JPH038420B2 - - Google Patents

Info

Publication number
JPH038420B2
JPH038420B2 JP19451687A JP19451687A JPH038420B2 JP H038420 B2 JPH038420 B2 JP H038420B2 JP 19451687 A JP19451687 A JP 19451687A JP 19451687 A JP19451687 A JP 19451687A JP H038420 B2 JPH038420 B2 JP H038420B2
Authority
JP
Japan
Prior art keywords
driven
friction wheel
friction
cam
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19451687A
Other languages
Japanese (ja)
Other versions
JPS6440754A (en
Inventor
Kikuzo Takamya
Yoshitaka Tamura
Kyobumi Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Cycle Co Ltd
Original Assignee
Bridgestone Cycle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Cycle Co Ltd filed Critical Bridgestone Cycle Co Ltd
Priority to JP19451687A priority Critical patent/JPS6440754A/en
Publication of JPS6440754A publication Critical patent/JPS6440754A/en
Publication of JPH038420B2 publication Critical patent/JPH038420B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Friction Gearing (AREA)
  • Transmission Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、産業機械および搬送機器等に装備す
るのに適した汎用の無段変速装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a general-purpose continuously variable transmission device suitable for equipping industrial machinery, conveyance equipment, and the like.

(従来の技術) 有段の変速装置は、その段階的変速時にシヨツ
クが発生し、また常に最適な出力回転が得られな
いという問題点がある。
(Prior Art) Stepped transmissions have problems in that shocks occur during stepwise shifting, and optimum output rotation cannot always be obtained.

無段変速装置は、このような問題点を解消する
ものであるが、従来の機械式無段変速装置として
は、摩擦車式無段変速機が多く実用化されてい
る。一例としてあげれば実公昭49−29168号公報
に開示されたものがある。
Continuously variable transmissions are intended to solve these problems, but many conventional mechanical continuously variable transmissions include friction wheel type continuously variable transmissions. One example is the one disclosed in Japanese Utility Model Publication No. 49-29168.

(発明が解決しようとする問題点) 上述した従来の摩擦車式無段変速装置は、主に
円錐車の摩擦伝動接点の回転半径を無段階に変え
ることによつて無段の変速伝動を行うものであ
る。しかしながら円錐車の摩擦伝動接点は、ヘル
ツ応力によつてそのピツチラインに相当する接触
軌道が帯状となるから、その接触軌道上の径の大
きい側と小さい側において、一方に正、一方に負
のすべりを発生する結果、これが内部摩擦損失と
なつて伝動効率を低下させるという問題点があ
る。また変速比が最高、最低の時は、駆動摩擦車
および従動摩擦車に対する摩擦伝動接点のピツチ
ライン径の比が1:2〜1:4というように大き
くなるため、前記した正、負のすべりが急増し、
いわゆるトツプやローの伝動時において伝動効率
が著しく低下するという問題点があつた。
(Problems to be Solved by the Invention) The conventional friction wheel type continuously variable transmission described above performs continuously variable speed transmission mainly by steplessly changing the rotation radius of the friction transmission contacts of the conical wheel. It is something. However, in the friction transmission contact of a conical wheel, the contact trajectory corresponding to the pitch line becomes band-shaped due to Hertzian stress, so there is a positive slip on one side and a negative slip on the other on the large diameter side and the small diameter side on the contact trajectory. As a result, there is a problem in that this results in internal friction loss and reduces transmission efficiency. Furthermore, when the gear ratio is at its highest or lowest, the ratio of the pitch line diameter of the friction transmission contact to the driving friction wheel and the driven friction wheel becomes large, such as 1:2 to 1:4, so that the positive and negative slip mentioned above increases. rapidly increasing,
There was a problem in that the transmission efficiency was significantly reduced during so-called top and low transmission.

上述の問題点を解決するため本発明者等は先
に、入力軸に対して偏心量調整自在にした駆動摩
擦車を回転自在に設け、この駆動摩擦車と同心の
内歯歯車をこの駆動摩擦車と一体的に形成し、前
記入力軸と同心の2個の内歯歯車をこの入力軸と
一体的に形成し、この一方の内歯歯車と前記駆動
摩擦車と一体の内歯歯車を中間伝動歯車を介して
噛合連結し、前記入力軸を中心にして中空円筒状
の従動回転体を回転自在に設けると共に、この従
動回転体の内周に従動回転体と共に回転する従動
摩擦車を設け、この従動摩擦車と前記駆動摩擦車
とを圧接係合させ、前記従動回転体に遊星キヤリ
ヤを一体的に設け、この遊星キヤリヤに枢支した
遊星歯車を前記入力軸と一体の他方の内歯歯車に
噛合させると共に、前記入力軸と同心の出力軸と
一体の太陽歯車に噛合させてなる無段変速装置
(特願昭61−272921号)を発明した。
In order to solve the above-mentioned problems, the present inventors first provided a rotatable drive friction wheel whose eccentricity can be freely adjusted with respect to the input shaft, and attached an internal gear concentric with the drive friction wheel to the drive friction wheel. two internal gears that are integrally formed with the input shaft and that are concentric with the input shaft; one of the internal gears and the internal gear that is integral with the drive friction wheel are interposed between the two internal gears that are concentric with the input shaft; A hollow cylindrical driven rotary body is meshed and connected via a transmission gear and rotatable around the input shaft, and a driven friction wheel is provided on the inner periphery of the driven rotary body to rotate together with the driven rotary body. The driven friction wheel and the driving friction wheel are press-fitted together, a planetary carrier is integrally provided on the driven rotating body, and the planetary gear pivotally supported on the planetary carrier is connected to the other internal gear integral with the input shaft. He invented a continuously variable transmission (Japanese Patent Application No. 61-272921) in which the output shaft, which is concentric with the input shaft, is meshed with an integral sun gear.

しかしながら、この装置は駆動摩擦車と従動摩
擦車とがばね力によつて圧接することにより伝動
するものであるから、負荷が大きくなつた場合に
スリツプが生じやすくなるという問題点があつ
た。
However, since this device transmits power by pressing the driving friction wheel and the driven friction wheel into contact with each other by spring force, there is a problem in that slips tend to occur when the load becomes large.

