JPH038397B2 - - Google Patents

Info

Publication number
JPH038397B2
JPH038397B2 JP20865582A JP20865582A JPH038397B2 JP H038397 B2 JPH038397 B2 JP H038397B2 JP 20865582 A JP20865582 A JP 20865582A JP 20865582 A JP20865582 A JP 20865582A JP H038397 B2 JPH038397 B2 JP H038397B2
Authority
JP
Japan
Prior art keywords
polyamic acid
adhesive
weight
parts
adhesives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20865582A
Other languages
Japanese (ja)
Other versions
JPS59100180A (en
Inventor
Kohei Goto
Yasuyuki Shimozato
Hiroharu Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP20865582A priority Critical patent/JPS59100180A/en
Publication of JPS59100180A publication Critical patent/JPS59100180A/en
Publication of JPH038397B2 publication Critical patent/JPH038397B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、耐熱性接着剀に関する。 埓来、耐熱性に優れた接着剀ずしお、ポリむミ
ド系接着剀が知られおいる。䟋えばピロメリツト
酞無氎物ず−ゞアミノゞプニル゚ヌテ
ルずを反応させお埗られるポリアミド酞を䞻成分
ずする接着剀や、無氎フタヌル酞構造にパヌフル
オロむ゜プロピリデン基を結合したビプニルテ
トラカルボン酞無氎物ず芳銙族ゞアミンずを反
応させお埗られる接着剀が知られおいる。 しかし、これらの芳銙族ポリアミド酞系接着剀
は、ポリアミド酞の有機溶媒䞭での保存安定性が
悪く、保存䞭に分子量が䜎䞋したり、䞍溶分が析
出するため、䜎枩で保存する必芁があり、取扱い
に問題があ぀た。しかも、これらのポリアミド酞
系接着剀は、硬化埌の耐熱性の点においおはある
皋床満足できるものの、接着力の点においおは満
足なものずはいえなか぀た。 たた、埓来、導電性の接着剀ずしおぱポキシ
暹脂−銀粉、プノヌル暹脂−銀粉、プノヌル
暹脂−カヌボンブラツク等からなる接着剀が知ら
れおいる。これらの内、゚ポキン暹脂系接着剀は
接着力は高いものの耐熱枩床が150℃ず䜎く、た
た二液タむプであるため䜜業性が悪く、調合比な
どの調補条件により、接着力がばら぀いたりする
等の欠点を有しおいた。たたプノヌル暹脂系接
着剀は䞀液タむプであり、接着力が倧きく、耐熱
性も200℃ず゚ポキン暹脂系接着剀よりも高いが、
電子材料の導電䜓を接着する目的においおは、耐
熱性の極めお優れた導電性接着剀が芁求されおお
り、この目的においおは満足なものずはいえなか
぀た。 このために前蚘ポリアミド酞系接着剀に導電性
を付䞎すべく、金属粉などの導電性フむラヌをポ
リむミド系接着剀に添加するずいう詊みが行われ
おいるが、接着力がさらに䜎䞋する傟向があり、
導電性フむラヌの添加量の接着力ずの関係から制
限されるずいう欠点があ぀た。 本発明者らは、䞊蚘埓来の接着剀の欠点を改良
する目的で鋭意研究の結果、特定の構造を有する
ポリアミド酞を䞻成分ずする接着剀が保存安定性
に極めお優れ、宀枩での長期保存にも耐え、しか
も優れた接着力および耐熱性を有しおいるこず、
さらに前蚘接着剀に導電性フむラヌを添加しお
も、接着力の䜎䞋が極めお小さく、しかも優れた
耐熱性を有しおいるこずを芋出し、本発明に到達
した。 本発明の耐熱性接着剀は、−トリカ
ルボキシシクロペンチル酢酞たたはその無氎物ず
ゞアミンずを反応させお埗られるポリアミド酞を
䞻成分ずするこずを特城ずする。 本発明においおは、䞊蚘ポリアミド酞に導電性
フむラヌを含有させるこずにより耐熱性および導
電性を付䞎するこずができる。 本発明に䜿甚される−トリカルボキ
シシクロペンチル酢酞以䞋、TCAず称する
は、䟋えばゞシクロペンタゞ゚ンをオゟン分解
し、過酞化氎玠で酞化する方法英囜特蚱第
872355号、J.Org.Chem.28102537〜41、
1963、たたはゞシクロペンタゞ゚ンを氎和しお
埗られるヒドロキシ−ゞシクロペンタゞ゚ンを硝
酞で酞化する方法西独特蚱第1078120号など
によ぀お補造するこずができる。TCAは無氎物
通垞は無氎物ずしお甚いるのが重合反応の
点から奜たしい。 たたTCAたたはその無氎物ず反応させるゞア
ミンは、䞀般匏H2N−−NH2で瀺される化合
物は䟡の脂肪族、脂環族たたは芳銙族基
である。 䞊蚘䞀般匏における奜たしいは、䟋えば
The present invention relates to heat-resistant adhesives. Polyimide adhesives have conventionally been known as adhesives with excellent heat resistance. For example, adhesives whose main component is polyamic acid obtained by reacting pyromellitic acid dianhydride and 4,4-diaminodiphenyl ether, and biphenyltetracarboxylic acid which has a perfluoroisopropylidene group bonded to a phthalic anhydride structure. Adhesives obtained by reacting acid dianhydrides and aromatic diamines are known. However, these aromatic polyamic acid adhesives have poor storage stability in polyamic acid organic solvents, and the molecular weight decreases during storage and insoluble components precipitate, so they must be stored at low temperatures. There were problems with handling. Moreover, although these polyamic acid adhesives are somewhat satisfactory in terms of heat resistance after curing, they cannot be said to be satisfactory in terms of adhesive strength. Furthermore, adhesives made of epoxy resin/silver powder, phenolic resin/silver powder, phenolic resin/carbon black, etc. are conventionally known as conductive adhesives. Among these, Epokin resin adhesives have high adhesive strength, but have a low heat resistance temperature of 150℃, and because they are two-component type, workability is poor, and adhesive strength may vary depending on preparation conditions such as blending ratio. It had the following drawbacks. In addition, phenolic resin adhesive is a one-component type, has strong adhesive strength, and has a heat resistance of 200°C, which is higher than Epoquin resin adhesive.
For the purpose of bonding conductors of electronic materials, conductive adhesives with extremely excellent heat resistance are required, and these adhesives have not been satisfactory for this purpose. For this reason, attempts have been made to add conductive fillers such as metal powder to polyimide adhesives in order to impart conductivity to the polyamic acid adhesives, but this tends to further reduce the adhesive strength. ,
There was a drawback that the amount of conductive filler added was limited due to its relationship with adhesive strength. As a result of intensive research aimed at improving the drawbacks of the above-mentioned conventional adhesives, the present inventors found that an adhesive whose main component is polyamic acid with a specific structure has excellent storage stability, and can be stored for long periods at room temperature. It also has excellent adhesive strength and heat resistance.
Furthermore, the inventors have discovered that even when a conductive filler is added to the adhesive, the adhesive strength is extremely reduced and the adhesive has excellent heat resistance, and the present invention has been achieved. The heat-resistant adhesive of the present invention is characterized in that its main component is polyamic acid obtained by reacting 2,3,5-tricarboxycyclopentyl acetic acid or its anhydride with a diamine. In the present invention, heat resistance and conductivity can be imparted by incorporating a conductive filler into the polyamic acid. 2,3,5-tricarboxycyclopentyl acetic acid (hereinafter referred to as TCA) used in the present invention
For example, a method of ozonolyzing dicyclopentadiene and oxidizing it with hydrogen peroxide (UK patent no.
No. 872355, J.Org.Chem.28(10) 2537-41,
1963), or a method in which hydroxy-dicyclopentadiene obtained by hydrating dicyclopentadiene is oxidized with nitric acid (West German Patent No. 1078120). It is preferable to use TCA in the form of an anhydride (usually dianhydride) from the viewpoint of polymerization reaction. The diamine to be reacted with TCA or its anhydride is a compound represented by the general formula H 2 N-R-NH 2 (R is a divalent aliphatic, alicyclic, or aromatic group).
It is. Preferred R in the above general formula is, for example,

