JPH038400B2 - - Google Patents

Info

Publication number
JPH038400B2
JPH038400B2 JP5095483A JP5095483A JPH038400B2 JP H038400 B2 JPH038400 B2 JP H038400B2 JP 5095483 A JP5095483 A JP 5095483A JP 5095483 A JP5095483 A JP 5095483A JP H038400 B2 JPH038400 B2 JP H038400B2
Authority
JP
Japan
Prior art keywords
carbon
coal
value
content
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5095483A
Other languages
Japanese (ja)
Other versions
JPS59176386A (en
Inventor
Hisatsugu Izuhara
Akira Kitahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP5095483A priority Critical patent/JPS59176386A/en
Publication of JPS59176386A publication Critical patent/JPS59176386A/en
Publication of JPH038400B2 publication Critical patent/JPH038400B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、コークス炉々壁への過度のカーボ
ン付着を防止しながら石炭の乾留を行う方法に係
わり、さらに詳しくは、コークス炉で石炭を乾留
するに際し炉壁に付着して成長する所謂デイポジ
ツトカーボンを、石炭の配合を適正に行うことに
よつて抑止し、もつてコークス炉の操業を正常に
行いうるようにした方法に係わるものである。 一般にコークスは、煉瓦を精級に積み上げて構
築されたコークス炉の炭化室に原料石炭を装入
し、該原料石炭を煉瓦製の炉壁を介して加熱する
ことにより得られる。 上述のような石炭の乾留にあつては、上記炭化
室内に常温で装入された原料石炭は、炉壁からの
熱を得て急激に加熱され、石炭中の主に複雑な芳
香族化合物からなる有機物は熱分解して所謂コー
クス炉ガスやコールタールとなつて回収される
が、通常炭化室内炉壁は乾留過程においては800
℃前後の高温状態に加熱されていることから、炭
化室内で発生した炭化水素化合物からなる分解生
成物は、室内を移動中に上記高温の炉壁に接触し
て更に熱分解を起こし、微細な炭素が遊離する。
このような融離炭素のほとんどは、コークス炉ガ
スと同伴して系外に導出されるが、一部は所謂カ
ーボンポジツトカーボンとして炉壁に付着し成長
する。 ところで、炉壁に付着したカーボンがあまり多
くない場合には、コークス炉の操業にさしたる支
障は生じないが、それが成長しある程度以上多く
なると、炉壁で挟まれた炭化室の巾、所謂炉巾が
実質的に小さくなつて炭化室の内容積が少なくな
ることから、炭化室への原料石炭装入量が減少
し、生産性が低下することの他、乾留終了後のコ
ークスを炭化室から室外に押し出して排出するに
際し、付着カーボンが抵抗となつて過大な動力を
要したり、最悪の場合にはコークスを室外に押し
出し得ない所謂押し詰まりが発生する。 このような不都合を解消するために、従来よ
り、炉壁へのカーボン付着がある程度成長したと
ころで、炭化室には石炭を装入しない状態で、し
かも室内に空気の流通があるようにして加熱する
所謂カーボン焼き落しと言う操作が行われてい
た。このカーボン焼き落し操作は、カーボンの付
着状況によつても異なるが、従来一つの炭化室当
り1回/2ケ月ぐらいであつた。しかし近年原料
事情の悪化に伴い、従来コークス製造用としては
あまり適さないとされていた劣質炭に、粘結剤と
してピツチやアスフアルト更には劣質炭を改質し
た人造粘結炭等を添加混合して原料となし、これ
をコークス炉に装入して乾留したり、また、上記
粘結剤の添加混合された原料を加圧成型して成型
炭とし、この成型炭を配合粉炭に混入して後乾留
する等のコークス製造の新技術が採用されるに至
つたが、このような粘結剤には石炭よりも多くの
芳香族性有機化合物が含まれていることから、こ
れらが混入された原料石炭を乾留すれば、従来よ
りも炉壁へのカーボン付着は多くなり、結果とし
て上記カーボン焼き落し操作の頻度を多くしなけ
ればコークス炉の操業が正常に行い得ないと言う
問題が新たに提起されてきた。 ところで、上述のような炉壁へのカーボン付着
については、従来より原料石炭中の揮発分との関
係が研究されており、上記揮発分が多くなるとそ
れに従つて炉壁へのカーボン付着も増加するとさ
れているが、石炭の揮発分として表示される値
は、それの乾留により得られる水素、メタン、エ
タン、プロパン、それら以外の炭化水素、一酸化
炭素、二酸化炭素、タール、軽油、水等の合計量
であつて、それらのうちどの成分が炉壁へのカー
ボン付着に寄与しているかについては充分に解明
されておらず、従つて、同一揮発分値であつても
カーボン付着状況が異なることから、該揮発分値
を指標にしてなるだけ付着量を抑えるような石炭
配合を行つても、予想どおりの結果はえられず、
結果としてこのような揮発分値のみでは、現場操
業に耐え得るコントロールが行い得ないという不
都合があつた。 そこで、本発明らは鋭意研究を行い、揮発分中
のカーボン生成要因を明確にし、どのような要因
を指標にすれば炉壁へのカーボン付着が的確に予
見できるかを解明した結果、本発明に到達したも
のであつて、その要旨は、石炭の乾留をコークス
炉々壁へのカーボン付着を抑止しながら行う方法
であつて、事前に各単味石炭の揮発分値及び該揮
