, “Effect of the
Electrode potential on the absorption
Spectrum of a Rare-Earth Diphthalo-
cyanine layer,”Opt.i Spektrosk,29414
(1970) and P.N.Moskalev and ISKirin,
“The Electrochromism of Lanthanide
Diphthalocyanines”Russian J.Phys Chem,
46, 1019 (1972). Although diphthalocyanine does not require large amounts of power to change color, the long time required to change color may make the performance characteristics of diphthalocyanine unfavorable when evaluated for display requirements. let

しかしながら、より速いスイツチグ特性を有す
るエレクトロクロミツク・デイスプレイ装置は
M.M.Nicholsonによる、Phthalocyanine
Electroctromic Displayと題された1980年1月22
日に発行されたアメリカ合衆国特許4184751号に
おいて述べられている。このデイスプレイ装置は
塩化カリウム(KCl)の電解質溶液を含む。この
装置は大体100℃から−11℃の作動温度範囲を有
する。その結果、エレクトロクロミツク・デイス
プレイを用いるための多くの用途がその限られた
動作温度範囲のために除外される。
However, electrochromic display devices with faster switching characteristics
Phthalocyanine by MM Nicholson
January 22, 1980 entitled Electroctromic Display
US Pat. No. 4,184,751, issued in This display device contains an electrolyte solution of potassium chloride (KCl). This device has an operating temperature range of approximately 100°C to -11°C. As a result, many applications for using electrochromic displays are precluded due to their limited operating temperature range.

上記米国特許(特開昭53−77494に対応はさら
に、50ミリ秒以下の応答時間を達成し得る構成を
開示している。
The above-mentioned US patent (corresponding to Japanese Patent Application Laid-Open No. 53-77494) further discloses a configuration capable of achieving a response time of 50 milliseconds or less.

発明の概要 この発明はデイスプレイは金属ジフタロシアニ
ン錯体をエレクトロクロミツク活性を有する材料
として、かつエレクトロクロミツク・デイスプレ
イ・セル中の電解質溶液の電解質として低凝固点
の金属塩化物を、利用することによつて従来技術
のデイスプレイの多くの問題点を克服する。50ミ
リ秒以下という急速な色の変化が希土類金属ジフ
タロシアニン錯体について先に報告された遅い切
換時間を緩和するようになしとげられている。電
力消費量は、デイスプレイ材料の電力消費量が小
さく、光学吸収が高く、かつデイスプレイがその
構成により数分から数時間の開路メモリを示すた
め、小さい。多色の、すなわち二以上の色のデイ
スプレイは表示電極と対向電極との間に印加され
る電圧の範囲を用いて成しとげられる。表示され
た情報と情報が表示されている背景の色反転と
は、キヤラクタセブメントにおいてと同様に視認
領域の背景部分において表示電極を使用すること
により達成される。電解質溶液として選択された
金属塩化物の水溶液の使用は、非常な低温、たと
えば電解質溶液が塩化リチウムの高濃度溶液なら
ば−80℃程度まで操作範囲を拡張する。
SUMMARY OF THE INVENTION This invention provides a display that utilizes a metal diphthalocyanine complex as a material with electrochromic activity and a low freezing point metal chloride as an electrolyte in an electrolyte solution in an electrochromic display cell. This overcomes many of the problems of prior art displays. Rapid color changes of less than 50 milliseconds have been achieved to alleviate the slow switching times previously reported for rare earth metal diphthalocyanine complexes. Power consumption is low because the display material has low power consumption, high optical absorption, and the display exhibits an open circuit memory of minutes to hours depending on its configuration. Polychromatic, ie, two or more color, displays are achieved using a range of voltages applied between the display electrode and the counter electrode. Color reversal of the displayed information and the background on which the information is displayed is achieved by using display electrodes in the background portion of the viewing area as well as in the character segments. The use of an aqueous solution of the selected metal chloride as the electrolyte solution extends the operating range to very low temperatures, for example on the order of -80 DEG C. if the electrolyte solution is a highly concentrated solution of lithium chloride.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は典型的な透過型デイスプレイセルの形
状の断面を図解する。
FIG. 1 illustrates a cross-section of a typical transmissive display cell shape.

