JPH0383520A - Soil-improving method - Google Patents

Soil-improving method

Info

Publication number
JPH0383520A
JPH0383520A JP1220959A JP22095989A JPH0383520A JP H0383520 A JPH0383520 A JP H0383520A JP 1220959 A JP1220959 A JP 1220959A JP 22095989 A JP22095989 A JP 22095989A JP H0383520 A JPH0383520 A JP H0383520A
Authority
JP
Japan
Prior art keywords
water
soil
absorbing polymer
weight
methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1220959A
Other languages
Japanese (ja)
Inventor
Sunao Okamoto
直 岡本
Toru Utsunomiya
宇都宮 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Original Assignee
Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd filed Critical Mitsui Construction Co Ltd
Priority to JP1220959A priority Critical patent/JPH0383520A/en
Publication of JPH0383520A publication Critical patent/JPH0383520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PURPOSE:To improve the water-retainability of soil by mixing the earth and sand of soil with a water-absorbing polymer capable of including water in its structure. CONSTITUTION:A water-absorbing polymer capable of including water in its structure is mixed into the earth and sand of soil to be improved. The use of the water-absorbing polymer is effective in preventing the gelation caused by water-absorption and facilitating the plowing of soil and, accordingly, the supply of air to the soil. The water-absorbing polymer can be produced e.g. by dissolving an acrylic copolymer in an aliphatic hydrocarbon, dispersing an aqueous solution of acrylic acid and its alkali metal salt into the copolymer solution, subjecting the mixture to reversed phase suspension polymerization, crosslinking with a crosslinking agent in the presence or absence of an inorganic substance and drying the crosslinked product.

Description

【発明の詳細な説明】 (a)、産業上の利用分野 本発明は、土壌の保水性を改良することの出来ろ土壌の
改良方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a soil improvement method capable of improving soil water retention.

(b)、従来の技術 従来、土壌の保水性を改良する方法としてlよ改良すべ
き土壌に吸水によりゲル化する吸水性ポリマを混入する
方法が知られていた。
(b), Prior Art Conventionally, as a method for improving the water retention capacity of soil, a method has been known in which a water-absorbing polymer that gels by water absorption is mixed into the soil to be improved.

(C)0発明が解決しようとする問題点しかし、こうし
たポリマでは、吸水によりゲル化したポリマが植物の根
の発育に障害となることが有った。また、ゲル化した状
態では、土の掘り起しが困難であり、従って土壌に対す
る空気の補給も難しかった。
(C) 0 Problems to be Solved by the Invention However, with these polymers, the polymer gelatinizes due to water absorption and sometimes becomes an obstacle to the growth of plant roots. Furthermore, in the gelled state, it was difficult to dig up the soil, and therefore it was also difficult to supply air to the soil.

本発明は、前述の欠点を解消すべく、土壌の改良に際し
て、吸水によるゲル化が無く、土の旧り起こしも容易に
行うことが出来、従って土壌に対する空気の補給も容易
に行うことの出来る、土壌の改良方法を提供することを
目的とするものである。
In order to eliminate the above-mentioned drawbacks, the present invention has been developed to improve soil by eliminating gelation due to water absorption, making it easy to revitalize the soil, and making it easy to replenish air to the soil. The purpose is to provide a soil improvement method.

(d)0問題点を解決するための手段 即ち、本発明は、水をその構造内に包接することの出来
る吸水性ポリマを改良すべき土壌の土砂と混合して構成
される。
(d) A means for solving the zero problem, that is, the present invention is constructed by mixing a water-absorbing polymer capable of encapsulating water within its structure with the sand and sand of the soil to be improved.

なお、括弧内の番号等は、図面における対応する要素を
示す、便宜的なものであり、従って、本記述は図面上の
記載に限定拘束されるものではない。以下のr (e)
 、作用」の欄についても同様である。
Note that the numbers in parentheses are for convenience and indicate corresponding elements in the drawings, and therefore, this description is not limited to the descriptions on the drawings. r (e) below
The same applies to the column ``, action''.