発分中の全炭素量から乾留時に一酸化炭素及び二
酸化炭素となる分の炭素含量を差し引いた揮発分
中有効炭素量を求めておき、これら各単味石炭の
揮発分値及び有効炭素量に基いて配合石炭の揮発
分値と有効炭素量との積が所定の値以下となるよ
うに原料石炭の配合割合を決定し、この配合割合
にて配合石炭を調製してコークス炉内に装入し、
乾留を行うことを特徴とする石炭の乾留方法に存
する。 以下本発明を更に詳細に説明する。 本発明者らは、石炭を乾留したときに生成する
遊離カーボンがどのような要因に左右されて炉壁
に付着するかを調べるために、まず以下のような
試験を行つた。 第1図はそのときに用いた試験装置の概略流れ
図であるが、1は試験炉であり、内径略150mm、
高さ略1500mmの金属製内筒2、該内筒2の上部半
分を常に一定の温度を保持するように加熱するた
めの電気的発熱体が内装された内筒上部加熱用外
筒3及び上記内筒2の下部半分を経時的に昇温加
熱するための電気的発熱体が内装された内筒下部
加熱用外筒4から構成されている。また、上記内
筒2の内部は金属製簀子5によつて上下2室に仕
切られており、下室には試験用の石炭試料6が
300g装填され、又内筒2の上室には直径15mmの
アルミナボール7が複数個合計重量が略3.3Kgと
なるように装填される。なお、石炭試料6の乾留
時に発生するガスは、後述する吸引ブロワー14
の吸引力によつて内筒2の上部より導出され、ま
ず冷却器8で冷却させて後順次タール安水トラツ
プ9でタール及び水が、濾紙の装着された濾過器
10でガス中のミスト類が、硫酸の満たされたア
ンモニアトラツプ11でアンモニアが、最後に零
度以下の循環冷媒が満たされた軽油トラツプ12
で軽油分がそれぞれ回収され、バルブ13、吸引
ブロワー14を介してガスホルダー15に貯臓さ
れる。 このような試験炉1に種々の銘柄の石炭試料及
びアルミナボール7を上述のように装填し、アル
ミナボール7は上部加熱用外筒3によつて750℃
を保持するように加熱すると共に石炭試料6は下
部加熱用外筒によつて加熱速度5℃/分で900℃
まで加熱して後、この温度を45分間保持するよう
にして、その後アルミナボールを取り出しその時
アルミナボール7に付着したカーボンの量を秤量
してその試料石炭からのカーボン付量を調べた。 上記のように恒温のアルミナボール7を石炭試
料6の上方に置いたのは、乾留中に発生する揮発
分が炉壁と接触してその中の炭素分がデイポジツ
トするのを再現するためであり、アルミナボール
7に付したカーボン量を量ることによつてその時
の石炭試料のデイポジツトの度合を知ことができ
る。なお、念のためアルミナボール7上に付着し
たカーボンを偏光顕微鏡で観察したところ、炉壁
に付着したカーボンと同質であることが確認され
た。 試験に供した試料石炭(一部アスフアルト及び
ピツチを含む)の性状及び試験結果は表−1のと
おりである。
The present invention relates to a method of carbonizing coal while preventing excessive carbon from adhering to the walls of a coke oven. More specifically, the present invention relates to a method for carbonizing coal while preventing excessive carbon from adhering to the walls of a coke oven. This invention relates to a method for suppressing carbon dioxide by properly mixing coal, thereby enabling normal operation of a coke oven. Generally, coke is obtained by charging raw coal into the carbonization chamber of a coke oven constructed by stacking bricks in fine grade, and heating the raw coal through the oven wall made of bricks. In the carbonization of coal as described above, the raw material coal charged into the carbonization chamber at room temperature is rapidly heated by the heat from the furnace wall, and the coal is mainly separated from the complex aromatic compounds in the coal. The organic matter is thermally decomposed and recovered as so-called coke oven gas and coal tar.
Because it is heated to a high temperature of around 30°F, decomposition products consisting of hydrocarbon compounds generated in the coking chamber come into contact with the high-temperature furnace wall while moving through the chamber, causing further thermal decomposition, resulting in fine particles. Carbon is liberated.