【匏】【formula】 【匏】【formula】

匏䞭、X1、X2、X3、およびX4は同䞀たたは異
なり、たたはCH3であり、はCH2、C2H4、
、、
(In the formula, X 1 , X 2 , X 3 , and X 4 are the same or different and are H or CH 3 , and Y is CH 2 , C 2 H 4 ,
O,S,

【匏】【formula】

【匏】SO2たたはCONHであ り、はたたはを瀺すで瀺される芳銙族
基、䟋えば−CH22−、−CH23−、−CH24
−、−CH25−、−CH26−、−CH27−、−
CH28−、−CH29−、
[Formula] SO 2 or CONH, n represents 0 or 1), such as -(CH 2 ) 2 -, -(CH 2 ) 3 -, -(CH 2 ) 4
−, −(CH 2 ) 5 −, −(CH 2 ) 6 −, −(CH 2 ) 7 −, −
(CH 2 ) 8 −, −(CH 2 ) 9 −,

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 で瀺される炭玠数〜13の脂肪族もしくは脂環族
炭化氎玠基たたはノルボルナン誘導䜓炭化氎玠基
であり、本発明の接着剀を熱凊理するこずによ぀
おむミド化させたずきの耐熱性をさらに向䞊する
ためには、は芳銙族基であるこずが奜たしい。 䞊蚘ゞアミンの具䜓䟋ずしおは、パラプニレ
ンゞアミン、メタプニレンゞアミン、4′−
ゞアミノゞプニルメタンル、4′−ゞアミノ
ゞプニル゚タン、−ゞ−アミノプ
ニルヘキサフロロプロパン、4′−ゞアミノ
ゞプニルプロパン、ベンゞゞン、4′−ゞア
ミノゞプニルスルフむド、4′−ゞアミノゞ
プニルスルホン、4′−ゞアミノゞプニル
゚ヌテル、−ゞアミノナフタレン、
3′−ゞメチル−4′−ゞアミノビプニル、
−ゞアミノベンズニアリド、4′−ゞア
ミノゞプニル゚ヌテル、−ゞアミノトル
゚ン、−ゞアミノトル゚ン、−ゞ
アミノトル゚ン、−ゞアミノトル゚ン、
−ゞアミノトル゚ン、−ゞアミノト
ル゚ン、メタキシリレンゞアミン、およびパラキ
シリレンゞアミン、゚チレンゞアミン、プロパン
ゞアミン、テトラメチレンゞアミン、ヘキサメチ
レンゞアミン、ヘプタメチレン、オクタチレンゞ
アミン、ノナメチレンゞアミン、4′−ゞメチ
ルヘプタメチレンゞアミン、−ゞアミノシ
クロヘキサン、テトラヒドロゞシクロペンタゞ゚
ニレンゞアミン、ヘキサヒドロ−−メタノ
むンダニレンゞメチレンゞアミン、トリシクロ
〔02.7〕−りンデシレンゞメチルゞア
ミン等を挙げるこずができる。これらは単独たた
は混合しお甚いるこずができる。 これらTCAたたは無氎物ずゞアミンずの反応
に甚いられる溶媒、たたは本発明の接着剀に含有
され埗る溶媒は、生成するポリアミド酞を溶解さ
せるものであれば特に制限はない。これらの溶媒
ずしおは、䟋えばゞメチルホルムアミド、ゞメチ
ルアセトアミド、−メチル−−ピロリドン、
ゞメチルスルホキシド、テトラメチル尿玠、γ−
ブチロラクトン等の双極子極性溶媒が甚いられ
る。たた䞀般的に高沞点のこれらの溶媒のほか、
䜎沞点溶媒もポリアミド酞が析出しない範囲で混
合しお甚いるこずができる。これらの䜎沞点溶媒
ずしおは、具䜓的にはアルコヌル類、プノヌル
類、ケトン類、゚ヌテル類、䟋えば゚チルアルコ
ヌル、む゜プロピルアルコヌル、プロピレングリ
コヌル、4′−ブタンゞオヌル、トリ゚チレン
グリコヌル、゚チレングリコヌルモノメチル゚ヌ
テル、プノヌル、クレゟヌル、メチル゚チルケ
トン、テトラヒドロフラン、ゞオキサン等が挙げ
られる。 TCAたたはその無氎物ずゞアミンずの反応割
合は圓モルで行うのが奜たしいが、本発明の目的
が達成される限り、これらのモノマヌの比率を若
干倉動させおもよい。䟋えば高分子量のポリアミ
ド酞を埗るためには、通垞、テトラカルボン酞た
たはその無氎物モルに察しおゞアミン化合物
0.7〜1.3モル皋床䜿甚するこずが奜たしい。たた
片末端のゞアミン、ゞカルボン酞たたはその無氎
物を添加しお分子量を調敎するこずができる。た
た反応は通垞、溶媒䞭で行なうが、溶媒の䜿甚量
はTCAたたはその無氎物ずゞアミンに察しお0.5
〜20重量倍が奜たしい。 本発明で甚いられるポリアミド酞を補造する際
の反応枩床は、TCAずその無氎物のどちらを出
発原料にするかによ぀お異なり、TCAを原料ず
する堎合には脱氎瞮合を行なわせるために、通
垞、50〜300℃、奜たしくは100〜250℃で反応を
行なうのが効果的である。䞀方、TCA無氎物を
原料ずする堎合には重付加反応であり、必ずしも
高枩で反応させる必芁はなく、通垞〜100℃で
反応を行えばよい。 䞊蚘反応で埗られるポリアミド酞は、䞀般に䞋
蚘䞀般匏で瀺される繰返し構造単䜍たたは
䞋蚘䞀般匏でされる繰返し構造単䜍ず䞋蚘
䞀般匏で瀺される繰返し構造単䜍を有する
が、 −R2−CO−HH−R1−    匏䞭、R1は䟡の脂肪族、脂環族たたは芳銙
族基、R2は
[Formula] It is an aliphatic or alicyclic hydrocarbon group having 6 to 13 carbon atoms or a norbornane derivative hydrocarbon group, and the heat resistance when the adhesive of the present invention is imidized by heat treatment. In order to further improve the properties, R is preferably an aromatic group. Specific examples of the above diamine include paraphenylenediamine, metaphenylenediamine, 4,4'-
Diaminodiphenylmethane, 4,4'-diaminodiphenylethane, 2,2-di(p-aminophenyl)hexafluoropropane, 4,4'-diaminodiphenylpropane, benzidine, 4,4'-diaminodiphenylene Nyl sulfide, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 1,5-diaminonaphthalene, 3,
3'-dimethyl-4,4'-diaminobiphenyl,
3,4-diaminobenznialide, 3,4'-diaminodiphenyl ether, 2,3-diaminotoluene, 2,4,-diaminotoluene, 3,4-diaminotoluene, 2,6-diaminotoluene,
