JPH038503B2 - - Google Patents

Info

Publication number
JPH038503B2
JPH038503B2 JP57137053A JP13705382A JPH038503B2 JP H038503 B2 JPH038503 B2 JP H038503B2 JP 57137053 A JP57137053 A JP 57137053A JP 13705382 A JP13705382 A JP 13705382A JP H038503 B2 JPH038503 B2 JP H038503B2
Authority
JP
Japan
Prior art keywords
chlorine dioxide
dye
wavelength
light
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57137053A
Other languages
Japanese (ja)
Other versions
JPS5927249A (en
Inventor
Noryuki Goto
Minoru Fukuda
Isao Isa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP13705382A priority Critical patent/JPS5927249A/en
Publication of JPS5927249A publication Critical patent/JPS5927249A/en
Publication of JPH038503B2 publication Critical patent/JPH038503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 本発明は、液中に存在する二酸化塩素濃度の測
定または監視するための光学式二酸化塩素濃度の
測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical chlorine dioxide concentration measuring method for measuring or monitoring the chlorine dioxide concentration present in a liquid.

二酸化塩素は大規模な装置を用いて、大量にパ
ルプの漂白剤として使用されている。また脂肪の
脱色、工業廃棄物中よりフエノール分の除去、排
煙脱硝などの環境保全、公害防止の分野にも広く
使用されている。
Chlorine dioxide is used as a pulp bleaching agent in large quantities using large-scale equipment. It is also widely used in the fields of environmental protection and pollution prevention, such as decolorizing fats, removing phenols from industrial waste, and denitrifying flue gas.

我国において、上水道の殺菌処理に塩素が使用
されているが、塩素処理による発ガン性物質であ
るトリハロメタンの生成が問題となつている。塩
素の代りとしてトリハロメタンの生成しない二酸
化塩素が有望視されている。
In Japan, chlorine is used to disinfect water supplies, but the production of trihalomethanes, a carcinogen, due to chlorine treatment has become a problem. Chlorine dioxide, which does not generate trihalomethanes, is seen as a promising alternative to chlorine.

更に近年、二酸化塩素の優れた殺菌性を利用し
て、たとえば抄紙工程の白水のスライムコントロ
ール剤として使用されるようになつた。
Furthermore, in recent years, chlorine dioxide has come to be used, for example, as a slime control agent for white water in the papermaking process, taking advantage of its excellent bactericidal properties.

上記したように二酸化塩素が低濃度で使用され
るようになつたため、二酸化塩素の低濃度での測
定が切望されている。
As mentioned above, since chlorine dioxide has come to be used at low concentrations, there is a strong desire to measure chlorine dioxide at low concentrations.

本発明の目的は信頼性に優れ、安価でかつ保守
管理の容易である低濃度の測定が可能な二酸化塩
素濃度の測定方法を提供することにある。
An object of the present invention is to provide a method for measuring chlorine dioxide concentration that is highly reliable, inexpensive, easy to maintain, and capable of measuring low concentrations.