(e)0作用 上記した構成により、本発明は、土壌に供給された水は
吸水性ポリマの構造内に包接された形で保水されるよう
に作用する。
(e) Zero effect With the above-described configuration, the present invention acts so that water supplied to the soil is retained in the form of inclusion within the structure of the water-absorbing polymer.

(f)、実施例 以下、本発明の実施例を図面に基づき説明する。(f), Example Embodiments of the present invention will be described below based on the drawings.

第1図は各単量体のガラス転移点を示す図である。FIG. 1 is a diagram showing the glass transition point of each monomer.

保水性に乏しい土壌を改良して土壌に保水性を与えるに
は、吸水状態においてもなお粒子独立性を保持すること
の出来る粒状吸水性ポリマを、乾燥状態で改良すべき土
砂に混合することにより行われろ。
In order to improve soil with poor water retention and give it water retention, it is possible to mix granular water-absorbing polymers, which can maintain particle independence even in a water-absorbed state, with the soil to be improved in a dry state. Be done.

ここで使用される吸水性ポリマは、以下の方法で得るこ
とが可能である。即ち、アクリル共重合体を脂肪族炭化
水素に溶解し、アクリル酸とそのアルカリ金属塩水溶液
を分散させ逆相@濁重合し、さらに無機物質存在または
不存在下、架橋剤で架橋し乾燥させるのである。以下、
吸水性ポリマの製法について詳述する。
The water-absorbing polymer used here can be obtained by the following method. That is, an acrylic copolymer is dissolved in an aliphatic hydrocarbon, acrylic acid and its alkali metal salt aqueous solution are dispersed, reverse phase @ turbidity polymerization is performed, and then crosslinked with a crosslinking agent in the presence or absence of an inorganic substance and dried. be. below,
The manufacturing method of the water-absorbing polymer will be explained in detail.

本発明に用いられる吸水性ポリマ製造の際、分散剤とし
て使われるアクリル共重合体は、fa)アクリル酸アル
キルエステルまたはメタクリル酸アルキルエステルで、
アルキル基の炭素数が8以上の単量体40〜95重量% tblカルボキシル基もしくは、アミノ基もしくは第4
級アンモニウム基もしくはヒドロキシル基を含有するア
クリル酸誘導体、メタクリル酸誘導体、また1よアクリ
ルアミド誘導体、メタクリルアミド誘導体の中から選ば
れた1種または2種以上の単量体5〜40重量% (C1上記(a)、(b)と共重合し得る不飽和単量体
0〜40重量% を構成成分とする共重合体である。
The acrylic copolymer used as a dispersant during the production of the water-absorbing polymer used in the present invention is fa) an acrylic acid alkyl ester or a methacrylic acid alkyl ester;
40 to 95% by weight of a monomer whose alkyl group has 8 or more carbon atoms, tbl carboxyl group, amino group, or quaternary
5 to 40% by weight of one or more monomers selected from acrylic acid derivatives, methacrylic acid derivatives, and acrylamide derivatives and methacrylamide derivatives containing a class ammonium group or a hydroxyl group (C1 above) It is a copolymer containing 0 to 40% by weight of an unsaturated monomer that can be copolymerized with (a) and (b).

(a)成分のアクリル酸またはメタクリル酸アルキルエ
ステルとしては、アルキル基の炭素数が8以上であれば
よく、市販され容易に入手できる単量体として、アクリ
ル酸2−エチルヘキシル、メタクリル酸2−エチルヘキ
シル、アクリル酸ラウリル、メタクリル酸ラウリル、ア
クリル酸トリデシル、メタクリル酸トリデシル、アクリ
ル酸ラウリル・トリデシル混合エステル、アクリル酸ス
テアリル、メタクリル酸ステアリルなどがある。
The acrylic acid or methacrylic acid alkyl ester of component (a) may be used as long as the number of carbon atoms in the alkyl group is 8 or more. , lauryl acrylate, lauryl methacrylate, tridecyl acrylate, tridecyl methacrylate, mixed ester of lauryl/tridecyl acrylate, stearyl acrylate, and stearyl methacrylate.