3,5-diaminotoluene, 2,5-diaminotoluene, metaxylylenediamine, and paraxylylenediamine, ethylenediamine, propanediamine, tetramethylenediamine, hexamethylenediamine, heptamethylene, octethylenediamine, nonamethylenediamine, 4 , 4'-dimethylheptamethylenediamine, 1,4-diaminocyclohexane, tetrahydrodicyclopentadienylenediamine, hexahydro-4,7-methanoindanilene dimethylenediamine, tricyclo[6,2,1,0 2.7 ]- Undecylendimethyldiamine and the like can be mentioned. These can be used alone or in combination. The solvent used for the reaction of these TCA or anhydride with the diamine, or the solvent that can be contained in the adhesive of the present invention, is not particularly limited as long as it dissolves the polyamic acid to be produced. Examples of these solvents include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone,
Dimethyl sulfoxide, tetramethylurea, γ-
A dipolar polar solvent such as butyrolactone is used. In addition to these solvents, which generally have high boiling points,
A low boiling point solvent can also be mixed and used within a range in which the polyamic acid does not precipitate. Specific examples of these low boiling point solvents include alcohols, phenols, ketones, and ethers, such as ethyl alcohol, isopropyl alcohol, propylene glycol, 1,4'-butanediol, triethylene glycol, and ethylene glycol monomethyl ether. , phenol, cresol, methyl ethyl ketone, tetrahydrofuran, dioxane and the like. Although the reaction ratio of TCA or its anhydride and diamine is preferably carried out in equimolar amounts, the ratio of these monomers may be slightly varied as long as the object of the present invention is achieved. For example, in order to obtain a high molecular weight polyamic acid, a diamine compound is usually added per mole of tetracarboxylic acid or its anhydride.
It is preferable to use about 0.7 to 1.3 mol. Furthermore, the molecular weight can be adjusted by adding a diamine, dicarboxylic acid, or anhydride thereof at one end. In addition, the reaction is usually carried out in a solvent, and the amount of solvent used is 0.5 to TCA or its anhydride and diamine.
~20 times by weight is preferred. The reaction temperature when producing the polyamic acid used in the present invention varies depending on whether TCA or its anhydride is used as a starting material. When TCA is used as a starting material, in order to perform dehydration condensation, It is usually effective to carry out the reaction at a temperature of 50 to 300°C, preferably 100 to 250°C. On the other hand, when TCA anhydride is used as a raw material, it is a polyaddition reaction, and the reaction does not necessarily need to be carried out at a high temperature, and the reaction may normally be carried out at 0 to 100°C. The polyamic acid obtained by the above reaction generally has a repeating structural unit represented by the following general formula () or a repeating structural unit represented by the following general formula () and a repeating structural unit represented by the following general formula (). −R 2 −CO−HH−R 1 )−