Most of such melted carbon is led out of the system along with the coke oven gas, but some of it adheres to the oven wall and grows as so-called carbon deposit carbon. By the way, if there is not much carbon attached to the furnace walls, there will be no major problem in the operation of the coke oven, but if it grows and increases to a certain extent, the width of the coking chamber sandwiched between the furnace walls, the so-called furnace Since the width becomes substantially smaller and the internal volume of the coking chamber decreases, the amount of raw material coal charged into the coking chamber decreases, which reduces productivity. When extruding and discharging the coke outside, the adhering carbon acts as a resistance, requiring excessive power, or in the worst case, a so-called jam occurs in which the coke cannot be pushed outside. In order to eliminate this inconvenience, conventionally, once the carbon adhesion to the furnace wall has grown to a certain extent, the coal is not charged into the carbonization chamber, but it is heated with air circulating inside the chamber. An operation called so-called carbon burn-off was being carried out. Conventionally, this carbon burning operation was carried out once per carbonization chamber for about two months, although this operation differs depending on the state of carbon adhesion. However, in recent years, as the raw material situation has worsened, additives such as pitch, asphalt, and artificial caking coal, which is a modified form of inferior coal, have been added to and mixed with inferior quality coal, which was previously thought to be unsuitable for coke production. The raw material is charged into a coke oven and carbonized, or the raw material mixed with the above-mentioned binder is pressurized to form briquette coal, and this briquette is mixed into blended pulverized coal. New technologies for coke production, such as post-carbonization, were adopted, but these binders contained more aromatic organic compounds than coal, so these were mixed in. When coking coal is carbonized, more carbon adheres to the furnace walls than before, and as a result, a new problem arises in that the coke oven cannot operate normally unless the carbon burn-off operation described above is performed more frequently. It has been raised. By the way, with regard to the above-mentioned carbon adhesion to the furnace wall, research has been conducted on the relationship between the volatile content in raw coal and it has been found that as the volatile content increases, the carbon adhesion to the furnace wall also increases. However, the value displayed as the volatile content of coal includes hydrogen, methane, ethane, propane obtained by carbonization, other hydrocarbons, carbon monoxide, carbon dioxide, tar, light oil, water, etc. It is not fully understood which component of the total amount contributes to carbon adhesion to the furnace wall, and therefore, even if the volatile content value is the same, the carbon adhesion situation may differ. Therefore, even if we use the volatile content value as an index to create a coal blend that suppresses the amount of adhesion as much as possible, we cannot obtain the expected results.
As a result, there was a problem in that it was not possible to perform control that could withstand on-site operations using only such volatile content values. Therefore, the present inventors conducted extensive research, clarified the factors that cause carbon formation in volatile matter, and found out what factors can be used as indicators to accurately predict carbon adhesion to the furnace wall.As a result, the present invention has been developed. The gist of this method is to carbonize coal while suppressing carbon adhesion to the walls of coke ovens. The effective carbon content in volatile matter is determined by subtracting the carbon content that becomes carbon monoxide and carbon dioxide during carbonization from the total carbon content, and the blended coal is calculated based on the volatile content value and effective carbon content of each single coal. The blending ratio of raw coal is determined so that the product of the volatile content value and the effective carbon content is less than a predetermined value, and blended coal is prepared at this blending ratio and charged into a coke oven.
The present invention relates to a method for carbonizing coal, which is characterized by carrying out carbonization. The present invention will be explained in more detail below. The present inventors first conducted the following tests in order to investigate what factors affect the attachment of free carbon generated when coal is carbonized to the furnace wall. Figure 1 is a schematic flowchart of the test equipment used at that time. 1 is a test furnace, with an inner diameter of approximately 150 mm,
A metal inner cylinder 2 with a height of approximately 1500 mm, an outer cylinder 3 for heating the upper part of the inner cylinder, which is equipped with an electric heating element for heating the upper half of the inner cylinder 2 to maintain a constant temperature at all times, and the above-mentioned outer cylinder 3. It consists of an outer cylinder 4 for heating the lower part of the inner cylinder, in which an electric heating element is installed to heat the lower half of the inner cylinder 2 over time. The inside of the inner cylinder 2 is partitioned into two upper and lower chambers by a metal screen 5, and the lower chamber contains a coal sample 6 for testing.
A plurality of alumina balls 7 each having a diameter of 15 mm are loaded in the upper chamber of the inner cylinder 2 so that the total weight is approximately 3.3 kg. Note that the gas generated during carbonization of the coal sample 6 is passed through a suction blower 14, which will be described later.
is drawn out from the upper part of the inner cylinder 2 by the suction force of There is an ammonia trap 11 filled with sulfuric acid, ammonia, and finally a light oil trap 12 filled with circulating refrigerant below zero.
The light oil components are recovered and stored in a gas holder 15 via a valve 13 and a suction blower 14. Coal samples of various brands and alumina balls 7 were loaded into such a test furnace 1 as described above, and the alumina balls 7 were heated to 750°C by the upper heating outer cylinder 3.
Coal sample 6 was heated to 900°C at a heating rate of 5°C/min by the lower heating cylinder.
After heating the sample coal to a temperature of 45 minutes, the alumina balls were taken out and the amount of carbon adhering to the alumina balls 7 was weighed to determine the amount of carbon attached to the sample coal. The reason why the constant-temperature alumina ball 7 was placed above the coal sample 6 as described above was to reproduce the phenomenon in which the volatile matter generated during carbonization comes into contact with the furnace wall and the carbon content therein is deposited. By measuring the amount of carbon attached to the alumina balls 7, it is possible to know the degree of deposits in the coal sample at that time. As a precaution, when the carbon adhered to the alumina balls 7 was observed using a polarizing microscope, it was confirmed that it was of the same quality as the carbon adhered to the furnace wall. The properties and test results of the sample coal (including some asphalt and pitch) used in the test are shown in Table 1.