(a>成分を選択する場合、ガラス転移点が出来るだけ
高いほど、水系懸濁重合で分散剤を合成する際、ビーズ
のブロッキングがおこりにくくて都合がよい。各単量体
のガラス転移点を第1図に示す。
(When selecting components a>, it is convenient that the glass transition point is as high as possible, since blocking of beads is less likely to occur when synthesizing a dispersant by aqueous suspension polymerization. Shown in Figure 1.

例えば、メタクリル酸2−エチルヘキシル、アクリル酸
ラウリル、アクリル酸ラウリル・トリデシル混合エステ
ル、アクリル酸トリデシル、アクリル酸ステアリル、メ
タクリル酸ステアリル等である。
Examples include 2-ethylhexyl methacrylate, lauryl acrylate, lauryl/tridecyl acrylate mixed ester, tridecyl acrylate, stearyl acrylate, and stearyl methacrylate.

(bl成分のカルボキシル基、もしくはアミノ基、もし
くは第4級アンモニウム基、もしくはヒドロキシル基を
含有するアクリル酸誘導体、メタクリル酸誘導体、また
はアクリルアミド誘導体、メタクリアミド誘導体として
は、アクリル酸、メタクリル酸、イタコン酸、アクリル
酸ジメチルアミノエチル、メタクリル酸ジメチルアミノ
エチル、アクリル酸ジエチルアミノエチル、メタクリル
酸ジエチルアミノエチル、アクリル酸トリメチルアミノ
エチルクロライド、メタクリル酸トリメチルアξノエチ
ルクロライド、アクリル酸2−ヒドロキシエチル、メタ
クリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロ
キシプロピル、メタクリル酸2−ヒドロキシプロピル、
アクリルアミド、ジメチルアクリルアミド、ジメチルア
ミノプロピルアクリルアミド、ジメチルアミノプロピル
メタクリルアミド、トリメチルアミノプロピルアクリル
アミドクロライド、トリメチルアミノプロピルメタクリ
ルアミドクロライド等である。
(Acrylic acid derivatives, methacrylic acid derivatives, acrylamide derivatives, and methacrylamide derivatives containing carboxyl groups, amino groups, quaternary ammonium groups, or hydroxyl groups in the bl component include acrylic acid, methacrylic acid, and itaconic acid. , dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, trimethylaminoethyl chloride acrylate, trimethylanoethyl chloride methacrylate, 2-hydroxyethyl acrylate, 2-methacrylate Hydroxyethyl, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate,
These include acrylamide, dimethylacrylamide, dimethylaminopropylacrylamide, dimethylaminopropylmethacrylamide, trimethylaminopropylacrylamide chloride, trimethylaminopropylmethacrylamide chloride, and the like.

(cl成分の単量体としては、ガラス転移点が高く、脂
肪族系炭化水素溶媒に親和性のあるメタクリル酸アルキ
ルエステルでアルキル基の炭素数が4以下のものや酢酸
ビニルがあげられる。たとえばメタクリル酸メチル、メ
タクリル酸エチル、メタクリル酸イソブチル、メタクリ
ル酸n−ブチル、メタクリル酸イソブチル、酢酸ビニル
などがある。好ましくは、メタクリル酸メチル、メタク
リル酸エチル、メタクリル酸イソブチルが適当である。
(As monomers for the Cl component, examples include methacrylic acid alkyl esters with a high glass transition point and affinity for aliphatic hydrocarbon solvents with an alkyl group having 4 or less carbon atoms, and vinyl acetate. For example, Examples include methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, vinyl acetate, etc. Preferably, methyl methacrylate, ethyl methacrylate, and isobutyl methacrylate are suitable.