(問題点を解決するための手段) 上述の問題点を解決するため本発明において
は、駆動摩擦車と従動摩擦車とを偏心させながら
圧接して伝動するようにした摩擦車式無段変速装
置において、駆動摩擦車の外周部に駆動摩擦リン
グをスプライン嵌合し、中空円筒状の従動回転体
の内周に可動従動回転体を回転自在に設け、この
従動回転体と可動従動回転体にそれぞれ前記駆動
摩擦リングを挾む従動摩擦車を設け、前記従動回
転体の内周にこの従動回転体と共に回転して前記
可動従動回転体に推力を与える円筒端面カムを設
け、この対向するカム面にそれぞれ歯を設けると
共に、これらの歯列間に回転自在な歯車を介装
し、このカムの作用によつて前記従動摩擦車を前
記駆動摩擦リングに圧接するようにして無段変速
装置を構成する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a friction wheel type continuously variable transmission in which a driving friction wheel and a driven friction wheel are eccentrically pressed into contact with each other to transmit power. In this method, a driving friction ring is spline-fitted to the outer periphery of a driving friction wheel, a movable driven rotating body is rotatably provided on the inner periphery of a hollow cylindrical driven rotating body, and each of the driven rotating body and the movable driven rotating body is A driven friction wheel sandwiching the driving friction ring is provided, and a cylindrical end face cam is provided on the inner periphery of the driven rotating body to rotate together with the driven rotating body and apply a thrust to the movable driven rotating body, and a cylindrical end face cam is provided on the opposing cam surface. A continuously variable transmission is constituted by providing teeth respectively, and interposing a freely rotatable gear between these tooth rows, and pressing the driven friction wheel against the driving friction ring by the action of the cam. .

(作用) 上述のように本発明においては、駆動摩擦車と
スプライン嵌合した駆動摩擦リングを従動回転体
と可動従動回転体にそれぞれ設けた従動摩擦車に
より挾圧するようにし、この従動摩擦車と駆動摩
擦リングとの間にスリツプが生じると、前記従動
回転体と可動従動回転体との間に回転位相差が生
じ、その結果円筒端面カムの使用によつて従動摩
擦車が前記駆動摩擦リングに前よりも強く圧接す
るようになる。
(Function) As described above, in the present invention, the driving friction ring spline-fitted with the driving friction wheel is clamped by the driven friction wheels provided on the driven rotating body and the movable driven rotating body, respectively. When a slip occurs between the driven friction ring and the driven friction ring, a rotational phase difference occurs between the driven rotary body and the movable driven rotary body, so that by using a cylindrical end cam, the driven friction wheel is moved against the driven friction ring. The pressure will be stronger than before.

すなわちこの円筒端面カムは、摩擦車間にスリ
ツプが生じると摩擦車間の圧接力を高める倍力機
構として作用する。
That is, this cylindrical end surface cam acts as a boosting mechanism that increases the pressing force between the friction wheels when slip occurs between the friction wheels.

特に本発明においては、円筒端面カムの対向す
るカム面にそれぞれ歯を設けると共に、これらの
歯列間に回転自在な歯車を介装したから、対向す
る両カム面間の差動がすべりではなく、歯列と歯
車との噛合によつて確実に作動する。このため本
発明装置は円筒端面カムの作用に伴う抵抗を軽減
させると共に、作動を確実にすることができる。
In particular, in the present invention, teeth are provided on each of the opposing cam surfaces of the cylindrical end cam, and a rotatable gear is interposed between these tooth rows, so that the differential movement between the two opposing cam surfaces is not a slip. , it operates reliably through the meshing of the tooth row and gears. Therefore, the device of the present invention can reduce the resistance associated with the action of the cylindrical end cam and ensure reliable operation.

したがつて本発明によれば、負荷が増大してス
リツプが生じようとしても摩擦車間の圧接力がそ
のスリツプに対応して増大するから、負荷の増大
に伴うスリツプの発生を著しく減少させることに
より、伝動効率を高めることができる。
Therefore, according to the present invention, even if the load increases and slip occurs, the pressure contact force between the friction wheels increases correspondingly to the slip, thereby significantly reducing the occurrence of slip due to increase in load. , transmission efficiency can be increased.

(実施例) 以下、第1図〜第8図について本発明の一実施
例を説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 8.

図中1は中空円筒状のケース本体、2はケース
本体1と一体に形成したベース、3はケース本体
1の入力側にボルト4により接続した入力側ケー
ス蓋、5はケース本体1の出力側にボルト6によ
り接続した出力側ケース蓋、7はケース本体1の
上部に設けたオイルキヤツプ、8はケース本体1
の底部に設けた排油栓である。
In the figure, 1 is a hollow cylindrical case body, 2 is a base formed integrally with the case body 1, 3 is an input side case lid connected to the input side of the case body 1 with a bolt 4, and 5 is the output side of the case body 1. 7 is the oil cap provided on the top of the case body 1, and 8 is the case body 1.
This is an oil drain plug installed at the bottom of the tank.

本実施例においては、出力側ケース蓋5のボス
部5aを貫通する出力軸9を軸受10,11を介
して回転自在に設け、この出力軸9の内側端部に
は円形凹陥部9aを設けると共に、その外周部に
太陽歯車12を出力軸9と一体に形成する。13
はボス部5aの外側にボルト14により取り付け
た軸受押えである。
In this embodiment, an output shaft 9 passing through the boss portion 5a of the output case lid 5 is rotatably provided via bearings 10 and 11, and a circular recess 9a is provided at the inner end of the output shaft 9. At the same time, a sun gear 12 is integrally formed with the output shaft 9 on its outer periphery. 13
is a bearing retainer attached to the outside of the boss portion 5a with bolts 14.

また出力軸9と同心の入力軸15を入力側ケー
ス蓋3を貫通すると共に、その内側端部を出力軸
9の円形凹陥部9a内に軸受16を介して回転自
在に挿入する。17は入力軸15がケース蓋3を
貫通する部分に設けた軸受、18はボルト19,
20によりケース蓋3に取り付けた軸受押えであ
る。
An input shaft 15 coaxial with the output shaft 9 passes through the input case lid 3, and its inner end is rotatably inserted into the circular concave portion 9a of the output shaft 9 via a bearing 16. 17 is a bearing provided at the part where the input shaft 15 passes through the case lid 3; 18 is a bolt 19;
20 is a bearing holder attached to the case lid 3.