() (In the formula, R 1 is a divalent aliphatic, alicyclic or aromatic group, R 2 is

【匏】たたは[expression] or

【匏】を瀺す 䞊蚘の倖に䞋蚘䞀般匏、、たた
はで瀺される繰返し構造単䜍が䞀郚存圚し
おも差支えない。 䞊蚘のようにしお埗られたポリアミド酞は溶媒
に溶け易く、か぀ポリアミド酞の郚がむミド化
しおも溶媒に溶けるために溶液状態で非垞に安定
なものである。このポリアミド酞の還元粘床濃
床100ml溶媒、溶媒ゞメチルアセトアミド、
枬定枩床30℃は、奜たしくは、0.05dl以
䞊、特に奜たしくは0.1〜100dlである。本発
明においお、ポリアミド酞に添加する導電性フむ
ラヌずしおは、銀、銅、アルミニりム等の金属
粉、ケツチ゚ンブラツク、アセチレンブラツク、
フアヌネスブラツク等のカヌボンブラツク、グラ
フアむト等が甚いられる。これらの導電性フむラ
ヌの圢態はできるだけ埮现な方が奜たしく、䞊蚘
ポリアミド酞の溶媒に添加、撹拌しお接着剀䞭に
均䞀に分散させお甚いられる。導電性接着剀は、
䞀般的には硬化埌の接着剀の䜓積抵抗率Ω・cm
以䞋のものであるが、この䜓積抵抗率は、導電性
フむラヌの添加量により調節ができる。 導電性フむラヌの添加量は導電性フむラヌの性
質にもよるが、ポリアミド酞100重量郚に察し
〜150重量郚が奜たしい。添加量が重量郚より
少ないず導電性の優れたものが埗られず、150重
量郚より倚いず接着力の䜎䞋が倧きい。 本発明の接着剀は、前蚘溶媒に察し、奜たしく
は〜80重量、特に奜たしくは10〜50重量の
ポリアミド酞が溶解したものである。反応で埗ら
れた重合溶液をそのたた本発明の接着剀ずしお甚
いるこずが、取扱い易さの点から奜たしい。 本発明の接着剀を䜿甚するに際しおは、通垞、
接着面にポリアミド酞の溶液たたはポリアミド酞
ず導電性フむラヌずの混合物の懞濁液を途垃した
埌、接着面に圧着しながら加熱凊理しお熱硬化さ
せる。この際ポリアミド酞はむミド化しおポリむ
ミドずなる。熱硬化前に、溶媒を陀去、也燥させ
るために予備的に加熱しおもよい。むミド化の枩
床は、ポリアミド酞の構造にもよるが、䞀般的に
はポリアミド酞のガラス転移枩床以䞊が奜たし
く、通垞100〜500℃である。むミド化時の枩床が
高枩の時には窒玠雰囲気䞋に行なうこずが、熱劣
化防止の点から奜たしい。 本発明の接着剀は、極めお高い接着力および優
れた耐熱性を瀺し、耐熱性玠材の接着に優れた効
果を奏する。耐熱性玠材の䟋ずしおは、䟋えばア
ルミニりム、銅、チタン、スチヌル等の金属材
料、シリコン、セラミツクス等の非金属無機材料
芳銙族ポリアミド、ポリアミドむミド、ポリむミ
ド等の耐熱性有機材料、さらにこれらの耇合材料
等の成型物等があげられる。 本発明の接着剀は、航空、宇宙産業における耐
熱性接着剀、電子産業における耐熱性接着剀ずし
お特に有甚なものである。 たた導電性フむラヌを含有する本発明の接着剀
は、䞊蚘の高い接着力および耐熱性に加えお、高
い導電性をも瀺し、導電性材料の接着に奜適なも
のである。この接着剀は、金属−金属の接着、特
にアルミニりム、銅、チタン、スチヌル等、た
た、シリコン−金属、シリコン−シリコン等のハ
ンダづけ䞍胜な個所の接着に有効である。 この導電性フむラヌを含有する接着剀は、電子
産業における半導䜓ICの組立技術ずしおのダむ
ボンデむング、ワむダボンデむングの分野などに
特に有効である。 以䞋、本発明を実斜䟋によ぀おさらに詳现に説
明するが、本発明は、これらの実斜䟋によ぀お制
限されるものではない。 実斜䟋  4′−ゞアミノゞプニル゚ヌテル14.1重量
郚0.1モルおよび−トリカルボキ
シシクロペンチル酢酞15.9重量郚0.1モルを
ゞメチルアセトラアミド70重量郚䞭、25℃で時
間反応させた。埗られたポリアミド酞溶液ポリ
アミド酞の還元粘床0.67dl、ポリアミド酞濃
床30重量をJISK6849に準じお研磚した本
のアルミニりム棒の円圢断面に途垃し、圧着固定
しながら也燥し、さらに300℃で時間加熱凊理
しお熱硬化させた。接着埌、宀枩で匕匵詊隓を行
぀お匕匵砎断させ、接着匷床を枬定した。たた耐
熱性を評䟡するため接着埌、450℃の空気雰囲気
䞋に15分間攟眮しお熱老化させ、老化埌の宀枩の
接着匷床を枬定した。これらの結果を第衚に瀺
す。 実斜䟋  実斜䟋ず同様にしお調補したポリアミド酞溶
液䜆しポリアミド酞の還元粘床16.4dl、ポ
リアミド酞濃床16.2重量を甚い、実斜䟋ず
同様にしお詊隓した結果第衚に瀺す。 実斜䟋  4′−ゞアミノゞプニル゚ヌテルの代り
に、4′−ゞアミノゞプニルメタンを甚い、
その他は実斜䟋ず同様にしおポリアミド酞溶液
ポリアミド酞の還元粘床0.17dl、ポリアミ
ド酞濃床30重量を調補した。実斜䟋ず同様
にしお詊隓した結果を第衚に瀺す。 実斜䟋  4′−ゞアミノゞプニル゚ヌテルの代り
に、パラプニレンゞアミンを甚い、ゞメチルア
セトアミドの代りに、ゞメチルホルムアミドを甚
い、その他は実斜䟋ず同様にしおポリアミド酞
溶液ポリアミド酞の還元粘床0.73dl、ポリ
アミド酞濃床30重量を調補した。実斜䟋ず
同様にしお詊隓した結果を第衚に瀺す。 比范䟋  ピロメリツト酞無氎物7.4重量郚0.1モルお
よび4′−ゞアミノゞプニル゚ヌテル8.6重
量郚0.1モルをゞメチルホルムアミド84.0重
量郚䞭、25℃で時間反応させた。埗られたポリ
アミド酞溶液ポリアミド酞の還元粘床34.2dl
、ポリアミド酞濃床16重量を甚い、実斜䟋
ず同様にしお接着力の詊隓をした。接着詊料
は、接着埌取扱い䞭に10本䞭本が砎損し、接着
力が極めお匱いこずが刀぀た。砎損しなか぀た詊
料の詊料結果を第衚に瀺す。 比范䟋  比范䟋ず同様にしお調補したポリアミド酞溶
液ポリアミド酞の還元粘床1.56dl、ポリア
ミド酞濃床30重量を甚いお、むミド化の条件
を、125℃で30分間、300℃で30分間、400℃で20
分間ず段階的に䞊昇させお熱硬化を行い、実斜䟋
ず同様にしお詊隓した。この接着詊料は、接着
時の取扱い䞭に10本䞭本が砎損し、接着力が極
めお匱いこずが刀぀た。砎損損しなか぀た詊料の
詊隓結果を第衚に瀺す。
[Formula]) In addition to the above, there may be some repeating structural units represented by the following general formulas (), (), (), or (). The polyamic acid obtained as described above is easily soluble in a solvent, and even if a part of the polyamic acid is imidized, it is soluble in the solvent, so it is very stable in a solution state. Reduced viscosity of this polyamic acid (concentration 1g/100ml solvent, solvent dimethylacetamide,
The measurement temperature (30° C.) is preferably 0.05 dl/g or more, particularly preferably 0.1 to 100 dl/g. In the present invention, examples of the conductive filler added to polyamic acid include metal powders such as silver, copper, and aluminum, butcher black, acetylene black,