本発明方法は0.05〜50ppmの低濃度二酸化塩素
を含有する溶液に、色素として1,5−ビス−
(4−メチルフエニルアミノ−2−ソジウムスル
ホネイト)−9,10−アントラキノンまたは1,
8−ビス−(4−メチルフエニルアミノ−2−ソ
ジウムスルホネイト)−9,10−アントラキノン
またはその混合物を二酸化塩素1重量部当り0.3
〜500重量部加えて色素と二酸化塩素を反応させ
て二酸化塩素の濃度に対応して色素を退色させ;
残留色素により着色した溶液の一部分を透明セル
を通して通過させ;前記セル内の着色した溶液
に、400nm〜800nmの波長内で、異なる波長スペ
クトルをもつ発光ダイオードの2個、またはハロ
ゲンランプまたはタングステンランプからの光を
光学フイルターによつて中程の一部分の波長帯域
の光を吸収した2つの波長帯域をもつ光を照射
し;該2つの波長帯域に分光感度特性をもつ半導
体素子、または該2つの波長帯域に夫々分光感度
特性をもつ2つの半導体光電素子の組合せを用い
て、夫々の波長帯域の透過光の光強度を夫々の電
圧に変換させ;該検出された電圧を対数変換し、
増巾し、前記2つの波長帯域の電圧の差を測定
し、一方二酸化塩素を含まずに同量の色素の含む
溶液について同様に操作した電圧の差を測定し、
これら両者の差で二酸化塩素の濃度に変換させ
る;ことから成る。
In the method of the present invention, 1,5-bis-1,5-bis-
(4-methylphenylamino-2-sodium sulfonate)-9,10-anthraquinone or 1,
8-bis-(4-methylphenylamino-2-sodium sulfonate)-9,10-anthraquinone or a mixture thereof at 0.3 parts by weight of chlorine dioxide
Add ~500 parts by weight and react the dye with chlorine dioxide to discolor the dye in accordance with the concentration of chlorine dioxide;
A portion of the solution colored by the residual dye is passed through a transparent cell; the colored solution in said cell is exposed to two light emitting diodes with different wavelength spectra within a wavelength of 400 nm to 800 nm, or from a halogen lamp or a tungsten lamp. A semiconductor element having spectral sensitivity characteristics in the two wavelength bands, or a semiconductor element having spectral sensitivity characteristics in the two wavelength bands; Using a combination of two semiconductor photoelectric elements each having spectral sensitivity characteristics in each band, converting the light intensity of transmitted light in each wavelength band into respective voltages; logarithmically converting the detected voltages;
amplifying and measuring the voltage difference between the two wavelength bands, while measuring the voltage difference of a solution containing the same amount of dye but without chlorine dioxide operated in the same manner,
The difference between these two is converted into the concentration of chlorine dioxide.

本発明方法を添付図面につき詳細に説明する。 The method of the invention will be explained in detail with reference to the accompanying drawings.

第1図は本発明方法に使用する二酸化塩素濃度
計のフローシートである。
FIG. 1 is a flow sheet of a chlorine dioxide concentration meter used in the method of the present invention.

試料はライン44を通り、定量ポンプ42によ
り混合器40に導かれる。一方、色素はライン4
3を通り、定量ポンプ41より混合器40に導か
れ、試料と混合される。混合器中で色素と二酸化
塩素が反応して、色素が二酸化塩素濃度に対応し
て退色する。混合器40を経た試料はライン45
を通してセル20に導びかれ、ライン46を通し
て連続的に排出される。
The sample passes through line 44 and is directed to mixer 40 by metering pump 42 . On the other hand, the dye is line 4
3, is led to a mixer 40 by a metering pump 41, and mixed with the sample. The dye and chlorine dioxide react in the mixer, causing the dye to fade in proportion to the chlorine dioxide concentration. The sample that has passed through the mixer 40 is transferred to line 45.
is introduced into the cell 20 through a line 46 and continuously discharged through a line 46.