また入力軸15と同心の2個の内歯歯車21,
22を背中合わせにしてボルト23により結合す
ると共に、この結合体をボルト24およびキー2
5を介して入力軸15に固着する。
In addition, two internal gears 21 concentric with the input shaft 15,
22 are connected back to back with a bolt 23, and this combined body is connected with a bolt 24 and a key 2.
It is fixed to the input shaft 15 via 5.

また第4図および第5図に示すように、入力軸
15の中心O1に対してl1だけ偏心した内側偏心カ
ム26を入力軸15に対して回転自在に嵌装する
と共に、その外側端部を第1図に示すようにケー
ス蓋3内に嵌入してボルト20およびキー27に
より固定する。28は入力軸15と内側偏心カム
26との間に介装した軸受である。
Further, as shown in FIGS. 4 and 5, an inner eccentric cam 26 eccentric by l 1 with respect to the center O 1 of the input shaft 15 is rotatably fitted to the input shaft 15, and the outer end thereof The part is fitted into the case lid 3 as shown in FIG. 28 is a bearing interposed between the input shaft 15 and the inner eccentric cam 26.

また第4図および第5図に示すように、内側偏
心カム26の中心O2に対してl2だけ偏心した外側
偏心カム29を内側偏心カム26に対して回転自
在に嵌装する。なお、この場合l1=l2とする。
Further, as shown in FIGS. 4 and 5, an outer eccentric cam 29 eccentric by l 2 with respect to the center O 2 of the inner eccentric cam 26 is rotatably fitted to the inner eccentric cam 26. In this case, l 1 =l 2 .

また外側偏心カム29の入力側に中空円筒部2
9aを一体に形成し、この中空円筒部29aの入
力側端面に、内側偏心カム26を中心軸とするウ
オームホイール30をボルト31により固定して
設け、このウオームホイール30と噛合するウオ
ーム32と一体の軸32aを、第2図に示すよう
にケース蓋3に対して回転自在に設ける。33は
ブツシユ、34は円筒状の止めねじ、35は軸3
2aに固着したハンドルである。
In addition, a hollow cylindrical portion 2 is provided on the input side of the outer eccentric cam 29.
A worm wheel 30 having the inner eccentric cam 26 as a central axis is fixedly provided with a bolt 31 on the input side end surface of the hollow cylindrical portion 29a, and a worm 32 that meshes with the worm wheel 30 is integrally formed with the worm wheel 30. A shaft 32a is provided rotatably with respect to the case lid 3 as shown in FIG. 33 is a bush, 34 is a cylindrical set screw, and 35 is a shaft 3.
This is a handle fixed to 2a.

また外側偏心カム29の外周に中空円筒状の駆
動回転体36を軸受37を介して回転自在に設
け、この駆動回転体36の入力側端部に駆動摩擦
車38を駆動回転体36と一体に設けると共に、
この駆動摩擦車38の外周にスプライン38aを
設け、このスプライン38aと嵌合するスプライ
ン39aを内周に有するリング状の駆動摩擦リン
グ39を駆動摩擦車38の外周部にスプライン嵌
合する。また駆動回転体36の出力側端面に、前
記内歯歯車22と同様の内歯歯車40を駆動回転
体36と同心にしてボルト41により固定して設
ける。なお42は外側偏心カム29の出力側端面
にボルト43によつて固定した軸受押え板であ
る。
Further, a hollow cylindrical drive rotor 36 is rotatably provided on the outer periphery of the outer eccentric cam 29 via a bearing 37, and a drive friction wheel 38 is integrated with the drive rotor 36 at the input side end of the drive rotor 36. In addition to providing
A spline 38a is provided on the outer periphery of the drive friction wheel 38, and a ring-shaped drive friction ring 39 having a spline 39a on the inner periphery that fits with the spline 38a is spline-fitted to the outer periphery of the drive friction wheel 38. Further, an internal gear 40 similar to the internal gear 22 is provided on the output side end face of the drive rotary body 36 and fixed with a bolt 41 so as to be concentric with the drive rotary body 36 . Note that 42 is a bearing holding plate fixed to the output side end face of the outer eccentric cam 29 with bolts 43.

また第1図および第3図に示すように、外側偏
心カム29が内側偏心カム26の回りに回動して
も、帯に内歯歯車40と噛合すると共に、内歯歯
車22とも噛合する中間伝動歯車44を軸受45
を介して内側偏心カム26に回転自在に設ける。
46はワツシヤ、47はカラーである。
Furthermore, as shown in FIGS. 1 and 3, even when the outer eccentric cam 29 rotates around the inner eccentric cam 26, the band meshes with the internal gear 40 and the intermediate gear that also meshes with the internal gear 22. The transmission gear 44 is connected to the bearing 45
It is rotatably provided on the inner eccentric cam 26 via.
46 is washer and 47 is color.

また中空円筒状の胴部48aと、入力側フラン
ジ部48bと、出力側フランジ部48cとを、そ
れぞれボルト49により一体に結合した従胴回転
体48を、入力軸15および出力軸9を中心にし
てケース本体1内に軸受50,51を介して回転
自在に設け、この従動回転体48の胴部48aの
入力側の内周に中空円筒状のボールレース52を
嵌着すると共に、胴部48aの出力側の内周に中
空円筒状のボールレース53を嵌着する。そして
前記ボールレース52と入力側フランジ部48b
との隅角部に、前記駆動摩擦リング39の肩部と
接合する片側の従動摩擦車54をボルト55によ
つて固定して設ける。
Further, a slave rotating body 48, in which a hollow cylindrical body 48a, an input side flange 48b, and an output side flange 48c are integrally connected by bolts 49, is arranged around the input shaft 15 and the output shaft 9. A hollow cylindrical ball race 52 is fitted to the input side inner periphery of the body 48a of the driven rotating body 48, and the body 48a is rotatably provided in the case body 1 via bearings 50, 51. A hollow cylindrical ball race 53 is fitted onto the inner periphery of the output side. The ball race 52 and the input side flange portion 48b
A driven friction wheel 54 on one side, which is connected to the shoulder of the drive friction ring 39, is fixed by a bolt 55 at the corner of the drive friction ring 39.

