JPH0383238A - Magneto-optical disk - Google Patents

Magneto-optical disk

Info

Publication number
JPH0383238A
JPH0383238A JP21753389A JP21753389A JPH0383238A JP H0383238 A JPH0383238 A JP H0383238A JP 21753389 A JP21753389 A JP 21753389A JP 21753389 A JP21753389 A JP 21753389A JP H0383238 A JPH0383238 A JP H0383238A
Authority
JP
Japan
Prior art keywords
magneto
layer
recording
optical disk
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21753389A
Other languages
Japanese (ja)
Inventor
Yasunobu Hashimoto
康宣 橋本
Kazuo Nakajima
一雄 中島
Miyozo Maeda
巳代三 前田
Kazunori Naito
一紀 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21753389A priority Critical patent/JPH0383238A/en
Publication of JPH0383238A publication Critical patent/JPH0383238A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve writing sensitivity while maintaining reading stability by providing a layer having higher thermal conductivity than that of a protective film in a manner that the thickness of the layer gradually decreases from the most inner circumference edge of a recording area in the disk to a specified radius range. CONSTITUTION:On a glass substrate 1, there are formed a base protective film 2 and recording film 3, and then a high thermal conductive layer 5 comprising Al is formed to cover from the most inner part R1 of the recording area 10 to the position of radius r. The layer 5 is formed by sputtering Al in a manner that the thickness of the layer decreases from the most inner circumference R1 to zero at the position where the distance from R1 is 2/3 of the distance from R1 to the most outer circumference R0. By this method, the high thermal conductive layer is formed in the inner area where the line velocity is slow, by which heat generated by laser beam irradiation is effectively diffused from the inner recording film to reduce the recording sensitivity of the inner area. Thereby, reading stability in the inner area can be maintained while writing sensitivity of the outer area can be improved.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、光磁気ディスク、特に角速度一定方式の光磁
気ディスクに関し、 続出安定性を十分に確保しながら書込感度を向上させた
光磁気ディスクを提供することを目的とし、 角速度一定方式の光磁気ディスクにおいて、記録膜上に
、この記録膜のための保護膜よりも高い熱伝導率の層を
、ディスクの記録領域最内周部からディスクの半径上所
定位置まで連続させて、ディスクの中心に関して同心円
状に、かつ上記最内周部から上記所定位置まで漸減する
厚さで設けて構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a magneto-optical disk, particularly a magneto-optical disk using a constant angular velocity method, and provides a magneto-optical disk that has improved writing sensitivity while sufficiently ensuring successive stability. With the purpose of Continuously extending to a predetermined position on the top, the disc is provided concentrically with respect to the center of the disk, and has a thickness that gradually decreases from the innermost circumferential portion to the predetermined position.

〔産業上の利用分野〕[Industrial application field]

本発明は、光磁気ディスク、特に角速度一定方式の光磁
気ディスクに関する。
The present invention relates to a magneto-optical disk, particularly a magneto-optical disk of a constant angular velocity type.

〔従来の技術〕[Conventional technology]

一般に記録媒体には、書込感度が高いことと共に、記録
された情報が続出操作自体によって破壊消去されないこ
とすなわち続出安定性が同時に要求される。光磁気ディ
スクにおける続出安定性に関しては、たとえばM、Ma
eda et al、 ”5tudy on Read
−out 5tability of TbFeCo 
Magneto−OpticalDisks”、198
9. Intera+ag t!A−8,to be 
publishedin IBBB trans、等に
詳説されている。
In general, recording media are required to have high writing sensitivity and at the same time, to ensure that the recorded information is not destroyed or erased by the successive operation itself, that is, to have successive successive stability. Regarding the successive stability in magneto-optical disks, for example, M, Ma
eda et al, “5tudy on Read
-out 5tability of TbFeCo
Magneto-Optical Disks”, 198
9. Intera + ag t! A-8, to be
It is explained in detail in published in IBBB trans, etc.

光磁気ディスクは、レーザビームで記録膜を加熱するこ
とによって記録(書込)を行い、記録された情報の続出
もレーザビームで行う。続出は書込よりも低いレーザパ
ワーで行う。これは、ディスク上に書込まれた記録情報
を、続出中のレーザビーム加熱によって破壊・消去しな
いためである。
Recording (writing) is performed on a magneto-optical disk by heating a recording film with a laser beam, and the recorded information is also output using a laser beam. Successive printing is performed with a lower laser power than writing. This is to prevent the recorded information written on the disk from being destroyed or erased by the continuous laser beam heating.