【表】 なお、上表において%は試料石炭に対する重量
割合である。また、揮発分中有効炭素量は、試料
石炭の揮発分に含まれる酸素のうち、乾留過程に
おいて一酸化炭素及び二酸化炭素となつて発生ガ
スと共に導出されてしまう量を上記揮発分値から
差し引いた値であり、この値に注目したのは乾留
過程でガス状で導出される揮発分のうち、一酸化
炭素及び二酸化炭素となつたもはカーボン付着に
全く寄与しないからである。而して、該揮発分中
有効炭素の値は、試料石炭中の炭素含量からコー
クス歩留値を差し引き(差し引いた結果得られる
値が揮発分である)、それに灰分値を加えてまず
揮発分中の炭素含量を算出し(灰分値を加える
は、得られたコークス中にも石炭中と絶対値が同
量の灰分が含まれており、ただ単にコークス歩留
値を差し引くだけではその量まで試料石炭中の炭
素含量から引き去つてしまうことになるのでそれ
を補正する意味で灰分値を加えるのである)、そ
の値から揮発分中の酸素が一酸化炭素及び二酸化
炭素となる量を差し引くことによつて得ることが
できる。なお、揮発分中の酸素が一酸化炭素及び
二酸化炭素となる量の導出については頻雑にわた
るので説明を省略するが、当業者にとつては周知
の方法で導けばよい。 このようにして得られた揮発分中有効炭素量
は、主にメタン、エタンやその他の炭化水素とな
つて石炭の乾留過剰に気体状で導出されるのであ
るから、これらが炉壁でのカーボン付着に大いに
寄与していると考えるのは極めてリーズナブルで
ある。 それを立証するのが第2図である。第2図は縦
軸に揮発分値に対するカーボン付着量の割合即ち
カーボン付着率(カーボン付着量/揮発分値)を
取り、横軸に揮発分中有効炭素の値を取つたグラ
フであり、このグラフに表−1のデータ及び該デ
ータから算出したカーボン付着率をプロツトした
ものであるが、このグラフからも揮発分中有効炭
素量が、カーボン付着に影響していることが判
る。 ここで、カーボン付着量をCD(%)、揮発分値
をVM(%)、カーボン付着率をRと置くと、 R=CD/VM …… となる。 また、揮発分中有効炭素量をCU(%)と置く
と、第2図からも判るとおり、RとCUとの間に
は以下の関係がある。 R=α・CU+β ……… 而してこの式は、第2図にプロツトしたデータ
を統計的な手法で解析することにより求めること
ができる。第2図においては、αは0.175、βは
−0.024で、相関係数rは0.891である。 式及び式より、 CD=VM・(α・CU+β) …… が得られ、石炭の揮発分値及び揮発分中有効炭素
量が予め判れば、式を基にカーボン付着量が予
見できるのである。 ところで、上記式の右辺に注目すると、そこ
にはカーボン付着量を予測する要因があるVMと
CU積が認められる。そこで、新たに(VM・
CU)をカーボン付着量(従属変数)の要因(独
立変数)と考え、グラフに表したのが第3図であ
つて、縦軸はカーボン付量CDそのものであり、
横軸は揮発分値と揮発分中有効炭素量の積、即ち
(VM・CU)である。CDと(VM・CU)との関
係を式で示せば、 CD=γ・(VM・CU)+δ …… となり、γ、δがそれぞれ回帰係数、回帰定数で
あつて、それらがデータの統計的処理によつて得
られるのは式の場合と同様である。第3図にお
いては、γは0.015、δは−0.413で、相関係数r
は0.982である。 そこで、第2図と第3図の散布図とを比較する
に、明らかに第3図で示したグラフにおける方が
回帰からのバラツキが少なくしてカーボン付量を
精度よく予測でき得ることが判る。 即ちこのことが、本発明において、石炭の揮発
分値と該揮発分中の全炭素量から乾留時に一酸化
炭素及び二酸化炭素となる分の炭素量を差し引い
た揮発分中有効炭素量との積、即ち(VM・CU)
を炉壁へのカーボン付着防止のための配合指標と
して採用した所以である。また、改善ピツチ(表
−1の銘柄表示Y)やプロパン脱瀝アスフアルト
(表−1の銘柄表示Z)等の所謂粘結剤をも単味
石炭とみなし(第2図、第3図でそれぞれY、Z
で表示)、上述の試験を行つたが、いずれも回帰
線上に乗つていることから、これらも石炭の一銘
柄として取り扱い得ることが判る。 以上の試験及びそれの解析は、上記表−1に記
載された銘柄A〜Zの各単味石炭を対象にして行
われたものであるが、それら単味石炭を配合して
得られる配合石炭の場合についても言えるか、即
ち上記試験結果に加成性が成立するかを知るため
に、配合石炭を試料として前記試験炉1がカーボ
ン付着量を実測する一方、配合割合を基に単味石
炭の(VM・CU)の値を加重平均して上記配合
石炭の(VM・CU)の値を出して後それを式
に代入してカーボン付着量を算出し、実測値と計
算値とを比較したが、両者はよく一致しているこ
とが認められたことから、配合石炭にも式が用
いられることが判つた。 次ぎに発明者らは、上記試験研究結果が実際の
コークス炉操業に適用できるかを知るために、実
炉を用いた以下の試験を行つた。 試験に用いた実炉は炉巾450mm、炉高6.5mの大
型コークス炉120門である。まず、このコークス
炉に装入される配合石炭の配合割合を週単位で算
出してその週の配合割合とした。次ぎに、この配
合割合を重みとして各単味石炭の(VM・CU)
値の加重平均値を算出し、その週の配合石炭の
(VM・CU)値を求めた。 一方、上記配合割合で実際に配合石炭を調製
し、その週のコークス炉操業を実施すると共に、
乾留が終了してコークスを炉室から室外に排出す
る時の押出不良率Eを算出した。この押出不良率
Eは、その週におけるコークスの室外への排出に
当たつて押出に要した動力(電力)が所定の値以
上となつたものの、全排出本数に対する割合であ
つて、この数値が大きい程炉壁へのカーボン付着
が多く、コークス炉操業上不都合であることを示
す。 このような試験操業を6ケ月(26週)継続し、
この間の配合石炭の(VM・CU)値と押出不良
率Eを経時的にグラフ化したのが第4図である
が、このグラフを見る限り(VM・CU)値と押
出不良率Eとの間には特に対応した関係は見られ
ない。これは、恐らく炉壁へのカーボン付着に関
しては、石炭の配合が影響するのは、その石炭が
コークス炉に装入されてからである程度の時間遅
れを伴うからだと考えられる。 そこで、別途統計的な時系列解析を行つた結
果、押出不良率Eを(VM・CU)値に対して4
週間遅らせて対応させれば、相関関係が最大にな
ることが判つた。第5図は、押出不良率Eを
(VM・CU)値に対して4週間遅らせて対応させ
たグラフであり、第6図はそれの散布図であつ
て、第6図において相関係数rは0.897となつて
いる。 これらのグラフから判るとおり、配合石炭の
(VM・CU)値と押出不良率Eとの間には明らか
に相関関係が存在する。従つて、このことから、
配合石炭の(VM・CU)値を配合割合によつて
コントロールすることにより、押出不良率即ち炉
壁へのカーボン付着量を制御できることが判る。 本発明は、以上の試験研究結果を基になされた
ものであつて、以下その実施方法につき説明す
る。 本発明を実施するに当たつては、まず配合石炭
の(VM・CU)値の上限値を決定しなければな
らない。この値は、上述の実炉試験の場合にあつ
ては押出不良率が7%以下であれば週間のコーク
ス排出本数約1000本のうち押出不良の本数は平均
的に70本以下となる。この程度の不良本数ではコ
ークス炉操業上さしたる障害にはならないとの判
断が行えることから、この不良率見合いの配合石
炭の(VM・CU)値を第6図より続み取つて
(VM・CU)値141.5と決定するのであるが、こ
の値は、個々のコークス炉の各種設備条件、操業
条件(例えば非常に老朽化したコークス炉である
とか、炉温が極めて高い状態で操業されていると
かの各種条件)によつても異なつてくるものであ
り、一律に決めることができるものではないの
で、そのコークス炉団のローカルコンデイシヨン
に応じて都度決定する必要がある。 次ぎに、上記のようにして決定された上限の
(VM・CU)値以下になるように単味石炭を配合
して配合石炭を調製するのであるが、そのために