ハロゲンランプまたはタングステンランプ13
から出た連続スペクトルの光は集光レンズ12に
より集光され、例えば第2図aに示した光学特性
を持つたフイルター11により一部の波長帯域の
光が吸収され、第2図bに示した2つの波長帯域
の光に分割される。該色素は第2図cに示したご
とく二酸化塩素により退色し、460〜600nmの波
長域で吸光度が低下し、400〜460nmの波長域で
吸光度が増加する。第2図bに示した光がセルを
透過すると第2図dの光となる。一方、2つの波
長帯域に感度特性を持つた半導体光電素子、例え
ばカラーセンサ−PD151(シヤープ社製)は受光
部を2つもち、それぞれ受光部(PD1および
PD2)は第2図eの感度特性を持つているので半
導体光電素子の相対出力は第2図fとなる。第2
図fに示したようにセル中に二酸化塩素無添加と
二酸化塩素2ppmを加えた水溶液を入れた場合と
を比較するとPD2は変化せず、PD1は500nm以下
の波長の相対出力が大きくなる。600nmをほぼ中
心とする部分の波長帯域の光を吸収しないで照射
した場合、その変化量は小さくなり、感度が低下
する。400〜460nmの波長域で吸光度が増加する
と色素と、600nmをほぼ中心とする部分の波長帯
域光をカツトした照射光を組み合せることにより
相対変化量は大きくなり、低濃度の二酸化塩素濃
度を精度よく測定できる。PD1およびPD2によ
り、光強度に応じてそれぞれ電圧E11およびE12
変換される。E11およびE12はアンプ50により対
数変換、増巾された後、その差(ΔE1)を電位差
計または記録計51により指示または記録する。
一方二酸化塩素を含まない試料を同様な操作を行
ないΔE1に対応する電圧をΔE0とするとΔE0
ΔE1が二酸化塩素濃度に対応する。このΔE0は分
析操作の最初に測定し、コンピユーターに記憶さ
せておけば良い。
Halogen lamp or tungsten lamp 13
The continuous spectrum light emitted from the is condensed by the condensing lens 12, and the light in a part of the wavelength band is absorbed by the filter 11, which has the optical characteristics shown in FIG. The light is split into two wavelength bands. As shown in FIG. 2c, the color of the dye is bleached by chlorine dioxide, and the absorbance decreases in the wavelength range of 460 to 600 nm and increases in the wavelength range of 400 to 460 nm. When the light shown in FIG. 2b passes through the cell, it becomes the light shown in FIG. 2d. On the other hand, a semiconductor photoelectric device that has sensitivity characteristics in two wavelength bands, such as the color sensor PD151 (manufactured by Sharp Corporation), has two light receiving sections (PD1 and
Since PD2) has the sensitivity characteristic shown in FIG. 2e, the relative output of the semiconductor photoelectric element is shown in FIG. 2f. Second
As shown in FIG. If light in a wavelength band approximately centered around 600 nm is irradiated without being absorbed, the amount of change will be small and the sensitivity will be reduced. When the absorbance increases in the wavelength range of 400 to 460 nm, the relative change becomes large by combining the dye and the irradiation light that cuts out the wavelength band light centered around 600 nm, making it possible to accurately measure low concentrations of chlorine dioxide. Can be measured well. PD1 and PD2 convert the light intensity into voltages E 11 and E 12 , respectively. After E 11 and E 12 are logarithmically converted and amplified by an amplifier 50, the difference (ΔE 1 ) is indicated or recorded by a potentiometer or recorder 51.
On the other hand, if a sample that does not contain chlorine dioxide is subjected to the same operation and the voltage corresponding to ΔE 1 is ΔE 0 , then ΔE 0
ΔE 1 corresponds to the chlorine dioxide concentration. This ΔE 0 may be measured at the beginning of the analytical operation and stored in the computer.

本発明方法による測定可能な二酸化塩素濃度は
0.05ppmから50ppmであり、0.1ppmという低濃
度においても再現性よく測定できる。また次亜塩
素イオン、亜塩素酸イオンなどの類似化合物の妨
害を受けずに測定できる。
The measurable chlorine dioxide concentration by the method of the present invention is
It ranges from 0.05ppm to 50ppm, and can be measured with good reproducibility even at concentrations as low as 0.1ppm. In addition, measurements can be made without interference from similar compounds such as hypochlorite ions and chlorite ions.

本発明中の色素の添加量は二酸化塩素1重量部
に対して、0.3〜500重量部の範囲で用いる。0.3
重量部より少ない場合には着色が不充分となり、
測定が困難となる。一方、500重量部より多い場
合には色素自身の色による誤差を生ずるようにな
り、好ましくない。
The amount of the dye added in the present invention is in the range of 0.3 to 500 parts by weight per 1 part by weight of chlorine dioxide. 0.3
If it is less than parts by weight, the coloring will be insufficient,
Measurement becomes difficult. On the other hand, if the amount is more than 500 parts by weight, errors due to the color of the dye itself will occur, which is not preferable.

本発明の二酸化塩素測定方法は、再現性よく、
高感度で測定できる。本発明の光学式方法と従来
理化学用に市販されている単色光による分光光感
計と比較すると次の点で優れている。
The chlorine dioxide measurement method of the present invention has good reproducibility,
Can be measured with high sensitivity. When the optical method of the present invention is compared with a conventional spectrophotometer using monochromatic light commercially available for physical and chemical use, it is superior in the following points.