(a3、(bl、[03成分の構成比は、脂肪族系炭化
水素溶媒への分散溶解性、重合のコロイド分散性、吸水
性ポリマの物性、例えば、吸水能、吸水時の粒子独立性
、粒子の強度、粒径等に大きな影響を与える。
(a3, (bl, [03 components) composition ratios include dispersion solubility in aliphatic hydrocarbon solvents, colloidal dispersibility of polymerization, physical properties of water-absorbing polymers, such as water absorption ability, particle independence during water absorption, It has a large effect on particle strength, particle size, etc.

通常、(al成分40〜95重量%、(b)成分5〜4
0重量%、(e)成分0〜40重量%がよく、より好ま
しくは、(a3成分45〜70重量%、(b)成分5〜
25重量%、(c)成分20〜40重量%が適当である
。fal成分が40重量%未満の場合、溶媒への分散溶
解性が低下し、95重量%を越える場合、相対的に(b
)成分が5重量%未満でコロイド分散性が悪くなり、と
もに逆相懸濁重合の継続が困難となろ。40〜95重量
%の範囲では多いほど、溶媒への分散溶解性がよくなり
、吸水性ポリマの吸水時の粒子独立性、粒子の強度もよ
くなる傾向がある。(bl成分が5重量%未満の場合、
前述の通りコロイド分散性が悪くなり、40重量%を越
える場合、溶媒への分散溶解性が低下し、ともに逆相懸
濁重合の継続が困難となる。
Usually, (al component 40 to 95% by weight, (b) component 5 to 4
0% by weight, (e) component 0-40% by weight, more preferably (a3 component 45-70% by weight, (b) component 5-40% by weight)
25% by weight, and 20 to 40% by weight of component (c). When the fal component is less than 40% by weight, the dispersion solubility in the solvent decreases, and when it exceeds 95% by weight, the relative (b
) When the content of the component is less than 5% by weight, colloidal dispersibility deteriorates, and it becomes difficult to continue reverse phase suspension polymerization. In the range of 40 to 95% by weight, the higher the amount, the better the dispersion and solubility in a solvent, and the more the water-absorbing polymer tends to improve particle independence and particle strength when water is absorbed. (If the BL component is less than 5% by weight,
As mentioned above, the colloidal dispersibility deteriorates, and if the amount exceeds 40% by weight, the dispersion solubility in the solvent decreases, and it becomes difficult to continue the reverse phase suspension polymerization.

5〜40重量%の範囲では、多いほど重合のコロイド分
散性がよくなり、吸水性ポリマの吸水速度はアップする
が、吸水時の粒子独立性や粒子強度が低下し、粒径も細
かくなる傾向がある。(C)成分が40重量%を越える
場合、相対的に(a)成分の比率が低下し溶媒への分散
性が悪くなる。0〜40重量%の範囲では多いほど吸水
性ポリマの粒子強度がアップする。
In the range of 5 to 40% by weight, the higher the amount, the better the colloidal dispersibility of polymerization and the faster the water absorption rate of the water-absorbing polymer, but the particle independence and particle strength during water absorption decrease, and the particle size tends to become finer. There is. If the content of component (C) exceeds 40% by weight, the proportion of component (a) decreases relatively, resulting in poor dispersibility in the solvent. In the range of 0 to 40% by weight, the particle strength of the water-absorbing polymer increases as the amount increases.