書込ができるための最小のレーザパワー(最小書込パワ
ー)および続出によって記録情報を破壊・消去しないた
めの最大のレーザパワー(最大許容続出パワー〉は、基
本的には記録膜を構成している材料のキューリー温度に
よって決まる。書込感度が高いためには最小書込パワー
が小さいこと、すなわち記録膜材料のキューリー温度が
低いことが必要であり、一方続出安定性が高いためには
最大許容続出パワーが大きいこと、すなわち記録膜材料
のキューリー温度が高いことが必要である。
The minimum laser power for writing (minimum write power) and the maximum laser power for not destroying or erasing the recorded information due to repeated flashing (maximum allowable continuous power) are basically the It is determined by the Curie temperature of the material used. High writing sensitivity requires a low minimum writing power, that is, a low Curie temperature of the recording film material, while high successive stability requires a low maximum allowable It is necessary that the output power is large, that is, the Curie temperature of the recording film material is high.

このように、光磁気ディスクの書込感度の向上と続出安
定性の向上とは基本的に両立しない背反関係にある。そ
のため、用途に応じて、書込感度と続出安定性のいずれ
か一方を重視した設計とするか、あるいは両者ともある
程度のレベルで抑制した設計とする必要がある。
In this way, improving the writing sensitivity of a magneto-optical disk and improving successive printing stability are basically in a contradictory relationship. Therefore, depending on the application, it is necessary to design a device that emphasizes either writing sensitivity or successive stability, or to suppress both of them to a certain level.

このような設計上の制約は、角速度一定方式の光磁気デ
ィスクの場合には特に大きい。
Such design constraints are particularly severe in the case of magneto-optical disks of a constant angular velocity type.

すなわち、角速度一定方式の光磁気ディスクにおいては
、ディスクの記録領域の内周側に比べて外周側はど線速
度は大きくなるため、記録膜単位長当たりのレーザビー
ム照射時間は外周側はど短くなる。したがって、実質的
なディスクの書込感度は、相対的にディスクの外周側は
ど低く、内周側はど高い。当然これとは反対に、実質的
な続出安定性は、相対的に外周側はど高く、内周側はど
低くなる。例えば、記録膜がディスクの全記録領域につ
いて同一の材料で作られている(すなわち記録膜のキュ
ーリー温度が全記録領域で一定の)一般的な光磁気ディ
スクの場合、ディスクの記録領域最内周部から最外周部
までの書込感度と続出安定性は、線速度の変化に対応し
て、ディスク中心からの半径距離に対応して変化する。
In other words, in a magneto-optical disk using a constant angular velocity method, the linear velocity is larger on the outer circumference than on the inner circumference of the recording area of the disk, so the laser beam irradiation time per unit length of the recording film is shorter on the outer circumference. Become. Therefore, the actual writing sensitivity of the disk is relatively low on the outer circumferential side of the disk and high on the inner circumferential side. Of course, on the contrary, the actual successive stability is relatively higher on the outer circumference side and lower on the inner circumference side. For example, in the case of a general magneto-optical disk in which the recording film is made of the same material for the entire recording area of the disk (that is, the Curie temperature of the recording film is constant in the entire recording area), the innermost periphery of the recording area of the disk The writing sensitivity and successive stability from the outermost periphery of the disc change in response to changes in linear velocity and in response to the radial distance from the center of the disk.