(1) 本発明の光学式方法ではスリツトなどを用い
ず、単色光を光源とせず、400nm〜800nmの波
長内で2つの波長帯域を持つ照射光を用い、前
記2つの波長帯域の光に感度特性を有する検出
器を用いるので、高感度の測定が可能である。
(1) The optical method of the present invention does not use a slit or the like, does not use monochromatic light as a light source, but uses irradiation light with two wavelength bands within the wavelength range of 400 nm to 800 nm, and is sensitive to light in the two wavelength bands. Since a detector with specific characteristics is used, highly sensitive measurements are possible.

(2) 本発明方法では2つの異なる波長帯域の光強
度を同時に電圧に変換し、その比で濃度を測定
するので、セル内のスケールまたは藻などによ
る汚染の影響を自動的に補正できる。従つて、
再現性がよく、二酸化塩素を測定でき、二酸化
塩素の低濃度の濃度制御が必要な滅菌処理プロ
セスなどの自動制御が可能となる。
(2) In the method of the present invention, the light intensities of two different wavelength bands are simultaneously converted into voltage and the concentration is measured based on the ratio, so it is possible to automatically correct for the effects of contamination by scale or algae inside the cell. Therefore,
It has good reproducibility and can measure chlorine dioxide, making it possible to automatically control sterilization processes that require low concentration control of chlorine dioxide.

(3) 本発明方法ではセル長を変更することにより
光路長を自由に選択できるので、比較的広範囲
の二酸化塩素の良好な精度の測定が可能であ
る。
(3) Since the method of the present invention allows the optical path length to be freely selected by changing the cell length, it is possible to measure chlorine dioxide over a relatively wide range with good accuracy.

(4) 本発明方法に用いる発色ダイオード、半導体
光電素子が安価に入手でき、構成も簡単である
ので、本発明方法は信頼性に優れ、保守管理の
容易で、安価な二酸化塩素濃度計を利用するこ
とができる。
(4) Since the coloring diode and semiconductor photoelectric device used in the method of the present invention are available at low cost and have a simple configuration, the method of the present invention is highly reliable, easy to maintain, and uses an inexpensive chlorine dioxide concentration meter. can do.

次に実施例につき本発明を説明する。 The invention will now be explained with reference to examples.

実施例 1 1,5−ビス−(4−メチルフエニルアミノ−
2−ソジウムスルホネイト)−9,10−アントラ
キノン(バイエル社製)0.087gを水に溶解し、
28%アンモニア水0.72ml、塩化アンモニウム2.6
gを加えてPHを8.5とした後水を加えて500mlとし
た液を色素とした。水に二酸化塩素を添加し、
0,0.5,1.0,1.5,2.0ppmの試料を調整した。
それぞれの該試料を10ml/min、色素を1.0ml/
minの速度で流し、混合器により混合した後、下
記の構成部品からなる二酸化塩素濃度計のセルに
流下した。二酸化塩素を含まない試料での出力電
圧(ΔE0)と二酸化塩素を含む試料での出力方向
(ΔE1)との差(ΔE0−ΔE1)と二酸化塩素濃度と
の対応を第3図に示した。
Example 1 1,5-bis-(4-methylphenylamino-
2-Sodium sulfonate)-9,10-anthraquinone (manufactured by Bayer) 0.087 g was dissolved in water,
28% ammonia water 0.72ml, ammonium chloride 2.6
After adjusting the pH to 8.5, water was added to make 500 ml of the liquid, which was used as a pigment. Adding chlorine dioxide to water,
Samples of 0, 0.5, 1.0, 1.5, and 2.0 ppm were prepared.
10ml/min for each sample and 1.0ml/min for the dye.
The mixture was flowed at a speed of 1 min, mixed with a mixer, and then flowed into a cell of a chlorine dioxide concentration meter consisting of the following components. Figure 3 shows the relationship between the difference (ΔE 0 −ΔE 1 ) between the output voltage (ΔE 0 ) in a sample that does not contain chlorine dioxide and the output direction (ΔE 1 ) in a sample that contains chlorine dioxide and the chlorine dioxide concentration. Indicated.