分散剤として用いるアクリル共重合体は、水系懸濁重合
法により合成されろ。溶液重合では溶剤が残留したり、
低分子量の重合物で分散剤としての機能が劣ってしまう
場合がある。水系@濁重合法の例を上げると、イオン交
換水中に部分ケン化ポリビニルアルコールを加温溶解さ
せ、窒素置換後、(a+ 、(bl、(c)成分の単量
体にアゾ系またはパーオキサイド系の重合開始剤を溶か
した溶液を滴下分散し、加温保持して重合を終了させる
。冷却後、固形物を濾過水洗したのち、減圧乾燥しビー
ズ状のアクリル共重合体、即ち分散剤を得ろ。
The acrylic copolymer used as a dispersant is synthesized by an aqueous suspension polymerization method. In solution polymerization, solvent may remain,
Low molecular weight polymers may have poor functionality as a dispersant. To take an example of the aqueous @ turbidity polymerization method, partially saponified polyvinyl alcohol is dissolved in ion-exchanged water by heating, and after nitrogen substitution, azo or peroxide is added to the monomers of (a+, (bl, and (c)). A solution of the system's polymerization initiator is dropped and dispersed, and the polymerization is completed by keeping it warm.After cooling, the solid material is filtered and washed with water, and then dried under reduced pressure to form a bead-shaped acrylic copolymer, that is, a dispersant. Get it.

上記方法で得られる分散剤は、逆相懸濁重合の脂肪族炭
化水素溶媒に分散溶解される。分散剤の量は、アクリル
酸とそのアルカリ金属塩単量体に対し、0.1〜10重
量%、好ましくは0.5〜5重量%の範囲で用いられる
。分散剤の量が0゜1重量%未満では重合のコロイド分
散性が不安定となり、10重量%を越える場合、粒径が
細かくなりすぎ、経済的にもデメリットとなる。
The dispersant obtained by the above method is dispersed and dissolved in an aliphatic hydrocarbon solvent for reverse phase suspension polymerization. The amount of the dispersant used is in the range of 0.1 to 10% by weight, preferably 0.5 to 5% by weight, based on the monomer of acrylic acid and its alkali metal salt. If the amount of the dispersant is less than 0.1% by weight, the colloidal dispersibility of polymerization will become unstable, and if it exceeds 10% by weight, the particle size will become too fine, which is also economically disadvantageous.

アクリル酸とそのアルカリ金属塩水溶液は、アクリル酸
単量体を水酸化ナトリウム、水酸化カリウムなどの水溶
液で部分中和することにより調整される。中和度は吸水
能、安全性を考慮して60〜85%が好ましい。また水
溶液中の単量体濃度は35〜75重量%、好ましくは4
0〜70重量%がよい。
An aqueous solution of acrylic acid and its alkali metal salt is prepared by partially neutralizing an acrylic acid monomer with an aqueous solution of sodium hydroxide, potassium hydroxide, or the like. The degree of neutralization is preferably 60 to 85% in consideration of water absorption capacity and safety. The monomer concentration in the aqueous solution is 35 to 75% by weight, preferably 4% by weight.
It is preferably 0 to 70% by weight.

また、吸水性ポリマを製造する範囲内で、アクリル酸と
そのアクリル酸アルカリ金属塩単量体と共重合し得る不
飽和単量体を共重合させてもよい。
Further, within the scope of producing a water-absorbing polymer, an unsaturated monomer that can be copolymerized with acrylic acid and an alkali metal salt monomer of acrylic acid may be copolymerized.

アクリル酸とそのアルカリ金属水溶液を逆相@濁重合さ
せろ際、重合開始剤としては、架橋剤単量体を用いない
自己架橋型であるため、過硫酸カリウム、過硫酸アンモ
ニウムの如き水溶性過硫酸塩や、過酸化水素が好ましい
。重合開始剤の使用量は単量体に対し0.1〜2 、0
重量%、好ましくは0.2〜1.0重量%がよい。
When acrylic acid and its alkali metal aqueous solution are subjected to reverse phase @turbidity polymerization, the polymerization initiator is a self-crosslinking type that does not use a crosslinking monomer, so a water-soluble persulfate such as potassium persulfate or ammonium persulfate is used as the polymerization initiator. or hydrogen peroxide are preferred. The amount of polymerization initiator used is 0.1 to 2,0 per monomer.
% by weight, preferably 0.2 to 1.0% by weight.