またこの従動摩擦車54と対向して設けるもう
一方の従動摩擦車56を、従動回転体48内に回
転自在に設けた中空円筒状の可動従動回転体57
と一体的に結合して、従動摩擦車54,56が前
記駆動摩擦リング39を挾持するように設ける。
58は従動摩擦車56と可動従動回転体57とを
連結するリング状の連結板、59はボルトであ
る。
Further, a movable driven rotary body 57 having a hollow cylindrical shape has another driven friction wheel 56 provided opposite to this driven friction wheel 54 rotatably provided within the driven rotary body 48.
The driven friction wheels 54 and 56 are integrally connected with the driving friction ring 39 and are provided to sandwich the driving friction ring 39.
58 is a ring-shaped connecting plate that connects the driven friction wheel 56 and the movable driven rotating body 57, and 59 is a bolt.

従動摩擦車56と可動従動回転体57との結合
体を従動回転体48に対して回転自在に支持する
軸受60としては、前記ボールレース52と従動
摩擦車56との間、およびボールレース53と可
動従動回転体57の出力端部に設けたインナーレ
ース61との間に設ける。
The bearing 60 that rotatably supports the combined body of the driven friction wheel 56 and the movable driven rotating body 57 with respect to the driven rotating body 48 is provided between the ball race 52 and the driven friction wheel 56, and between the ball race 53 and the driven friction wheel 56. It is provided between the inner race 61 provided at the output end of the movable driven rotor 57.

すなわち62は軸受60のボール、63はその
ボール62の両側に配置したリテーナ、64はリ
テーナ63の外側に設けた弾性リングである。
That is, 62 is a ball of the bearing 60, 63 is a retainer placed on both sides of the ball 62, and 64 is an elastic ring provided outside the retainer 63.

また従動回転体48の胴部48aと出力側フラ
ンジ部48cとの隅角部に円筒端面カム65を従
動回転体48と一体に回転するように設ける。6
6はこの円筒端面カム65の基部と出力側フラン
ジ部48cとの間に介挿した弾性板、67は円筒
端面カム65の基部の複数個所に設けた孔と出力
側フランジ部48cとの間に介装したコイルば
ね、65aは円筒端面カム65の基部において、
その軸線方向に設けた切欠溝、68は従動回転体
48を貫通して切欠溝65aに嵌入するようにし
たトルク伝達ピンである。
Further, a cylindrical end face cam 65 is provided at a corner of the body portion 48a of the driven rotary body 48 and the output side flange portion 48c so as to rotate together with the driven rotary body 48. 6
6 is an elastic plate inserted between the base of the cylindrical end cam 65 and the output side flange 48c, and 67 is an elastic plate inserted between the holes provided at multiple locations in the base of the cylindrical end cam 65 and the output side flange 48c. The interposed coil spring 65a is located at the base of the cylindrical end cam 65,
The notched groove 68 provided in the axial direction is a torque transmission pin that penetrates the driven rotating body 48 and fits into the notched groove 65a.

また69は円筒端面カム65と対向して可動従
動回転体57にボルト70により固定して設けた
円筒端面カムであり、これらの円筒端面カム6
5,69のカム面である円筒端面は、第7図およ
び第8図に示すように連続山形状に形成されてお
り、その対向面の中央部にそれぞれ環状溝65
b,69bが設けられている。そして各環状溝6
5b,69bの内側縁部には歯車と噛合する歯6
5c,69cがそれぞれ形成されており、また各
環状溝65b,69bの外側縁部にはそれぞれロ
ーラと転接するカム面65d,69dが形成され
ている。
Reference numeral 69 denotes a cylindrical end cam fixed to the movable driven rotating body 57 with a bolt 70, facing the cylindrical end cam 65.
The cylindrical end surfaces, which are the cam surfaces of Nos. 5 and 69, are formed into a continuous mountain shape as shown in FIGS.
b, 69b are provided. and each annular groove 6
The inner edges of 5b and 69b have teeth 6 that mesh with the gears.
5c and 69c are formed, respectively, and cam surfaces 65d and 69d that come into rolling contact with the rollers are formed on the outer edges of each of the annular grooves 65b and 69b, respectively.

そして環状溝65b,69bにそれぞれ両側縁
部が嵌合する帯板状のリング71を円筒端面カム
65,69間に回動自在に設け、このリング71
の円周3等分位置に軸72をそれぞれリング71
を貫通して設け、この軸72の内側突出部に前記
歯65c,69cと噛合する歯車73を回転自在
に嵌合すると共に、軸72の外側突出部に前記カ
ム面65d,69dと接合するローラ74を回転
自在に嵌合する。
A band-shaped ring 71 whose side edges fit into the annular grooves 65b and 69b, respectively, is rotatably provided between the cylindrical end cams 65 and 69.
The shaft 72 is placed at three equal positions on the circumference of the ring 71.
A gear 73 that meshes with the teeth 65c, 69c is rotatably fitted into the inner protrusion of the shaft 72, and a roller is connected to the outer protrusion of the shaft 72 with the cam surfaces 65d, 69d. 74 is rotatably fitted.