このように書込感度と続出安定性(すなわち最小書込パ
ワーと最大読出パワー)がディスク半径方向に沿ってそ
れぞれ漸減・漸増する状況下では、所定の書込パワーお
よび読出パワーに対して、最大許容続出パワーの小さい
最内周部の続出安定性を確保しながら最小書込パワーの
大きい最外周部の書込感度を確保するようにできる設計
上の選択幅は極めて狭く戊らざるを得ない。そのため、
このような設計上の制約下で、書込感度と続出安定性を
両立させて向上させることは極めて困難であった。
In this way, under the situation where write sensitivity and successive stability (i.e., minimum write power and maximum read power) gradually decrease and increase, respectively, along the disk radial direction, for a given write power and read power, the maximum The range of design choices that can be made to ensure write sensitivity in the outermost periphery, where the minimum write power is large, while ensuring successive stability in the innermost periphery, where the allowable continuous writing power is small, is extremely narrow. . Therefore,
Under such design constraints, it has been extremely difficult to simultaneously improve writing sensitivity and successive stability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、読出安定性を十分に確保しながら書込感度を
向上させた光磁気ディスクを提供することを目的とする
SUMMARY OF THE INVENTION An object of the present invention is to provide a magneto-optical disk that has improved writing sensitivity while sufficiently ensuring read stability.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、本発明によれば、角速度一定方式の光磁
気ディスクにおいて、記録膜上に、この記録膜のための
保護膜よりも高い熱伝導率の層を、ディスクの記録領域
最内周部からディスクの半径上所定位置まで連続させて
、ディスクの中心に関して同心円状に、かつ上記最内周
部から上記所定位置まで漸減する厚さで設けたことを特
徴とする光磁気ディスクによって達成される。
According to the present invention, in a magneto-optical disk of a constant angular velocity type, a layer having a higher thermal conductivity than a protective film for the recording film is provided on the innermost periphery of the recording area of the disk. This is achieved by a magneto-optical disk characterized in that the magneto-optical disk is provided continuously from the innermost circumferential portion to a predetermined position on the radius of the disk, concentrically with respect to the center of the disk, and with a thickness that gradually decreases from the innermost circumferential portion to the predetermined position. Ru.

線速度の遅い内周側では、記録膜上に設けられた高い熱
伝導率の層(以下、「高熱伝導層」と略称する)が、レ
ーザビーム照射によって記録膜内に導入された熱を記録
膜から効率良く逃がす。これによって、内周側では記録
膜の感度が実質的に低下したのと同じ効果が得られ、内
周側の続出安定性が高まる。すなわち、書込感度と続出
安定性の半径方向の漸減・漸増変化が緩和されることに
なり、これに起因する従来の特性向上の限界が解消され
、設計上の自由度も大幅に高まる。
On the inner circumferential side where the linear velocity is slow, a layer with high thermal conductivity provided on the recording film (hereinafter referred to as "high thermal conductivity layer") records the heat introduced into the recording film by laser beam irradiation. Efficiently escapes from the membrane. As a result, the same effect as when the sensitivity of the recording film is substantially lowered on the inner circumferential side is obtained, and the successive stability on the inner circumferential side is increased. In other words, the gradual decrease and increase changes in the writing sensitivity and successive stability in the radial direction are alleviated, and the conventional limitations in improving characteristics caused by this are eliminated, and the degree of freedom in design is greatly increased.

光磁気ディスクの記録膜は保護膜によって外部から保護
される。上記効果を得るためには、記録膜上に設けられ
る本発明の高熱伝導層は、この保護膜よりも高い熱伝導
率を有することが必要である。保護膜は一般的に酸化物
、窒化物等で形成されるが、その場合の高熱伝導層とし
てはAfのような高熱伝導率の金属の層が適当である。
The recording film of a magneto-optical disk is protected from the outside by a protective film. In order to obtain the above effect, the high thermal conductivity layer of the present invention provided on the recording film needs to have higher thermal conductivity than this protective film. The protective film is generally formed of oxide, nitride, etc., and in that case, a layer of a metal with high thermal conductivity such as Af is suitable as the high thermal conductive layer.

ディスク記録領域の最内周部からディスク半径上のどの
位置まで高熱伝導層を設けるかは、ディスクの用途に応
じた設計仕様として決定できる。
The position on the disk radius from the innermost circumference of the disk recording area to which the highly thermally conductive layer is provided can be determined as a design specification depending on the use of the disk.

もちろん、最内周部から最外周部に至る途中まで設ける
ことも、最内周部から最外周部まで、すなわちディスク
の全記録領域に設けることもできる。
Of course, it can be provided halfway from the innermost circumference to the outermost circumference, or it can be provided from the innermost circumference to the outermost circumference, that is, in the entire recording area of the disk.