二酸化塩素濃度計の構成部品 光源:発光ダイオードTLUR144(東芝製) 発光ダイオードTLUG153(東芝製) セル:ガラス製 光路長8mm 半導体光電素子:カラーセンサーPD−151(シ
ヤープ製) 実施例 2 1,8−ビス−(4−メチルフエニルアミノ−
2−ソジウムスルホネイト)−9,10−アントラ
キノン(バイエル社製)に色素をおよび二酸化塩
素濃度計の構成部品を下記に変えた以外は実施例
1に準じた。結果を第4図に示した。
Components of chlorine dioxide concentration meter Light source: Light emitting diode TLUR144 (manufactured by Toshiba) Light emitting diode TLUG153 (manufactured by Toshiba) Cell: Made of glass Optical path length 8 mm Semiconductor photoelectric element: Color sensor PD-151 (manufactured by Sharp) Example 2 1,8- Bis-(4-methylphenylamino-
The procedure of Example 1 was followed except that the dye was changed to 2-sodium sulfonate)-9,10-anthraquinone (manufactured by Bayer AG) and the components of the chlorine dioxide concentration meter were changed as shown below. The results are shown in Figure 4.

二酸化塩素濃度計の構成部品 光源:ハロゲンランプ12V−55W(KONDO
SIYLVANIA LTD.製) 集光レンズ:熱吸収コンデンサーレンズFL77
mm(エドマンド社製) 光学フイルター:カラーイメージR/B(ケン
コー社製) セル:PVC製 光路長 30mm 半導体光電素子:カラーセンサーPD−151(シ
ヤープ製)
Components of chlorine dioxide concentration meter Light source: Halogen lamp 12V-55W (KONDO
Made by SIYLVANIA LTD.) Condensing lens: Heat absorption condenser lens FL77
mm (manufactured by Edmund) Optical filter: Color Image R/B (manufactured by Kenko) Cell: PVC Optical path length 30mm Semiconductor photoelectric element: Color sensor PD-151 (manufactured by Sharp)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法で使用する光学式二酸化塩
素濃度計のフローシートを示したものである。第
2図aはフイルターの波長と透過率との関係を光
学特性を示す。第2図bは照射光が前記第2図a
の光学特性をもつフイルターにより中程の一部分
の波長帯域の光が吸収され、2つの波長帯域の光
に分割された、波長と相対光強度の関係を示す。
第2図cは二酸化塩素により退色した残留色素に
より着色した溶液の波長と透過率との関係の吸収
特性を示す。第2図dは前記第2図bに示した光
がセルを透過した時の波長と相対光強度の関係を
示す。第2図eは半導体光電素子の2つの受光部
PD1とPD2の波長と相対感度との関係の感度特性
を示す。第2図fはセル中に色素に対し二酸化塩
素濃度零と2ppmを加えた夫々の水溶液を入れた
場合の、前記第2図eの感度特性をもつ半導体光
電素子の波長と相対出力の関係を示す。第3図と
第4図は本発明方法の実施例1および2における
検量線を示す。 10……光源部、11……光学フイルター、1
2……集光レンズ、13……ハロゲンランプまた
はタングステンランプ、14……ランプ用電源、
20……セル、30……検出部、31……半導体
光電素子、40……混合器、41……定量ポン
プ、43……色素供給ライン、44……試料供給
ライン、45……セル入口ライン、6……セル出
口ライン、50……アンプ、42……定量ポン
プ、51……電位差計または記録計。
FIG. 1 shows a flow sheet of an optical chlorine dioxide concentration meter used in the method of the present invention. FIG. 2a shows the optical characteristics of the relationship between wavelength and transmittance of the filter. Figure 2b shows that the irradiation light is
The relationship between wavelength and relative light intensity is shown in which light in a part of the middle wavelength band is absorbed by a filter with optical characteristics and divided into two wavelength bands.
FIG. 2c shows the absorption characteristics of the relationship between wavelength and transmittance of a solution colored by residual dye bleached by chlorine dioxide. FIG. 2d shows the relationship between the wavelength and relative light intensity when the light shown in FIG. 2b passes through the cell. Figure 2e shows two light receiving sections of a semiconductor photoelectric device.
The sensitivity characteristics of the relationship between wavelength and relative sensitivity of PD1 and PD2 are shown. Figure 2 f shows the relationship between wavelength and relative output of a semiconductor photoelectric device having the sensitivity characteristics shown in Figure 2 e, when an aqueous solution containing dye with chlorine dioxide concentration of zero and 2 ppm is placed in the cell. show. FIGS. 3 and 4 show calibration curves in Examples 1 and 2 of the method of the present invention. 10...Light source section, 11...Optical filter, 1
2...Condensing lens, 13...Halogen lamp or tungsten lamp, 14...Lamp power supply,
20... Cell, 30... Detection section, 31... Semiconductor photoelectric element, 40... Mixer, 41... Metering pump, 43... Dye supply line, 44... Sample supply line, 45... Cell inlet line , 6... cell exit line, 50... amplifier, 42... metering pump, 51... potentiometer or recorder.