は予め各単味石炭の(VM・CU)値を各々所定
の分析を行つて既知としておかなければならな
い。配合石炭の(VM・CU)値は配合割合を重
みとして上記既知の単味石炭の(VM・CU)値
を加重平均することにより得られるが、その値が
上限の(VM・CU)値以下となるように配合す
るには、配合割合を種々変えて試算してみる所謂
トライアンドエラーが必要である。 このようにして得られた配合石炭をコークス炉
に装入して乾留すれば、炉壁への過度のカーボン
付着が未然に防止でき、ひいては押し詰まり等の
コークス排出時の致命的なトラブル発生も回避で
きる。 本発明は以上にように、従来定量的には把握で
き得なかつたコークス炉々壁へのカーボン付着
を、配合石炭の揮発分と、該揮発分中の全炭素含
量から乾留時に一酸化炭素及び二酸化炭素となる
分の炭素含量を差し引いた有効炭素含量との積を
指標にすることにより定量化し得たものであり、
これにより予め炉壁へのカーボン付着により起こ
る操業上のトラブルを回避できるようになつたも
のであつて、工業上の価値は極めておおきい。
[Table] In the above table, % is the weight ratio to the sample coal. In addition, the effective carbon content in the volatile matter is calculated by subtracting the amount of oxygen contained in the volatile content of the sample coal, which becomes carbon monoxide and carbon dioxide during the carbonization process and is derived together with the generated gas, from the volatile content value above. The reason we focused on this value is because among the volatile components derived in gaseous form during the carbonization process, those that become carbon monoxide and carbon dioxide do not contribute to carbon adhesion at all. Therefore, the value of available carbon in the volatile matter is calculated by first subtracting the coke yield value from the carbon content in the sample coal (the value obtained as a result of the subtraction is the volatile matter), then adding the ash content value. Calculating the carbon content in the coke (adding the ash content) is because the obtained coke also contains the same absolute amount of ash as in the coal, and simply subtracting the coke yield value will not reach that amount. The ash value is added to compensate for the carbon content in the sample coal), and the amount of oxygen in the volatile matter that converts to carbon monoxide and carbon dioxide is subtracted from that value. It can be obtained by Note that the description of how to derive the amount of oxygen in the volatile matter converted to carbon monoxide and carbon dioxide is omitted since it is complicated, but it may be derived by a method well known to those skilled in the art. The amount of effective carbon in the volatile matter obtained in this way is mainly converted into methane, ethane, and other hydrocarbons and is extracted in gaseous form during the carbonization of coal. It is extremely reasonable to think that it contributes greatly to adhesion. Figure 2 proves this. Figure 2 is a graph in which the vertical axis shows the ratio of carbon adhesion to the volatile content value, that is, the carbon adhesion rate (carbon adhesion amount/volatile content value), and the horizontal axis shows the value of available carbon in the volatile content. The data in Table 1 and the carbon adhesion rate calculated from the data are plotted on a graph, and it can be seen from this graph that the amount of effective carbon in the volatile matter influences carbon adhesion. Here, if the carbon adhesion amount is CD (%), the volatile content value is VM (%), and the carbon adhesion rate is R, then R=CD/VM... Furthermore, if the amount of effective carbon in the volatile matter is expressed as CU (%), as can be seen from Figure 2, there is the following relationship between R and CU. R=.alpha..CU+.beta.. This equation can be obtained by analyzing the data plotted in FIG. 2 using a statistical method. In FIG. 2, α is 0.175, β is −0.024, and the correlation coefficient r is 0.891. From the formula and formula, CD=VM・(α・CU+β)... can be obtained, and if the volatile content value of coal and the amount of effective carbon in the volatile content are known in advance, the amount of carbon adhesion can be predicted based on the formula. By the way, if we pay attention to the right side of the above equation, we can see that there are VM and VM factors that predict the amount of carbon attached.