Carbon black such as furnace black, graphite, etc. are used. The form of these conductive fillers is preferably as fine as possible, and is used by adding them to the solvent of the polyamic acid and stirring them to uniformly disperse them in the adhesive. Conductive adhesive is
Generally, the volume resistivity of the adhesive after curing is 1Ω・cm
As shown below, the volume resistivity can be adjusted by adjusting the amount of conductive filler added. The amount of conductive filler added depends on the properties of the conductive filler, but it is 3 parts by weight per 100 parts by weight of polyamic acid.
~150 parts by weight is preferred. If the amount added is less than 3 parts by weight, it will not be possible to obtain a product with excellent conductivity, and if it is more than 150 parts by weight, the adhesive strength will be significantly reduced. In the adhesive of the present invention, preferably 5 to 80% by weight, particularly preferably 10 to 50% by weight of polyamic acid is dissolved in the solvent. It is preferable to use the polymerization solution obtained by the reaction as it is as the adhesive of the present invention from the viewpoint of ease of handling. When using the adhesive of the present invention, usually
After dispensing a solution of polyamic acid or a suspension of a mixture of polyamic acid and a conductive filler on the adhesive surface, it is heated and cured by heat treatment while being pressed onto the adhesive surface. At this time, polyamic acid is imidized to become polyimide. Before thermal curing, preliminary heating may be performed to remove the solvent and dry the material. Although the imidization temperature depends on the structure of the polyamic acid, it is generally preferably higher than the glass transition temperature of the polyamic acid, and is usually 100 to 500°C. When the imidization temperature is high, it is preferable to carry out the imidization under a nitrogen atmosphere from the viewpoint of preventing thermal deterioration. The adhesive of the present invention exhibits extremely high adhesive strength and excellent heat resistance, and has an excellent effect on bonding heat-resistant materials. Examples of heat-resistant materials include metal materials such as aluminum, copper, titanium, and steel, non-metallic inorganic materials such as silicon and ceramics, heat-resistant organic materials such as aromatic polyamide, polyamide-imide, and polyimide, and composite materials thereof. Examples include molded products such as. The adhesive of the present invention is particularly useful as a heat-resistant adhesive in the aviation and space industries, and as a heat-resistant adhesive in the electronics industry. Furthermore, the adhesive of the present invention containing a conductive filler exhibits high conductivity in addition to the above-mentioned high adhesive strength and heat resistance, and is suitable for bonding conductive materials. This adhesive is effective for bonding metal-to-metal materials, particularly aluminum, copper, titanium, steel, etc., and silicon-to-metal, silicon-to-silicon materials, etc., where soldering is not possible. Adhesives containing this conductive filler are particularly effective in the fields of die bonding and wire bonding as assembly techniques for semiconductor ICs in the electronic industry. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 14.1 parts by weight (0.1 mol) of 4,4'-diaminodiphenyl ether and 15.9 parts by weight (0.1 mol) of 2,3,5-tricarboxycyclopentyl acetic acid were mixed in 70 parts by weight of dimethylacetraamide at 25°C. The mixture was allowed to react for 8 hours. The obtained polyamic acid solution (reduced viscosity of polyamic acid 0.67 dl/g, polyamic acid concentration 30% by weight) was applied to the circular cross section of two aluminum rods polished according to JISK6849, and dried while being crimped and fixed. , and was further heat-treated at 300°C for 1 hour to thermally cure it. After adhesion, a tensile test was conducted at room temperature to cause tensile breakage, and the adhesive strength was measured. In addition, to evaluate heat resistance, after adhesion, the adhesive was left in an air atmosphere at 450°C for 15 minutes to heat age, and the adhesive strength at room temperature after aging was measured. These results are shown in Table 1. Example 2 Using a polyamic acid solution prepared in the same manner as in Example 1 (reduced viscosity of polyamic acid: 16.4 dl/g, polyamic acid concentration: 16.2% by weight), tests were conducted in the same manner as in Example 1. Table 1 shows the results. Shown below. Example 3 Using 4,4'-diaminodiphenylmethane instead of 4,4'-diaminodiphenyl ether,
Otherwise, a polyamic acid solution (reduced viscosity of polyamic acid: 0.17 dl/g, polyamic acid concentration: 30% by weight) was prepared in the same manner as in Example 1. Table 1 shows the results of the test conducted in the same manner as in Example 1. Example 4 A polyamic acid solution (polyamic acid A polyamic acid with a reduced viscosity of 0.73 dl/g and a polyamic acid concentration of 30% by weight was prepared. Table 1 shows the results of the test conducted in the same manner as in Example 1. Comparative Example 1 7.4 parts by weight (0.1 mol) of pyromellitic anhydride and 8.6 parts by weight (0.1 mol) of 4,4'-diaminodiphenyl ether were reacted in 84.0 parts by weight of dimethylformamide at 25°C for 8 hours. Obtained polyamic acid solution (reduced viscosity of polyamic acid 34.2 dl/
g, polyamic acid concentration 16% by weight), and the adhesive strength was tested in the same manner as in Example 1. Four out of 10 adhesive samples were broken during handling after adhesion, indicating that the adhesive strength was extremely weak. Table 1 shows the sample results for the samples that were not damaged. Comparative Example 2 Using a polyamic acid solution prepared in the same manner as in Comparative Example 1 (reduced viscosity of polyamic acid 1.56 dl/g, polyamic acid concentration 30% by weight), the imidization conditions were set to 125°C for 30 minutes at 300°C. ℃ for 30 minutes, 400℃ for 20 minutes
Heat curing was carried out in a stepwise manner for 30 minutes, and the test was carried out in the same manner as in Example 1. In this adhesive sample, 6 out of 10 were broken during handling during adhesion, indicating that the adhesive strength was extremely weak. Table 1 shows the test results for the samples that were not damaged.