Claims (1)

【特許請求の範囲】 1 0.05〜50ppmの低濃度二酸化塩素を含有する
溶液に、色素として1,5−ビス−(4−メチル
フエニルアミノ−2−ソジウムスルホネイト)−
9,10−アントラキノンまたは1,8−ビス−
(4−メチルフエニルアミノ−2−ソジウムスル
ホネイト)−9,10−アントラキノンまたはその
混合物を二酸化塩素1重量部当り0.3〜500重量部
加えて色素と二酸化塩素を反応させて二酸化塩素
の濃度に対応して色素を退色させ; 残留色素により着色した溶液の一部分を透明セ
ルを通して通過させ; 前記セル内の着色した溶液に、400nm〜800nm
の波長内で、異なる波長スペクトルをもつ発光ダ
イオードの2個から2つの波長帯域をもつ光を照
射し、もしくはハロゲンランプまたはタングステ
ンランプからの光を光学フイルターによつて
600nmをほぼ中心とする部分の波長帯域の光を吸
収した2つの波長帯域をもつ光を照射し; 該2つの波長帯域に分光感度特性をもつ半導体
素子、または該2つの波長帯域に夫々分光感度特
性をもつ2つの半導体光電素子の組合せを用い
て、夫々の波長帯域の透過光の光強度を夫々の電
圧に変換させ; 該検出された電圧を対数変換し、増巾し、前記
2つの波長帯域の電圧の差を測定し、一方二酸化
塩素を含まずに同量の色素を含む溶液について同
様に操作した電圧の差を測定し、これら両者の差
で二酸化塩素の濃度に変換させる; ことから成る低濃度二酸化塩素の測定方法。
[Claims] 1. 1,5-bis-(4-methylphenylamino-2-sodium sulfonate)- as a dye is added to a solution containing low concentration chlorine dioxide of 0.05 to 50 ppm.
9,10-anthraquinone or 1,8-bis-
Add 0.3 to 500 parts by weight of (4-methylphenylamino-2-sodium sulfonate)-9,10-anthraquinone or a mixture thereof per 1 part by weight of chlorine dioxide to react with the dye and chlorine dioxide to increase the concentration of chlorine dioxide. bleaching the dye corresponding to; passing a portion of the solution colored by the residual dye through a transparent cell;
Within the wavelength range of
Irradiates light with two wavelength bands that absorbs light in a wavelength band approximately centered around 600 nm; a semiconductor element that has spectral sensitivity characteristics in the two wavelength bands, or a semiconductor element that has spectral sensitivity characteristics in the two wavelength bands, respectively. Using a combination of two semiconductor photoelectric elements with characteristics, the light intensity of transmitted light in each wavelength band is converted into respective voltages; The detected voltages are logarithmically converted and amplified, and the two wavelengths are Measure the difference in voltage in the band, and measure the difference in voltage for a solution containing the same amount of dye without chlorine dioxide, and convert the difference between these two into the concentration of chlorine dioxide; A method for measuring low concentration chlorine dioxide.
JP13705382A 1982-08-06 1982-08-06 Method for measuring concentration of chlorine dioxide Granted JPS5927249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13705382A JPS5927249A (en) 1982-08-06 1982-08-06 Method for measuring concentration of chlorine dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13705382A JPS5927249A (en) 1982-08-06 1982-08-06 Method for measuring concentration of chlorine dioxide