CU product is accepted. Therefore, we newly added (VM・
Figure 3 is a graph that considers CU) as a factor (independent variable) of carbon adhesion amount (dependent variable), and the vertical axis is the carbon adhesion amount CD itself.
The horizontal axis is the product of the volatile content value and the effective carbon amount in the volatile content, that is, (VM·CU). Expressing the relationship between CD and (VM・CU) as a formula, CD=γ・(VM・CU)+δ... where γ and δ are the regression coefficient and regression constant, respectively, and they are the statistical coefficients of the data. What is obtained through processing is the same as in the case of expressions. In Figure 3, γ is 0.015, δ is -0.413, and the correlation coefficient r
is 0.982. Therefore, by comparing the scatter plots in Figures 2 and 3, it is clear that the graph shown in Figure 3 has less variation from regression and can predict the amount of carbon attached more accurately. . That is, in the present invention, the product of the volatile content value of coal and the effective carbon content in the volatile content, which is obtained by subtracting the carbon content that becomes carbon monoxide and carbon dioxide during carbonization from the total carbon content in the volatile content, is calculated as follows: , i.e. (VM・CU)
This is why we adopted this as a blending index to prevent carbon from adhering to the furnace walls. In addition, so-called binders such as improved pitch (brand name Y in Table 1) and propane deasphalt (brand name Z in Table 1) are also considered to be single coal (in Figures 2 and 3, respectively). Y, Z
The above-mentioned test was conducted, and since all of the results are on the regression line, it can be seen that these can also be treated as one brand of coal. The above tests and analysis were conducted using each of the single coal brands A to Z listed in Table 1 above, but the blended coal obtained by blending these single coals In order to find out whether additivity holds true for the above test results, the test furnace 1 actually measures the amount of carbon deposited using blended coal as a sample, while also measuring the amount of carbon deposited on plain coal based on the blending ratio. Calculate the amount of carbon adhesion by calculating the (VM・CU) value of the above blended coal by weighting the average of the (VM・CU) values of the above blended coal, and then substituting it into the formula to calculate the carbon adhesion amount and compare the measured value with the calculated value. However, since the two were found to be in good agreement, it was determined that the formula can also be used for blended coal. Next, the inventors conducted the following test using an actual furnace in order to find out whether the above test and research results could be applied to actual coke oven operation. The actual furnace used in the test was a 120-gate large coke oven with a width of 450 mm and a height of 6.5 m. First, the blending ratio of the blended coal to be charged into the coke oven was calculated on a weekly basis and used as the blending ratio for that week. Next, using this blending ratio as a weight, calculate the (VM・CU) of each single coal.