逆相懸濁重合の脂肪族炭化水素溶媒としては、n−ペン
タン、n−ヘキサン、n−へブタン、n−オクタン等の
脂肪族炭化水素、シクロヘキサン、メチルシクロヘキサ
ン、デカリン等の脂環式炭化水素などがあげられるが、
好ましくはn−ヘキサン、n−へブタン、シクロヘキサ
ンが適当である。
Examples of aliphatic hydrocarbon solvents for reverse phase suspension polymerization include aliphatic hydrocarbons such as n-pentane, n-hexane, n-hebutane, and n-octane, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and decalin. For example,
Preferred are n-hexane, n-hebutane, and cyclohexane.

吸水性ポリマを製造する際、特に重要なもう一つの要件
として、逆相懸濁重合終了後、無機物質存在または不存
在下架橋剤で架橋反応させることである。
Another particularly important requirement when producing a water-absorbing polymer is to carry out a crosslinking reaction with a crosslinking agent in the presence or absence of an inorganic substance after completion of reverse phase suspension polymerization.

架橋剤は、カルボキシル基(又はカルボキシレート基)
と反応しろろ官能基を2個以上有する化合物であればよ
い。かかる架橋剤としては、例えばエチレングリコール
ジグリシジルエーテル、ポリエチレングリコールジグリ
シジルエーテル、グリセリントリグリシジルエーテル等
のポリグリシジルエーテル;エピクロルヒドリン、a−
メチルクロルヒドリン等のハロエポキシ化合物;グルク
ールアルデヒド、グリオキザール等のポリアルデヒド類
などがあげられるが、好ましくはエチレングリコールグ
リシジルエーテルが適当である。
The crosslinking agent is a carboxyl group (or carboxylate group)
Any compound having two or more functional groups that reacts with the compound may be used. Examples of such crosslinking agents include polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerin triglycidyl ether; epichlorohydrin, a-
Examples include haloepoxy compounds such as methyl chlorohydrin; polyaldehydes such as glucuraldehyde and glyoxal; preferably, ethylene glycol glycidyl ether is suitable.

架橋剤の添加量は架橋剤の種類及び分散剤の種類によっ
ても異なるが、通常アクリル酸とそのアルカリ金属塩単
量体に対して0.05〜2重量%が適切な範囲である。
The amount of the crosslinking agent added varies depending on the type of crosslinking agent and the type of dispersant, but the appropriate range is usually 0.05 to 2% by weight based on the monomer of acrylic acid and its alkali metal salt.

前記架橋剤使用量が0゜05重量%未満では吸水時の粒
子独立性、粒子の強度が悪く、2重量%より多くすると
架橋密度が高くなりすぎ、吸水能の著しい低下をきたす
If the amount of the crosslinking agent used is less than 0.05% by weight, the particle independence during water absorption and the strength of the particles will be poor, and if it is more than 2% by weight, the crosslinking density will become too high, resulting in a significant decrease in water absorption capacity.

架橋反応させる際、無機物質を加えると、いっそう吸水
時の粒子独立性が増す。無機物質としてはホワイトカー
ボン、タルク、ハイドロタルサイト、微粉シリカなどが
ある。また、この時、界面活性剤を添加してもよく、従
来公知のノニオン系界面活性剤などが用いられる。
Adding an inorganic substance during the crosslinking reaction further increases particle independence during water absorption. Inorganic substances include white carbon, talc, hydrotalcite, and finely divided silica. Further, at this time, a surfactant may be added, and a conventionally known nonionic surfactant or the like may be used.

架橋反応の方法は、従来から知られている共沸脱水や減
圧加熱乾燥時に架橋剤を加えればよく、共沸脱水時の添
加が容易である。
The crosslinking reaction can be carried out by adding a crosslinking agent during conventionally known azeotropic dehydration or vacuum drying, and addition during azeotropic dehydration is easy.