また第1図および第6図に示すように、従動回
転体48の出力側フランジ部48cの内側に遊星
キヤリヤ75をボルト76により固定し、この遊
星キヤリヤ75に複数個(本実施例では3個)の
遊星歯車77を軸78および軸受79により回転
自在に設け、これらの遊星歯車77を前記内歯歯
車21に内接噛合させると共に、出力軸9と一体
の太陽歯車12にそれぞれ外接噛合させる。なお
80は内歯歯車21のボス部と遊星キヤリヤ75
との間に設けた軸受である。
Further, as shown in FIGS. 1 and 6, a planetary carrier 75 is fixed to the inside of the output side flange portion 48c of the driven rotor 48 with bolts 76, and a plurality of planetary carriers (in this embodiment, three ) are rotatably provided by a shaft 78 and a bearing 79, and these planetary gears 77 are internally meshed with the internal gear 21 and externally meshed with the sun gear 12, which is integrated with the output shaft 9. Note that 80 indicates the boss portion of the internal gear 21 and the planetary carrier 75.
This is a bearing installed between the

つぎに上述のように構成した本発明装置の作用
を説明する。第2図においてハンドル35を回転
させると、ウオーム32、ウオームホイール30
を介して外側偏心カム29がケース蓋3に固定し
た内側偏心カム26に対して回動するため、入力
軸15および出力軸9に対する外側偏心カム29
の偏心量を自由に変化させることができる。第
1,4図は外側偏心カム29の入力軸15に対す
る偏心量がゼロの場合を示すもので、この状態で
は駆動摩擦車38および駆動摩擦リング39と従
動摩擦車54,56とが同心になるため、駆動摩
擦リング39と従動摩擦車54,56は全周にお
いて接触し、しかも従動摩擦車56がコイルばね
67の作用により駆動摩擦リング39を従動摩擦
車54に圧接させているため、駆動摩擦車38が
回転すれば従動摩擦車54,56もほとんどすべ
ることなく一体的に回転する。
Next, the operation of the apparatus of the present invention constructed as described above will be explained. In FIG. 2, when the handle 35 is rotated, the worm 32 and the worm wheel 30 are rotated.
Since the outer eccentric cam 29 rotates with respect to the inner eccentric cam 26 fixed to the case lid 3 via
The amount of eccentricity can be freely changed. 1 and 4 show the case where the amount of eccentricity of the outer eccentric cam 29 with respect to the input shaft 15 is zero, and in this state, the driving friction wheel 38 and the driving friction ring 39 are concentric with the driven friction wheels 54 and 56. Therefore, the driving friction ring 39 and the driven friction wheels 54, 56 are in contact with each other around the entire circumference, and since the driven friction wheel 56 presses the driving friction ring 39 against the driven friction wheel 54 by the action of the coil spring 67, the driving friction is reduced. When the wheel 38 rotates, the driven friction wheels 54 and 56 also rotate together with almost no slippage.

しかしながら負荷が増大して駆動摩擦リング3
9と従動摩擦車54との間に滑りが生ずると、他
方の従動摩擦車56は従動回転体48に対して回
転自在であるため、たとえ駆動摩擦リング39と
従動摩擦車54との間に滑りが生じても、他方の
従動摩擦車56は駆動摩擦リング39と一体的に
回転しようとする。
However, the load increases and the drive friction ring 3
9 and the driven friction wheel 54, the other driven friction wheel 56 is rotatable relative to the driven rotating body 48, so even if slipping occurs between the driving friction ring 39 and the driven friction wheel 54, Even if this happens, the other driven friction wheel 56 tries to rotate together with the driving friction ring 39.

このため一方の従動摩擦車54と一体的に連結
している円筒端面カム65と他方の従動摩擦車5
6と一体的に連結している円筒端縁カム69との
間に回転位相差が生ずる。
For this reason, the cylindrical end face cam 65 which is integrally connected to one driven friction wheel 54 and the other driven friction wheel 5
6 and the cylindrical edge cam 69 which is integrally connected thereto, a rotational phase difference occurs.

すなわち駆動車と従動車との間に滑りが生じな
い場合は円筒端面カム65と69とが同一回転を
しているが、駆動車と従動車との間に滑りが生じ
ると、第8図に示すようにカム65が滑りを生じ
て若干おそくなつた例えば矢印Aの速度で回転す
るのに対して、カム69は滑りのないそれより速
い矢印Bの速度で回転する。このためカム65と
69との間に回転位相差が生じ、その結果生ずる
カムの斜面の作用によつてカム69に矢印Cの方
向に推力を与える。
In other words, when there is no slippage between the driving wheel and the driven wheel, the cylindrical end cams 65 and 69 rotate at the same time, but when there is slipping between the driving wheel and the driven wheel, as shown in FIG. As shown, the cam 65 rotates at a slightly slower speed, eg, arrow A, due to slippage, whereas the cam 69 rotates at a faster speed, arrow B, without slippage. Therefore, a rotational phase difference occurs between the cams 65 and 69, and a thrust force is applied to the cam 69 in the direction of arrow C by the action of the resulting slope of the cam.

この推力は従動摩擦車54,56による駆動摩
擦リング39の挾持力になるため、本発明によれ
ば摩擦伝動部に滑りが生ずると、摩擦伝動部の圧
接力がさらに増大して滑りをなくすように作用す
る。
This thrust becomes a clamping force for the drive friction ring 39 by the driven friction wheels 54 and 56, so according to the present invention, when slippage occurs in the friction transmission section, the contact force of the friction transmission section is further increased to eliminate slippage. It acts on

なお本実施例の場合、円筒端面カム65と69
が差動した場合、歯65c,69cとそれぞれ噛
合する歯車73の軸72を介して、この軸72に
支持されているローラ74がカム面65d,69
dと正しく転り接触する。したがつてこの装置に
よれば、すべり抵抗より小さい転り接触でカムの
作用を確実に伝えることができる。
In the case of this embodiment, the cylindrical end cams 65 and 69
When differential movement occurs, the roller 74 supported by the shaft 72 engages the cam surfaces 65d, 69 via the shaft 72 of the gear 73 that meshes with the teeth 65c, 69c, respectively.
Correctly roll and make contact with d. Therefore, with this device, the action of the cam can be reliably transmitted through rolling contact that is smaller than the sliding resistance.