The weighted average of the values was calculated to determine the (VM・CU) value of the blended coal for that week. On the other hand, we actually prepare blended coal with the above blending ratio and operate the coke oven for that week.
The extrusion failure rate E was calculated when the coke was discharged from the furnace chamber to the outside after carbonization. This extrusion failure rate E is the percentage of the total number of coke discharged even though the power (electricity) required for extrusion exceeds a predetermined value when discharging coke outdoors in that week. The larger the value, the more carbon is attached to the oven wall, which is inconvenient for coke oven operation. This kind of test operation continued for 6 months (26 weeks),
Figure 4 is a graph of the (VM・CU) value and extrusion failure rate E of blended coal over this period. No particular relationship can be seen between them. This is probably because the coal composition has an effect on carbon adhesion to the furnace walls because there is a certain amount of time delay after the coal is charged into the coke oven. Therefore, as a result of conducting a separate statistical time series analysis, we found that the extrusion failure rate E was 4% for the (VM・CU) value.
It was found that the correlation was maximized if the response was delayed by a week. Fig. 5 is a graph in which the extrusion failure rate E corresponds to the (VM・CU) value with a delay of 4 weeks, and Fig. 6 is a scatter diagram thereof, and in Fig. 6, the correlation coefficient r is 0.897. As can be seen from these graphs, there is clearly a correlation between the (VM·CU) value of the blended coal and the extrusion failure rate E. Therefore, from this,
It can be seen that by controlling the (VM・CU) value of the blended coal by the blending ratio, it is possible to control the extrusion failure rate, that is, the amount of carbon deposited on the furnace wall. The present invention has been made based on the above test and research results, and the implementation method thereof will be explained below. In carrying out the present invention, it is first necessary to determine the upper limit of the (VM·CU) value of the blended coal. In the case of the above-mentioned actual furnace test, this value means that if the extrusion failure rate is 7% or less, the average number of extrusion failures will be 70 or less out of about 1000 coke tubes discharged per week. Since it can be judged that this number of defective coals will not cause any major problems in coke oven operation, the value of (VM・CU) of the blended coal corresponding to this defective rate is taken from Fig. 6 (VM・CU). ) value of 141.5, but this value depends on various equipment conditions and operating conditions of each coke oven (for example, if the coke oven is very old or if the oven is operated at extremely high temperatures). It varies depending on the various conditions of the coke oven) and cannot be determined uniformly, so it must be determined each time according to the local conditions of the coke oven group. Next, blended coal is prepared by blending the single coals so that the value is below the upper limit (VM・CU) determined as described above. VM, CU) values must be known by performing a predetermined analysis. The (VM・CU) value of blended coal is obtained by weighting the above-mentioned known (VM・CU) values of single coal using the blending ratio as a weight, but if the value is less than the upper limit (VM・CU) value. In order to mix the ingredients so as to achieve the following, it is necessary to perform trial and error calculations by varying the mixing ratio. By charging the blended coal obtained in this way into a coke oven and carbonizing it, excessive carbon adhesion to the oven wall can be prevented, and even fatal problems such as clogging can occur when discharging coke. It can be avoided. As described above, the present invention solves the problem of carbon adhesion on the walls of coke ovens, which could not be quantitatively understood in the past, from the volatile content of blended coal and the total carbon content in the volatile content. It can be quantified by using as an index the product of the effective carbon content after subtracting the carbon content that becomes carbon dioxide.
This makes it possible to avoid operational troubles caused by carbon adhesion to the furnace walls, and is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石炭乾留時のカーボン発生を試験する
試験装置の概略流れ図である。第2図は縦軸に揮
発分値に対するカーボン付着量の割合即ちカーボ
ン付着率(カーボン付着量/揮発分値)Rを取
り、横軸に揮発分中有効炭素量CUを取つた散布
図である。第3図は縦軸にカーボン付着量CDを、
横軸に揮発分値と揮発分中有効炭素量との積
(VM・CU)を取つた散布図である。第4図は上
述(VM・CU)値と押出不良率Eを経時的に表
したグラフであり、第5図は第4図の(VM・
CU)値に対し押出不良率Eを4週間遅らせて対
応させたグラフである。第6図は第5図の
(VM・CU)値を横軸に、押し出し不良率Eを縦
軸に取つて描いた散布図である。 1……試験炉、2……内筒、3……上部加熱用
外筒、4……下部加熱用外筒、5……簀子、6…
…石炭試料、7……アルミナボール、8……冷却
器、9……タール安水トラツプ、10……濾過
器、11……アンモニアトラツプ、12……軽油
トラツプ、13……バルブ、14……吸引ブロワ
ー、15……ガスホルダー。
FIG. 1 is a schematic flowchart of a test device for testing carbon generation during coal carbonization. Figure 2 is a scatter diagram in which the vertical axis shows the ratio of carbon adhesion to the volatile content value, that is, the carbon adhesion rate (carbon adhesion amount/volatile content value) R, and the horizontal axis shows the effective carbon content CU in the volatile matter. . Figure 3 shows the carbon adhesion amount CD on the vertical axis.