本発明で用いられる吸水性ポリマは市販のポリマと異な
り吸水すると水をその構造内に包接し、粒子独立性を示
すが、その理由として、分散剤であるアクリル共重合体
の(al成分が多いほど、また架橋剤が多いほど効果的
なことから、吸水したポリマのすべりが関係していると
推定されろ。分散剤のfa)成分は吸水したポリマの撥
水性を上げ、架橋剤はポリマの架橋度を高めることで吸
水速度のアップとともに表面のべたつきを減少させろ。
Unlike commercially available polymers, the water-absorbing polymer used in the present invention includes water within its structure when it absorbs water and exhibits particle independence. The more cross-linking agent there is, the more effective it is, so it is assumed that the slippage of the water-absorbed polymer is involved.The FA component of the dispersant increases the water repellency of the water-absorbed polymer, and the cross-linking agent improves the water repellency of the polymer. Increase the degree of crosslinking to increase water absorption speed and reduce surface stickiness.

これらの効果により、吸水したビーズ状のポリマ;よバ
インダとしての水が少ないため、お互いすべりあい、空
隙が発生し、粒子独立性と流動性を発現している。
As a result of these effects, the bead-shaped polymers absorb water; since there is little water as a binder, they slide against each other, creating voids and exhibiting particle independence and fluidity.

前記吸水性ポリマが吸水できる水の量はポリマの吸水能
(イオン交換水で吸水性ポリマ重量に対し100〜20
0倍)まで可能である。また、前記吸水性ポリマに必要
量の水を吸水させるだけでもよいが、独立した微粒状を
保つ上で吸水できる水の量はポリマの吸水能の半量以下
が望ましい。
The amount of water that the water-absorbing polymer can absorb is determined by the water-absorbing capacity of the polymer (100 to 20% of the weight of the water-absorbing polymer in ion exchange water).
0 times) is possible. Although it is sufficient to simply allow the water-absorbing polymer to absorb the necessary amount of water, it is desirable that the amount of water that can be absorbed to maintain independent fine particle form is less than half the water-absorbing capacity of the polymer.

吸水状態のポリマの粒径は吸水性ポリマの粒径と吸水さ
せる水の量により、0.03〜3.0閣の範囲で自由に
変えられ、改良すべき土壌の性質や与えるべき保水性能
に応じて変化させることが出来る。
The particle size of the water-absorbing polymer can be freely changed within the range of 0.03 to 3.0 degrees depending on the particle size of the water-absorbing polymer and the amount of water absorbed, and can be adjusted to suit the properties of the soil to be improved and the water retention performance to be provided. It can be changed accordingly.

こうして、乾燥状態の吸水性ポリマを改良すべき土壌の
土砂と混合することにより、土壌は、吸水性ポリマを均
等に含んだ形で改良される。降雨等により土壌に供給さ
れた水は、混合された吸水性ポリマに吸水され保水され
るので、直ちに土壌外に流出することが未然に防止され
ろ。また、吸水性ポリマは吸水状態においても、水をそ
の構造内に包接した形で保水するので、粒子独立性を維
持することができ、ポリマ同士が連続してゲル状になる
ようなことが無い。従って、その層り起こしも、土の粒
子とポリマ粒子が互いに離れているので簡単に行うこと
が出来る。
In this way, by mixing the dry water-absorbing polymer with the soil of the soil to be improved, the soil is improved in a form that evenly contains the water-absorbing polymer. Water supplied to the soil due to rainfall etc. is absorbed and retained by the mixed water-absorbing polymer, so it is prevented from immediately flowing out of the soil. In addition, even in the water-absorbing state, water-absorbing polymers retain water in the form of inclusion within their structure, so they can maintain particle independence and prevent the polymers from forming a gel-like structure. None. Therefore, the layering can be easily carried out because the soil particles and polymer particles are separated from each other.