【衚】 第衚から明らかなように、本発明の接着剀
は、極めお優れた耐熱性および接着性胜を有しお
いるこずが刀る。 実斜䟋  4′−ゞアミノゞプニル゚ヌテル7.5重量
郚0.1モルおよび−トリカルボキ
シシクロペンチル酢酞8.5重量郚0.1モルをゞ
メチルアセトアミド84重量郚䞭、25℃で時間反
応させた。埗られたポリアミド酞溶液還元粘床
1.12dl、ポリアミド酞濃床16重量に銀粉
12.8重量郚を添加し、均䞀に分散するたで撹拌を
続けた。埗られた懞濁液を甚い、実斜䟋ず同様
にしお接着力の詊隓した。たた導電性の目安ずし
お䜓積抵抗率を枬定した。これらの結果を第衚
に瀺す。 実斜䟋  銀粉の量を重量郚ずし、その他は実斜䟋ず
同様にしお調補した懞濁液を甚い、実斜䟋ず同
様にしお詊隓した結果を第衚に瀺す。 実斜䟋  銀粉を添加せず、その他は実斜䟋ず同様にし
お調補したポリアミド酞溶液を甚い、実斜䟋ず
同様にしお詊隓した結果を第衚に瀺す。 比范䟋  ピロメリツト酞無氎物7.4重量郚0.1モルお
よび4′−ゞアミノゞプニル゚ヌテル8.6重
量郚0.1モルを、ゞメチルホルムアミド84.0
重量郚䞭で反応させた。埗られたポリアミド酞溶
液還元粘床3.42dl、ポリアミド酞濃床16
重量に実斜䟋ず同様に銀銀粉12.8重量郚を
添加しお埗られた懞濁液を甚い、実斜䟋ず同様
にしお詊隓をした。 接着材料は、接着埌、取扱い䞭に10本䞭本が
砎損し、接着力が極めお匱いこずが分぀た。砎損
しなか぀た詊料の詊隓結果を第衚に瀺す。
[Table] As is clear from Table 1, the adhesive of the present invention has extremely excellent heat resistance and adhesive performance. Example 5 7.5 parts by weight (0.1 mol) of 4,4'-diaminodiphenyl ether and 8.5 parts by weight (0.1 mol) of 2,3,5-tricarboxycyclopentyl acetic acid were mixed in 84 parts by weight of dimethylacetamide at 25°C for 8 hours. Made it react. Obtained polyamic acid solution (reduced viscosity
1.12dl/g, polyamic acid concentration 16% by weight) with silver powder
12.8 parts by weight was added and stirring continued until uniformly dispersed. Using the obtained suspension, the adhesive strength was tested in the same manner as in Example 1. In addition, volume resistivity was measured as a measure of conductivity. These results are shown in Table 2. Example 6 Table 2 shows the results of a test conducted in the same manner as in Example 5 using a suspension prepared in the same manner as in Example 5 except that the amount of silver powder was 8 parts by weight. Example 7 Table 2 shows the results of a test conducted in the same manner as in Example 5 using a polyamic acid solution prepared in the same manner as in Example 5 without adding silver powder. Comparative Example 3 7.4 parts by weight (0.1 mol) of pyromellitic anhydride and 8.6 parts by weight (0.1 mol) of 4,4'-diaminodiphenyl ether were mixed with 84.0 parts by weight of dimethylformamide.
The reaction was carried out in parts by weight. Obtained polyamic acid solution (reduced viscosity 3.42 dl//g, polyamic acid concentration 16
A test was carried out in the same manner as in Example 1 using a suspension obtained by adding 12.8 parts by weight of silver powder to (% by weight) in the same manner as in Example 5. After bonding, 6 out of 10 pieces of the adhesive material broke during handling, indicating that the adhesive strength was extremely weak. Table 2 shows the test results for the samples that did not break.