また上述のように外側偏心カム29が入力軸1
5と同心状態において、入力軸15が第4図の矢
印Dの方向に回転すれば、入力軸15と一体の内
歯歯車21,22が第6図の矢印Eの方向に回転
し、内歯歯車22と噛合する中間伝動歯車44、
およびこの中間伝動歯車44と噛合する内歯歯車
40を介して、この内歯歯車40と一体的に結合
した駆動摩擦車38も第4図の矢印Fの方向に入
力軸15と一体的に回転する。しかして上述した
ように駆動摩擦車38が回転すれば、スプライン
38a,39aを介して駆動摩擦リング39が共
に回転するから、従動摩擦車54,56も第4図
の矢印Gの方向に入力軸15と一体的に回転す
る。また従動摩擦車54,56が回転すれば、従
動摩擦車54と一体に結合した従動回転体48も
入力軸15と共に回転するから、この従動回転体
48と一体的に結合した遊星キヤリヤ75を介し
て、各遊星歯車77も、内歯歯車21が入力軸1
5と一体的に回転しているから入力軸15と一体
的に公転する。その結果、第6図に示すように、
これらの遊星歯車77と噛合する太陽歯車12も
出力軸9と共に、入力軸15と一体的に回転す
る。すなわちこの場合の入力軸15の回転と、出
力軸9の回転比は1:1である。この状態が本無
段変速装置の所謂トツプの変速状態である。
Further, as mentioned above, the outer eccentric cam 29 is connected to the input shaft 1.
5, when the input shaft 15 rotates in the direction of arrow D in FIG. 4, the internal gears 21 and 22 integral with the input shaft 15 rotate in the direction of arrow E in FIG. an intermediate transmission gear 44 that meshes with the gear 22;
Through the internal gear 40 that meshes with the intermediate transmission gear 44, the drive friction wheel 38 integrally connected to the internal gear 40 also rotates integrally with the input shaft 15 in the direction of arrow F in FIG. do. As described above, when the driving friction wheel 38 rotates, the driving friction ring 39 also rotates via the splines 38a and 39a, so that the driven friction wheels 54 and 56 also move toward the input shaft in the direction of the arrow G in FIG. It rotates integrally with 15. Furthermore, when the driven friction wheels 54 and 56 rotate, the driven rotary body 48 integrally connected to the driven friction wheel 54 also rotates together with the input shaft 15. Therefore, each planetary gear 77 also has an internal gear 21 connected to the input shaft 1.
Since it rotates integrally with the input shaft 15, it revolves integrally with the input shaft 15. As a result, as shown in Figure 6,
The sun gear 12 meshing with these planetary gears 77 also rotates together with the output shaft 9 and the input shaft 15 . That is, in this case, the rotation ratio of the input shaft 15 to the output shaft 9 is 1:1. This state is the so-called top shift state of the continuously variable transmission.

つぎにこのトツプの変速状態より第2図のハン
ドル35を操作して外側偏心カム29を約180゜回
動させると、外側偏心カム29が第3,5図の最
大偏心状態になるから、それに伴つて駆動摩擦車
38および駆動摩擦リング39も第3,5図に示
すように従動摩擦車54,56に対して偏心す
る。このため駆動摩擦リング39と従動摩擦車5
4,56との接触部は、第3,5図に示すH点付
近のみになる。そしてこの状態で入力軸15を介
して駆動摩擦リング39が第5図の矢印Iの方向
に回転すると、従動摩擦車54,54も矢印Jの
方向に回転するが、この場合両摩擦車の摩擦伝動
点Hまでの回転半径に差が生ずる。すなわち第5
図において入力軸15および従動摩擦車56の中
心をO1とし、駆動摩擦リング39の中心をO3
し、O3からH点までの半径をR1とし、O1からH
点までの半径をR2とすると、R1<R2となる。こ
のためこの場合は、駆動摩擦リング39に対して
従動摩擦車54,56は減速されて回転すること
になる。本実施例の場合その減速比は1:0.67程
度である。すなわち入力軸15の回転1に対して
0.33だけ減速することになる。
Next, when the outer eccentric cam 29 is rotated approximately 180 degrees by operating the handle 35 shown in FIG. 2 from this top gear shifting state, the outer eccentric cam 29 will be in the maximum eccentric state shown in FIGS. 3 and 5. Accordingly, the driving friction wheel 38 and the driving friction ring 39 are also eccentric with respect to the driven friction wheels 54 and 56, as shown in FIGS. 3 and 5. Therefore, the driving friction ring 39 and the driven friction wheel 5
The contact portion with 4 and 56 is only near point H shown in FIGS. 3 and 5. In this state, when the driving friction ring 39 rotates in the direction of arrow I in FIG. 5 via the input shaft 15, the driven friction wheels 54, 54 also rotate in the direction of arrow J, but in this case, the friction A difference occurs in the radius of rotation up to the transmission point H. That is, the fifth
In the figure, the center of the input shaft 15 and the driven friction wheel 56 is O 1 , the center of the drive friction ring 39 is O 3 , the radius from O 3 to point H is R 1 , and from O 1 to H
If the radius to the point is R 2 , then R 1 <R 2 . Therefore, in this case, the driven friction wheels 54 and 56 rotate at a reduced speed with respect to the driving friction ring 39. In this embodiment, the reduction ratio is approximately 1:0.67. In other words, for 1 rotation of the input shaft 15
This results in a deceleration of 0.33.

そして従動摩擦車54,56が減速回転する
と、従動回転体48を介して、この従動回転体4
8と一体の遊星キヤリヤ75が第6図の矢印Kの
方向に減速回転する。他方遊星キヤリヤ75より
外側の内歯歯車21は、入力軸15にキー25を
介して固定されているから、第6図の矢印Eで示
すように遊星キヤリヤ75より速い速度で同方向
に回転する。このため各遊星歯車77は、第6図
において矢印Kのように公転すると共に、矢印L
の方向に自転するから、これらの遊星歯車77と
噛合する太陽歯車12はさらに減速されることに
なる。すなわちこの遊星歯車装置は、従動摩擦車
54,56の減速をさらに増幅する。本実施例に
おける増幅倍数は約3であるから、最低の変速状
態(ロー)における出力軸9の回転は、前記摩擦
伝動部の減速率0.33の3倍、すなわち−0.33×3
≒−1で、1−1=0であるから略ゼロになる。
Then, when the driven friction wheels 54 and 56 decelerate and rotate, the driven rotary body 4
A planetary carrier 75, which is integral with 8, rotates at a reduced speed in the direction of arrow K in FIG. On the other hand, since the internal gear 21 on the outside of the planetary carrier 75 is fixed to the input shaft 15 via the key 25, it rotates in the same direction at a faster speed than the planetary carrier 75, as shown by arrow E in FIG. . Therefore, each planetary gear 77 revolves as shown by arrow K in FIG.
Since the sun gear 12 that meshes with these planetary gears 77 is further decelerated. That is, this planetary gear system further amplifies the deceleration of the driven friction wheels 54, 56. Since the amplification factor in this embodiment is approximately 3, the rotation of the output shaft 9 in the lowest speed change state (low) is 3 times the deceleration rate of 0.33 of the friction transmission section, that is, -0.33×3
≒-1, and since 1-1=0, it becomes approximately zero.