(g)0発明の効果 以上、説明したように、本発明によれば、水をその構造
内に包接することの出来る吸水性ポリマを、改良すべき
土壌の土砂と混合して構成したので、ポリマは吸水状態
でも粒子独立性を保持し、ゲル化することが無いので、
植物の根の発育に障害をもたらすこともない。従って、
土の眠り起こしも容易で、土壌に対する空気の補給も簡
単に行うことが出来る。
(g) 0 Effects of the Invention As explained above, according to the present invention, the water-absorbing polymer that can include water in its structure is mixed with the earth and sand of the soil to be improved. Polymer maintains particle independence even when water is absorbed and does not gel.
It does not impede the development of plant roots. Therefore,
It is easy to wake up the soil, and it is also easy to supply air to the soil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各単量体のガラス転移点を示す図である。 FIG. 1 is a diagram showing the glass transition point of each monomer.

Claims (1)

【特許請求の範囲】[Claims] 水をその構造内に包接することの出来る吸水性ポリマを
改良すべき土壌の土砂と混合して構成した土壌の改良方
法。
A soil improvement method comprising mixing a water-absorbing polymer capable of encapsulating water within its structure with soil and sand of the soil to be improved.
JP1220959A 1989-08-28 1989-08-28 Soil-improving method Pending JPH0383520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220959A JPH0383520A (en) 1989-08-28 1989-08-28 Soil-improving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220959A JPH0383520A (en) 1989-08-28 1989-08-28 Soil-improving method

Publications (1)

Publication Number Publication Date
JPH0383520A true JPH0383520A (en) 1991-04-09

Family

ID=16759238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220959A Pending JPH0383520A (en) 1989-08-28 1989-08-28 Soil-improving method

Country Status (1)

Country Link
JP (1) JPH0383520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084656A (en) * 2005-09-21 2007-04-05 Dainippon Ink & Chem Inc Method for producing liquid absorbing resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084656A (en) * 2005-09-21 2007-04-05 Dainippon Ink & Chem Inc Method for producing liquid absorbing resin

Similar Documents

Publication Publication Date Title
US4849484A (en) Polymeric particles, their manufacture and uses
US4758617A (en) Process for preparing water-absorbing resin
JP3594629B2 (en) Cross-linked spherical copolymer beads and method for producing the same
JPS6025045B2 (en) Method for producing acrylic acid polymer with excellent salt water absorption ability
JPH04501877A (en) Manufacturing method of super absorbent resin
JP3162367B2 (en) Protective colloid-based redispersible acrylic resin emulsion powder and method for producing the same
JPH02153903A (en) Production of highly hygroscopic resin
JPH03195713A (en) Production of polymer having high water absorption
CA1335854C (en) Production method of fine grain ice and dry clathrate water for manufacturing of concrete/mortar, a production method of concrete/mortar by using fine grain ice or dry clathrate water and concrete/mortar products manufactured by the production method of concrete/mortar
JPS60186506A (en) Preparation of highly water absorbing polymer
JPH04265148A (en) Emulsion containing high-molecular anion emulsifier and low-molecular cation surface active agent
US5041475A (en) Method for production of inclusion water for hardening gypsum, method for production of shaped article of gypsum, and shaped article of gypsum
JPH0383520A (en) Soil-improving method
US4988390A (en) Method for production of inclusion water for hardening gypsum, method for production of shaped article of gypsum, and shaped article of gypsum
JPH0645651B2 (en) Method for producing high expansion water-absorbent polymer
JPH01249808A (en) Production of salt-resistant water-absorbable resin particle
JP2001516773A (en) Polymerization methods and products and use of the products
JPH05320270A (en) Production of water-absorptive polymer
JPH0326788A (en) Dehydrating combustion of coal
JP2967952B2 (en) Method for producing porous polymer
US5093410A (en) Method for production of inclusion water for hardening gypsum, method for production of shaped article of gypsum, and shaped article of gypsum
JP2912683B2 (en) Highly water-absorbing composition with low water solubility
JP2890481B2 (en) Method for producing hydrophilic crosslinked copolymer particles
JPH0328491A (en) Using method for static crushing agent
JPH0350479A (en) Nonfreezing fluid heat medium