Publications (2)

Publication Number Publication Date
JPS5927249A JPS5927249A (en) 1984-02-13
JPH038503B2 true JPH038503B2 (en) 1991-02-06

Family

ID=15189773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13705382A Granted JPS5927249A (en) 1982-08-06 1982-08-06 Method for measuring concentration of chlorine dioxide

Country Status (1)

Country Link
JP (1) JPS5927249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044602A (en) * 2015-08-27 2017-03-02 内外化学製品株式会社 Method and reagent for detecting or quantifying chlorine dioxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783050B1 (en) 1998-09-09 2000-12-08 Atochem Elf Sa AQUEOUS SOLUTION BASED ON AN AZO DYE, ITS MANUFACTURING METHOD AND ITS USE
US6304327B1 (en) 1999-03-02 2001-10-16 Vulcan Chemicals Method and apparatus for photometric analysis of chlorine dioxide solutions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367485A (en) * 1976-11-29 1978-06-15 Hitachi Ltd Direct light measuring analytical method used plural
JPS5368292A (en) * 1976-11-30 1978-06-17 Shimadzu Corp Multi-wavelength photometric system
JPS5779439A (en) * 1980-11-05 1982-05-18 Shimadzu Corp Automatic chemical analyzing device and method for calibrating its indicating scale

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367485A (en) * 1976-11-29 1978-06-15 Hitachi Ltd Direct light measuring analytical method used plural
JPS5368292A (en) * 1976-11-30 1978-06-17 Shimadzu Corp Multi-wavelength photometric system
JPS5779439A (en) * 1980-11-05 1982-05-18 Shimadzu Corp Automatic chemical analyzing device and method for calibrating its indicating scale

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044602A (en) * 2015-08-27 2017-03-02 内外化学製品株式会社 Method and reagent for detecting or quantifying chlorine dioxide

Also Published As

Publication number Publication date
JPS5927249A (en) 1984-02-13

Similar Documents

Publication Publication Date Title
CA1219464A (en) Florescent fluid analysis
Parker et al. Some experiments with spectrofluorimeters and filter fluorimeters
US7662636B2 (en) Ozone gas sensing element, detection apparatus, and measurement method
Adams et al. Determination of the absolute quantum efficiency of luminescence of solid materials employing photoacoustic spectroscopy
CN109655110A (en) Composite package LED light source and water monitoring device based on the light source
US5567621A (en) Method of and apparatus for analyzing nitrogen compound and phosphorus compound contained in water
JP2009520205A (en) Near-UV absorption spectrometer and method for using it
US4193694A (en) Photosensitive color monitoring device and method of measurement of concentration of a colored component in a fluid
CN104903702A (en) Multiple wavelength light source for colorimetric measurement
CN209387061U (en) Composite package LED light source and water monitoring device based on the light source
CN207816804U (en) A kind of multi-pass detection device
Szigeti Estimation of oxyhaemoglobin and of methaemoglobin by a photoelectric method
Alhemiary et al. Spectrophotometric determination of tinidazole using promethazine and ethyl vanillin reagents in pharmaceutical preparations
Ingles et al. Water quality assessment using a portable UV optical absorbance nitrate sensor with a scintillator and smartphone camera
Weyde et al. The measurement of ultraviolet radiation
JPH038503B2 (en)
JPH038502B2 (en)
CN110243811B (en) Method for evaluating release rate of chlorine dioxide
US6304327B1 (en) Method and apparatus for photometric analysis of chlorine dioxide solutions
JPH0727706A (en) Analyzer for nitrogen compound and phosphorus compound in water
Lu A dual-wavelength method using the BDJ detector and its application to iron concentration measurement
Momin et al. Optosensing of chlorine gas using a dry reagent strip and diffuse reflectance spectrophotometry
JPH09127005A (en) Method for analyzing compound in water
Goncharuk et al. Determination of Mass Concentration of Bromide, Iodide and Nitrate Ions in Water
JP3545928B2 (en) Magnesium ion concentration measurement device