好ましい実施例の説明 この発明によるデイスプレイ・セルは二つの主
要な形式に分類される。一方の形式は反射された
光のみによつて視認されるように設計されている
反射性デイスプレイセルを備える。他方の形式は
それを透過してきた光によつて再視認されるよう
に設計されている透過性デイスプレイ・セルを備
える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Display cells according to the present invention fall into two major types. One type includes reflective display cells that are designed to be viewed by reflected light only. The other type includes a transmissive display cell that is designed to be viewed again by light transmitted through it.

透過型デイスプレイ・セルの構成は第1図にお
いて10で一般的に表わされている。デイスプレ
イ・セル10は視認表面またはデイスプレイ・セ
ルの領域を構成する透明の表面プレート14を支
持するケースまたは類似の構造(図示せず)を含
む。後部プレート12もまた(透過型セルにおい
て)透明である。後部プレート12と表面プレー
ト14はスペーサ18とシール20とともにその
内部にエレクトロクロミツク材料、セル電極およ
び電解質溶液を含むチヤンバ16を形成する。
The configuration of a transmissive display cell is indicated generally at 10 in FIG. Display cell 10 includes a case or similar structure (not shown) that supports a transparent face plate 14 that constitutes the viewing surface or area of the display cell. The rear plate 12 is also transparent (in transmissive cells). Back plate 12 and front plate 14 together with spacers 18 and seals 20 form a chamber 16 containing the electrochromic material, cell electrodes and electrolyte solution therein.

複数の透明な電気伝導性の表示電極は好ましく
は表面プレート14の内側の面に配置されてい
る。表示電極はキヤラクタセグメント28または
他のパターン領域を含み、それらの数および配置
はセルが表示可能とされている情報の量と形式と
によつて決定される。エレクトロクロミツクな金
属ジフタロシアニンの薄層30は電解質溶液11
8にさらすために表示電極のキヤラクタセグメン
ト28上に配置される。金属ジフタロシアニンの
薄層30はデイスプレイ・セルのエレクトロクロ
ミツク材料を含む。対向電極22は空洞16の裏
面を構成する後部プレート12の一部に配置され
る。セルは静電位駆動システムが用いられる際に
は別の参照電極24をも含む。典型的表示セル1
0の構成は例示にすぎない。従来技術の議論の中
で上述されたニコルソンの出願が参照され、その
内容はセルの構造の詳細についてここにおいて参
照することによつてここに含まれる。
A plurality of transparent electrically conductive display electrodes are preferably disposed on the inner surface of the face plate 14. The display electrodes include character segments 28 or other patterned areas, the number and arrangement of which is determined by the amount and type of information the cell is intended to display. A thin layer 30 of electrochromic metal diphthalocyanine is present in an electrolyte solution 11.
8 is placed on the character segment 28 of the display electrode. A thin layer of metal diphthalocyanine 30 contains the electrochromic material of the display cell. The counter electrode 22 is arranged on a part of the rear plate 12 forming the back surface of the cavity 16 . The cell also includes another reference electrode 24 when an electrostatic potential drive system is used. Typical display cell 1
The configuration of 0 is merely an example. Reference is made to the Nicholson application mentioned above in the discussion of the prior art, the contents of which are incorporated herein by reference for details of the structure of the cell.

この発明は、金属ジフタロシアニン材料と改善
された操作をさせる改良電解質とを利用するエレ
クトロクロミツク・デイスプレイに向けられる。
具体的にいうと、電解質溶液は水の凝固点よりか
なり下で凝固する金属塩化物の高濃度水溶液であ
る。特に望ましい電解質溶液は水に30重量パーセ
ントの塩化カルシウムを含む溶液である。この組
成はほぼ−55℃で凍結する共晶混合物の組成に近
い。その結果、低温かつ早い応答時間のセル動作
が達せられる。この電解質溶液がルテチウムジフ
タロシアニンの表示セルと共に用いられ、かつほ
ぼ−50℃で少なくとも900回以上首尾よく駆動さ
れた。多色のエレクトロクロミツク切換は、これ
らの状態下においてこの表示セル中で素晴しい色
質で起こつた。さらに、切換時間中においては視
覚的には何らの検出可能な変化も観察されなかつ
た。溶液がほぼ室温から−50℃まで冷却されるに
つれて、エレクトロクロミツク材料中の色の変換
は50ミリ秒以内に生じ続けた。
The present invention is directed to electrochromic displays that utilize metal diphthalocyanine materials and improved electrolytes that provide improved operation.
Specifically, the electrolyte solution is a highly concentrated aqueous solution of metal chlorides that solidifies well below the freezing point of water. A particularly desirable electrolyte solution is a solution containing 30 weight percent calcium chloride in water. This composition is close to that of a eutectic mixture that freezes at approximately -55°C. As a result, low temperature and fast response time cell operation is achieved. This electrolyte solution was used with a lutetium diphthalocyanine display cell and was successfully operated at approximately -50°C for at least 900 cycles. Multicolor electrochromic switching occurred with excellent color quality in this display cell under these conditions. Furthermore, no visually detectable changes were observed during the switching time. Color transformation in the electrochromic material continued to occur within 50 milliseconds as the solution was cooled from about room temperature to -50°C.