そして第2図のハンドル35の操作量を前記し
たトツプとローとの中間の任意の操作量とすれ
ば、ローからトツプまでの間で無段の変速比が得
られることになる。
If the operating amount of the handle 35 in FIG. 2 is set to an arbitrary operating amount between the above-mentioned top and low, a stepless gear ratio can be obtained from low to top.

なお本装置は必要があれば、前記した減速率ま
たは増幅倍数を大きくすることによつて、入力軸
に対して出力軸を逆回転させることもできる。
If necessary, this device can also rotate the output shaft in the opposite direction with respect to the input shaft by increasing the deceleration rate or amplification factor described above.

(発明の効果) 上述のように本発明装置は摩擦伝動用に円錐車
を使用せず、入力軸15に対して偏心量調整自在
にした駆動摩擦リング39と、従動回転体48と
共に回転する従動摩擦車54,56とを圧接係合
によつて直接接触するようにし、特にトツプの変
速状態においては駆動摩擦リング39と従動摩擦
車54,56が同心状態で接合するようにしたか
ら、この場合駆動摩擦リング39と従動摩擦車5
4,56は全周において圧接接合する結果、すべ
りのない100%近くの極めて高い伝動効率を得る
ことができる。
(Effects of the Invention) As described above, the device of the present invention does not use a conical wheel for friction transmission, but instead uses a driving friction ring 39 whose eccentricity can be freely adjusted with respect to the input shaft 15, and a driven friction ring 39 that rotates together with the driven rotating body 48. The dynamic friction wheels 54 and 56 are brought into direct contact through press-fit engagement, and the driving friction ring 39 and the driven friction wheels 54 and 56 are concentrically connected, especially in the top gear shifting state, so in this case. Drive friction ring 39 and driven friction wheel 5
4 and 56 are pressure-welded around the entire circumference, and as a result, extremely high transmission efficiency of nearly 100% with no slippage can be obtained.

また従動摩擦車54,56に対して駆動摩擦リ
ング39が偏心して、両摩擦車が部分的に接合す
るトツプ以外の変速状態になつても、両摩擦車に
おける摩擦伝動接点Hのピツチライン径の比は
1:2より近接したものとなるから、摩擦伝動接
触線が前記のピツチライン上にかなり長く形成さ
れると共にピツチラインの両側に存在する正、負
のすべり帯域も従来のものより狭くなる結果、ト
ツプ以外の変速域においてかなり高い伝動効率を
得ることができる。
Furthermore, even if the driving friction ring 39 is eccentric with respect to the driven friction wheels 54 and 56 and the speed change state is other than the top where both friction wheels are partially connected, the ratio of the pitch line diameters of the friction transmission contacts H of both friction wheels are closer than 1:2, so the friction transmission contact line is formed quite long on the pitch line, and the positive and negative slip zones on both sides of the pitch line are also narrower than in the conventional one. Considerably high transmission efficiency can be obtained in other speed ranges.

また本発明においては、駆動摩擦車38とスプ
ライン嵌合した駆動摩擦リング39を従動回転体
48と可動従動回転体57にそれぞれ設けた従動
摩擦車54,56により挾圧するようにし、この
従動摩擦車54,56と駆動摩擦リング39との
間にスリツプが生じると、前記従動回転体48と
可動従動回転体57との間に回転位相差が生じ、
その結果円筒端面カム65,69の作用によつて
従動摩擦車54,56が前記駆動摩擦リング39
に前よりも強く圧接するようになる。
Further, in the present invention, the driving friction ring 39 spline-fitted to the driving friction wheel 38 is clamped by the driven friction wheels 54 and 56 provided on the driven rotary body 48 and the movable driven rotary body 57, respectively. When a slip occurs between the driven friction ring 54, 56 and the drive friction ring 39, a rotational phase difference occurs between the driven rotary body 48 and the movable driven rotary body 57.
As a result, due to the action of the cylindrical end cams 65 and 69, the driven friction wheels 54 and 56 are moved toward the drive friction ring 39.
The pressure will be stronger than before.

すなわちこの円筒端面カム65,69は、摩擦
車間にスリツプが生じると摩擦車間の圧接力を高
める倍力機構として作用する。
That is, the cylindrical end cams 65, 69 act as a boosting mechanism that increases the pressing force between the friction wheels when slip occurs between the friction wheels.

特に本発明においては、円筒端面カム65,6
9の対向するカム面にそれぞれ歯65c,69c
を設けると共に、これらの歯列間に回転自在な歯
車73を介装したから、対向する両カム間の差動
がすべりではなく、歯列と歯車との噛合によつて
確実に作動する。このため本発明装置は円筒端面
カム65,69の作用に伴う抵抗を軽減させると
共に、作動を確実にすることができる。
Particularly in the present invention, the cylindrical end cams 65, 6
Teeth 65c, 69c are provided on opposing cam surfaces of 9, respectively.
In addition, since the rotatable gear 73 is interposed between these tooth rows, the differential motion between the two opposing cams is not caused by slippage, but is reliably operated by meshing between the tooth row and the gear. Therefore, the device of the present invention can reduce the resistance associated with the action of the cylindrical end cams 65 and 69, and can ensure reliable operation.