It is a scatter diagram in which the product (VM·CU) of the volatile content value and the effective carbon content in the volatile content is plotted on the horizontal axis. Figure 4 is a graph showing the above-mentioned (VM/CU) value and extrusion failure rate E over time, and Figure 5 is a graph showing the (VM/CU) value and extrusion failure rate E in Figure 4.
CU) is a graph showing the extrusion failure rate E delayed by 4 weeks. FIG. 6 is a scatter diagram drawn with the (VM·CU) value shown in FIG. 5 on the horizontal axis and the extrusion failure rate E on the vertical axis. 1... Test furnace, 2... Inner cylinder, 3... Upper heating outer cylinder, 4... Lower heating outer cylinder, 5... Screener, 6...
... Coal sample, 7 ... Alumina ball, 8 ... Cooler, 9 ... Ammonium tar trap, 10 ... Filter, 11 ... Ammonia trap, 12 ... Light oil trap, 13 ... Valve, 14 ... ...Suction blower, 15...Gas holder.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭の乾留をコークス炉々壁へのカーボン付
着を抑止しながら行う方法であつて、事前に各単
味石炭の揮発分値及び該揮発分中の全炭素量から
乾留時に一酸化炭素及び二酸化炭素となる分の炭
素含量を差し引いた揮発分中有効炭素量を求めて
おき、これら各単味石炭の揮発分値及び有効炭素
量に基いて配合石炭の揮発分値と有効炭素量との
積が所定の値以下となるように原料石炭の配合割
合を決定し、この配合割合にて配合石炭を調製し
てコークス炉内に装入し、乾留を行うことを特徴
とする石炭の乾留方法。
1 A method of carbonizing coal while suppressing carbon adhesion to the walls of coke ovens, in which carbon monoxide and dioxide are determined in advance from the volatile content value of each single coal and the total carbon content in the volatile content. Calculate the effective carbon content in the volatile matter by subtracting the carbon content that becomes carbon, and then calculate the product of the volatile content value and the effective carbon content of the blended coal based on the volatile content value and effective carbon content of each single coal. 1. A method for carbonizing coal, which comprises determining a blending ratio of raw coal so that the ratio is below a predetermined value, preparing a blended coal at this blending ratio, charging it into a coke oven, and performing carbonization.
JP5095483A 1983-03-25 1983-03-25 Dry distillation of coal Granted JPS59176386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5095483A JPS59176386A (en) 1983-03-25 1983-03-25 Dry distillation of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5095483A JPS59176386A (en) 1983-03-25 1983-03-25 Dry distillation of coal

Publications (2)

Publication Number Publication Date
JPS59176386A JPS59176386A (en) 1984-10-05
JPH038400B2 true JPH038400B2 (en) 1991-02-05

Family

ID=12873214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5095483A Granted JPS59176386A (en) 1983-03-25 1983-03-25 Dry distillation of coal

Country Status (1)

Country Link
JP (1) JPS59176386A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775280B2 (en) * 2010-09-15 2015-09-09 関西熱化学株式会社 Carbon adhesion amount evaluation apparatus and carbon adhesion amount evaluation method

Also Published As

Publication number Publication date
JPS59176386A (en) 1984-10-05

Similar Documents

Publication Publication Date Title
US4188279A (en) Shaped carbon articles
US3960704A (en) Manufacture of isotropic delayed petroleum coke
US9845439B2 (en) Method for blending coals for cokemaking and method for producing coke
Perruchoud et al. Worldwide pitch quality for prebaked anodes
US4490244A (en) Production of premium grade petroleum coke
KR20150133827A (en) Method for evaluating weathering degree of coal, method for evaluating coking properties of weathered coal, method for controlling weathering degree of coal, and method for producing cokes
Collin et al. Co-carbonization of pitches with coal mixtures for the production of metallurgical cokes
JPH11116968A (en) Evaluation and blending of coal for preparation of coke
JPH038400B2 (en)
KR101100537B1 (en) Method for predicting of drum index of cokes
JP6308157B2 (en) Method for preparing blended coal and method for producing coke
CN110598185A (en) Coke oven coking unit consumption influence factor sequencing method and system
JP2009074048A (en) Manufacturing method of metallurgical coke
JP5775280B2 (en) Carbon adhesion amount evaluation apparatus and carbon adhesion amount evaluation method
Kocaefe et al. A kinetic study of pyrolysis in pitch impregnated electrodes
KR20110022326A (en) Method for predicting of coke strength after reaction
Makgato et al. The effect of recycling coke oven tar on environmental pollution, coke quality, personnel and process safety
KR100481295B1 (en) Coke strength prediction method from coal charging and coking condition
JP4464835B2 (en) Coke production method
JPH0315538Y2 (en)
US3320150A (en) Molded carbon materials
CN112111292A (en) Coke matched with waste activated carbon and coking method
Steller et al. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years
JP4050989B2 (en) Coke oven gas generation amount and heat amount prediction method, information processing method, and information processing apparatus
KR20000041662A (en) Method for estimating total amount of generation of coke oven gas of carbonization chamber