他の低融点電解質が幾つかの公知の表示セルで
用いられている塩化カリウム水溶液に取り替える
ことが提案される。たとえば、塩化リチウム水溶
液も適当である。この化学系において共晶混合物
は25重量パーセントの塩化リチウムを含み、かつ
ほぼ−80℃の融点を有する。
It is proposed that other low melting point electrolytes replace the aqueous potassium chloride solution used in some known display cells. For example, aqueous lithium chloride solutions are also suitable. In this chemistry, the eutectic mixture contains 25 weight percent lithium chloride and has a melting point of approximately -80°C.

電解質溶液を製造するに際しては、イオン化さ
れた材料は、金属塩化物溶液が特に不活性な最も
低融点系であり、水溶性電解質として用いられ得
るが、塩化物塩から作られる必要はない。もつと
も、三成分系または水に2あるいはそれ以上の塩
を含む他の型の混合物もまた用いられることが理
解されなければならない。
In producing electrolyte solutions, the ionized material need not be made from chloride salts, although metal chloride solutions are the lowest melting point systems that are particularly inert and can be used as aqueous electrolytes. However, it should be understood that ternary systems or other types of mixtures containing two or more salts in water may also be used.

これらの低融点電解質でなくとも、希土類金属
ジフタロシアニンデイスプレイ(上述されたM.
M.ニコルソンのアメリカ合衆国特許第4184751号
を参照)はたとえば酸化タングステンまたはビオ
ロゲンのような他のエレクトロクロミツク材料や
液晶よりも多数の利点を提供する。しかしなが
ら、この出願で述べられた電解質によつてなしと
げられる非常な低温での能力は他のデイスプレイ
技術によつては達成できない。
Even if these low melting point electrolytes are not available, rare earth metal diphthalocyanine displays (M.
(see U.S. Pat. No. 4,184,751 to M. Nicholson) offer a number of advantages over other electrochromic materials and liquid crystals, such as tungsten oxide or viologen. However, the very low temperature capabilities achieved by the electrolytes described in this application are not achievable by other display technologies.

実験が行なわれた表示セルにおいてはニツケル
対向電極が3本の電極を駆動する回路に利用され
る。高濃度の塩化物媒体中で2または3個の電極
駆動装置と共に表示セルのためにより適した対向
電極材料は銀−塩化銀、鉛−塩化鉛および酸化体
と還元体との形をしたエレクトロクロミツク染料
からなる固体混合物を含む。対向電極は通例は操
作性と視認性を改善するために視野から離されて
おく。ジフタロシアニンのエレクトロクロミツク
の対向電極はジフタロシアニン材料が低温で早い
電極応答を表わすので、金属−金属塩化物より好
ましい。
In the display cell in which the experiment was conducted, a nickel counter electrode is used in the circuit that drives the three electrodes. More suitable counter electrode materials for display cells with two or three electrode drivers in highly concentrated chloride media are electrochromic metals in the form of silver-silver chloride, lead-lead chloride and oxidants and reductants. Contains a solid mixture of dyes. The counter electrode is typically kept away from the field of view to improve maneuverability and visibility. Diphthalocyanine electrochromic counter electrodes are preferred over metal-metal chlorides because diphthalocyanine materials exhibit fast electrode response at low temperatures.