したがつて本発明によれば、負荷が増大してス
リツプが生じようとしても摩擦車間の圧接力がそ
のスリツプに対応して増大するから、負荷の増大
に伴うスリツプの発生を著しく減少させることに
より、伝動効率を高めることができるという効果
が得られる。
Therefore, according to the present invention, even if the load increases and slip occurs, the pressure contact force between the friction wheels increases correspondingly to the slip, thereby significantly reducing the occurrence of slip due to increase in load. , the effect of increasing transmission efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の縦断側面図、第2図はそ
の一部を第1図の−断面で示す入力側より見
た正面図、第3図は第1図の偏心カムが偏心した
状態を一部断面で示す側面図、第4図は第1図の
−断面図、第5図は第3図の−断面図、
第6図は第1図の−断面図、第7図は円筒端
面カム部の斜視図、第8図はその作用説明図であ
る。 1……ケース本体、2……ベース、3……入力
側ケース蓋、5……出力側ケース蓋、9……出力
軸、12……太陽歯車、15……入力軸、21,
22……内歯歯車、26……内側偏心カム、29
……外側偏心カム、30……ウオームホイール、
32……ウオーム、35……ハンドル、36……
駆動回転体、38……駆動摩擦車、39……駆動
摩擦リング、40……内歯歯車、44……中間伝
動歯車、48……従動回転体、54,56……従
動摩擦車、57……可動従動回転体、65,69
……円筒端面カム、65c,69c……歯、73
……歯車、75……遊星キヤリヤ、77……遊星
歯車。
Fig. 1 is a vertical sectional side view of the device of the present invention, Fig. 2 is a front view of the device as seen from the input side, a part of which is shown in the - cross section of Fig. 1, and Fig. 3 is a state in which the eccentric cam shown in Fig. 1 is eccentric. FIG. 4 is a cross-sectional view of FIG. 1, FIG. 5 is a cross-sectional view of FIG. 3,
6 is a cross-sectional view taken from FIG. 1, FIG. 7 is a perspective view of the cylindrical end face cam portion, and FIG. 8 is an explanatory diagram of its operation. DESCRIPTION OF SYMBOLS 1... Case body, 2... Base, 3... Input side case lid, 5... Output side case lid, 9... Output shaft, 12... Sun gear, 15... Input shaft, 21,
22... Internal gear, 26... Inner eccentric cam, 29
...Outside eccentric cam, 30...Worm wheel,
32...Worm, 35...Handle, 36...
Drive rotating body, 38... Drive friction wheel, 39... Drive friction ring, 40... Internal gear, 44... Intermediate transmission gear, 48... Driven rotating body, 54, 56... Driven friction wheel, 57... ...Movable driven rotating body, 65, 69
...Cylindrical end cam, 65c, 69c...Teeth, 73
...gear, 75...planetary carrier, 77...planetary gear.

Claims (1)

【特許請求の範囲】[Claims] 1 駆動摩擦車と従動摩擦車とを偏心させながら
圧接して伝動するようにした摩擦車式無段変速装
置において、駆動摩擦車の外周部に駆動摩擦リン
グをスプライン嵌合し、中空円筒状の従動回転体
の内周に可動従動回転体を回転自在に設け、この
従動回転体と可動従動回転体にそれぞれ前記駆動
摩擦リングを挾む従動摩擦車を設け、前記従動回
転体の内周にこの従動回転体と共に回転して前記
可動従動回転体に推力を与える円筒端面カムを設
け、この対向するカム面にそれぞれ歯を設けると
共に、これらの歯列間に回転自在な歯車を介装
し、このカムの作用によつて前記従動摩擦車を前
記駆動摩擦リングに圧接するようにしたことを特
徴とする無段変速装置。
1. In a friction wheel type continuously variable transmission in which a driving friction wheel and a driven friction wheel are eccentrically pressed into contact with each other for transmission, a driving friction ring is spline-fitted to the outer periphery of the driving friction wheel, and a hollow cylindrical A movable driven rotary body is rotatably provided on the inner periphery of the driven rotary body, a driven friction wheel that sandwiches the drive friction ring is provided on the driven rotary body and the movable driven rotary body, respectively, and this driven friction wheel is provided on the inner periphery of the driven rotary body. A cylindrical end face cam is provided which rotates together with the driven rotating body to apply thrust to the movable driven rotating body, teeth are provided on each of the opposing cam surfaces, and a rotatable gear is interposed between these tooth rows. A continuously variable transmission characterized in that the driven friction wheel is brought into pressure contact with the driving friction ring by the action of a cam.
JP19451687A 1987-08-05 1987-08-05 Continuously variable transmission Granted JPS6440754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19451687A JPS6440754A (en) 1987-08-05 1987-08-05 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19451687A JPS6440754A (en) 1987-08-05 1987-08-05 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS6440754A JPS6440754A (en) 1989-02-13
JPH038420B2 true JPH038420B2 (en) 1991-02-06

Family

ID=16325831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19451687A Granted JPS6440754A (en) 1987-08-05 1987-08-05 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS6440754A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886155B1 (en) 2011-10-10 2018-08-08 삼성전자 주식회사 Motror and rotor of a motor

Also Published As

Publication number Publication date
JPS6440754A (en) 1989-02-13

Similar Documents

Publication Publication Date Title
US8382636B2 (en) Continuously variable transmission
GB996933A (en) Improvements in and relating to infinitely variable conical disk transmissions
US4541305A (en) Speed reducer
JP3210020B2 (en) Mechanical transmission
JPH01299358A (en) Device for loading cam
JPWO2007029564A1 (en) Planetary roller transmission and vehicle equipped with the same
US5984827A (en) Toroidal type continuously variable transmission
JPH038420B2 (en)
JPH038418B2 (en)
JPH039342B2 (en)
JPH038419B2 (en)
JPH0137623B2 (en)
JPH01261537A (en) Outside pin driving type planetary gear speed reducer
JPH0248780B2 (en) MUDANHENSOKUSOCHI
JPH0541852B2 (en)
JP3395467B2 (en) Toroidal type continuously variable transmission
US6796923B2 (en) Toroidal-type continuously variable transmission
JP5418152B2 (en) Friction wheel type continuously variable transmission
JPH0567820B2 (en)
JP4978557B2 (en) Friction wheel type continuously variable transmission
JPH02113131A (en) Clutch
JP4519707B2 (en) Traction drive continuously variable transmission
JPH0328556A (en) Friction-type continuously variable transmission
JPH02125146A (en) Planetary roller type power transmitting device
JPH0248781B2 (en) MUDANHENSOKUSOCHI