【衚】 第衚から明らかなように、本発明の導電性フ
むラヌを含有する接着剀は、耐熱性に極めお優れ
る他、優れた接着性胜および導電性を有しおいる
こずが刀る。
[Table] As is clear from Table 2, the adhesive containing the conductive filler of the present invention has excellent heat resistance as well as excellent adhesive performance and conductivity.

Claims (1)

【特蚱請求の範囲】[Claims]  −トリカルボキシシクロペンチル
酢酞たたはその無氎物ずゞアミンずを反応させお
埗られるポリアミド酞を䞻成分ずするこずを特城
ずする耐熱性接着剀。
1. A heat-resistant adhesive characterized in that its main component is a polyamic acid obtained by reacting 2,3,5-tricarboxycyclopentyl acetic acid or its anhydride with a diamine.
JP20865582A 1982-11-30 1982-11-30 Heat-resistant adhesive Granted JPS59100180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20865582A JPS59100180A (en) 1982-11-30 1982-11-30 Heat-resistant adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20865582A JPS59100180A (en) 1982-11-30 1982-11-30 Heat-resistant adhesive

Publications (2)

Publication Number Publication Date
JPS59100180A JPS59100180A (en) 1984-06-09
JPH038397B2 true JPH038397B2 (en) 1991-02-05

Family

ID=16559843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20865582A Granted JPS59100180A (en) 1982-11-30 1982-11-30 Heat-resistant adhesive

Country Status (1)

Country Link
JP (1) JPS59100180A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242631A (en) * 1988-03-24 1989-09-27 Japan Synthetic Rubber Co Ltd Production of polyimide precursor film
US6761978B2 (en) 2001-04-11 2004-07-13 Xerox Corporation Polyamide and conductive filler adhesive

Also Published As

Publication number Publication date
JPS59100180A (en) 1984-06-09

Similar Documents

Publication Publication Date Title
EP3106487B1 (en) Polyamide acid composition and polyimide composition
KR20100083249A (en) Polyimide film
JPH10231424A (en) Resin solution composition for electronic material
US5243024A (en) High moduli polyimides
JPS63221126A (en) Polyimide resin of excellent water absorption characteristic
KR930004942B1 (en) Silicon polyimide precursor composition
US20100273955A1 (en) 6,6-Polyimide Copolymers and Processes for Preparing Them
KR20150001953A (en) High functional polyimide film and method for preparation thereof
JPH038397B2 (en)
JP2955724B2 (en) Method for producing polyimide film
US4970292A (en) Amide-imide resin of lowered water absorption for molding and composite applications
JPH08217877A (en) Polyimide resin and polyimide film
KR101258432B1 (en) Polyimide film having excellent high temperature stability and substrate for display device using the same
KR101240955B1 (en) Polyimide film having excellent high temperature stability and substrate for display device using the same
KR20090089002A (en) Polyimide film
JPH0129381B2 (en)
CN109337070B (en) Resin composition
JP7045117B2 (en) Oligoaminomaleimide
JPS61273806A (en) Insulation covered wire
JP3425512B2 (en) Water repellent polyimide, precursor solution thereof, precursor, and methods for producing them
WO2022180794A1 (en) Insulated wire and method for manufacturing same
JPH05230419A (en) Polyimide coating composition and insulated electric wire
JPH0583580B2 (en)
JPH0277468A (en) Polyamic acid solution
JPH05112642A (en) Polyimide precursor, its cured material and their producion