以上のように、エレクトロクロミツク表示セル
について示されかつ述べられた。この表示セルは
この技術分野における公知の現存するセルと同様
である適当な構造的形状により特徴づけられる。
しかしながら、このセルはエレクトロクロミツク
表示セル中で通常見出される所望の操作特性を犠
性にすることなく、セルを極端に低温で操作させ
る新しくかつ格別のエレクトロクロミツク材料の
改良を含む。
Thus, an electrochromic display cell has been shown and described. This display cell is characterized by a suitable structural shape that is similar to existing cells known in the art.
However, this cell includes new and unique electrochromic material improvements that allow the cell to operate at extremely low temperatures without sacrificing the desirable operating characteristics normally found in electrochromic display cells.

JP55501328A 1979-05-08 1980-03-17 Expired - Lifetime JPH038524B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3696779A 1979-05-08 1979-05-08

Publications (2)

Publication Number Publication Date
JPS56500822A JPS56500822A (en) 1981-06-18
JPH038524B2 true JPH038524B2 (en) 1991-02-06

Family

ID=21891695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55501328A Expired - Lifetime JPH038524B2 (en) 1979-05-08 1980-03-17

Country Status (3)

Country Link
JP (1) JPH038524B2 (en)
FR (1) FR2456357A1 (en)
WO (1) WO1980002462A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3069044D1 (en) * 1980-12-19 1984-09-27 Ibm Metal diphthalocyanine electrochromic displays and electrolytes therefor
EP0076060B1 (en) * 1981-09-25 1986-12-17 Imperial Chemical Industries Plc Method of applying thin films to substrates
US4474433A (en) * 1981-12-11 1984-10-02 Rockwell International Corporation Chemical color conversion of electrochromic display material
CN101116030A (en) * 2005-02-09 2008-01-30 皇家飞利浦电子股份有限公司 Display device with solid redox centres

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2024269A1 (en) * 1970-05-19 1971-12-02 Merck Patent Gmbh Nematic mixtures - of low melting point, used in electronics
US3704057A (en) * 1971-06-02 1972-11-28 American Cyanamid Co Electrochromic device having identical display and counter electrode materials
US3819252A (en) * 1972-12-21 1974-06-25 American Cyanamid Co Additives that increase the stability of electrochromic films in electrochromic devices
JPS50101068A (en) * 1974-01-08 1975-08-11
JPS51109854A (en) * 1975-03-22 1976-09-29 Sony Corp
CH615763A5 (en) * 1975-05-07 1980-02-15 Bbc Brown Boveri & Cie
US4184751A (en) * 1976-12-20 1980-01-22 Rockwell International Corporation Phthalocyanine electrochromic display
GB1578600A (en) * 1976-12-20 1980-11-05 Rockwell International Corp Electrochromic display device

Also Published As

Publication number Publication date
JPS56500822A (en) 1981-06-18
FR2456357A1 (en) 1980-12-05
WO1980002462A1 (en) 1980-11-13
FR2456357B1 (en) 1984-12-28

Similar Documents

Publication Publication Date Title
US4184751A (en) Phthalocyanine electrochromic display
US3998525A (en) Edge lighted electrochromic displays
US4371236A (en) Electrochromic display using rare-earth diphthalocyanines and a low freezing-point electrolyte
JPH11101994A (en) Picture display device of electrodeposition type
US4205903A (en) Writing/erasing technique for an electrochromic display cell
JPH06507732A (en) Electrochromic light valve and its manufacturing method and use thereof
JPH038524B2 (en)
JPS5814652B2 (en) electrochromic display device
US4150362A (en) Regeneration of a memory state in electrochromic displays
GB1578600A (en) Electrochromic display device
US4257683A (en) Electrochromic display
US4432612A (en) Phthalocyanine electrochromic display with improved cycle life
Tajima et al. Effective density of tantalum oxide thin film by reactive DC magnetron sputtering for all-solid-state switchable mirror
JP4700490B2 (en) Display element
JPS5943071B2 (en) electrochromic display element
USH264H (en) Electrochromic display device
JPS603354B2 (en) image display device
JPS601609B2 (en) electrochromic display element
Baucke Development of an electrochromic mirror
JPS5946550B2 (en) cell
JP2000194019A (en) Solution phase electrochromic element
JPH0713204A (en) Electrochromic display element
JPS6010610B2 (en) electrical display device
JPS6159489B2 (en)
JPS63224189A (en) Electrochromic display device