高熱伝導層は、最内周部から上記の所定位置まで、連続
層として、かつ同心円状に設ける。これにより、所定の
内周側記録領域で上記伝導冷却による効果が得られる。
The highly thermally conductive layer is provided as a continuous layer and concentrically from the innermost periphery to the above-mentioned predetermined position. As a result, the effect of conductive cooling can be obtained in the predetermined inner recording area.

高熱伝導層の伝導冷却作用の大きさはその厚さに依存し
ており、厚さが厚いほど伝導冷却作用が大きい。したが
って、記録領域最内周部から半径方向に沿った書込感度
の漸減・続出安定性の漸増を緩和するためには、高熱伝
導層の厚さを最内周部から上記所定位置まで漸減させる
ことが必要である。
The magnitude of the conductive cooling effect of a high thermal conductivity layer depends on its thickness, and the thicker the layer, the greater the conductive cooling effect. Therefore, in order to alleviate the gradual decrease in writing sensitivity and gradual increase in stability along the radial direction from the innermost periphery of the recording area, the thickness of the high thermal conductive layer is gradually decreased from the innermost periphery to the above-mentioned predetermined position. It is necessary.

〔作 用〕[For production]

本発明の光磁気ディスクでは、線速度の遅い内周側の記
録膜上に高熱伝導層を設け、レーザビーム照射で導入さ
れた熱を内周側記録膜から効率良く逃がすことによって
、内周側の記録膜感度を実質的に低下させて内周側の続
出安定性を高める。
In the magneto-optical disk of the present invention, a highly thermally conductive layer is provided on the recording film on the inner peripheral side, where the linear velocity is slow, and the heat introduced by laser beam irradiation is efficiently released from the inner peripheral recording film. This substantially lowers the recording film sensitivity of the recording film and improves the successive stability on the inner circumferential side.

これにより、書込感度と続出安定性の半径方向の漸減・
漸増変化が緩和される。
This results in a radial gradual decrease in writing sensitivity and successive stability.
Gradual changes are moderated.

以下に、添付図面を参照し、実施例によって本発明を更
に詳細に説明する。
In the following, the invention will be explained in more detail by means of examples with reference to the accompanying drawings.

〔実施例〕〔Example〕

第1図(al)、  (a2)に示した本発明の光磁気
ディスクを作製した。同図(al)は、光磁気ディスク
の記録領域10とその内周部分に設けた高熱伝導層5を
示す平面図であり、(a2)は、(al)の線A−Aに
沿った断面図である。
The magneto-optical disk of the present invention shown in FIGS. 1(al) and 1(a2) was prepared. Figure (al) is a plan view showing the recording area 10 of the magneto-optical disk and the highly thermally conductive layer 5 provided on the inner peripheral portion thereof, and (a2) is a cross section taken along line A-A in (al). It is a diagram.

スパッタリングによって、ガラス2P基板1上に厚さ約
1100nのTb  3102下地保護膜2を、その上
に厚さ約1100nのTbFeC。
A Tb 3102 base protective film 2 with a thickness of about 1100 nm is formed on a glass 2P substrate 1 by sputtering, and a TbFeC film 2 with a thickness of about 1100 nm is formed thereon.

(キューリー温度170t)の記録膜3を形成し、その
上に記録領域IOの最内周部R0から半径rの位置まで
Anの高熱伝導層5を形成した。高熱伝導層5の厚さは
、ディスク記録領域10の最内周部Rr(半径55mm
)で約20nmであり、最内周部R1から最外周部Ro
に至る距離のほぼ2/3の位置rまで漸減して位置rで
実質的にゼロになり、位置rから最外周部Ro(半径9
5mm)までは実質的にゼロである。AIのスパッタリ
ングは、第3図のように、記録膜を形成した状態の基板
1′ とAIフタ−ット8との間にマスク7を配置した
状態で行った。これら三者の間には通常のスパッタリン
グ時のように間隔が開けである。マスク7の形状は図示
のように単純な円形の透過孔6を開けであるだけで十分
である。このようにしてAIのスパッタリングを行うと
、透過孔から周囲への回り込みによって、上記のように
傾斜した厚さでAIの層5が形成される。位置rはマス
ク7の透過孔6の大きさ、基板1゛とマスク7との間隔
、マスク7とターゲット8との間隔等によって調整でき
る。高熱伝導層5を形成した状態の基板上に、厚さ約1
00nrnのTb−3i○2の上地保護層4を形成した
A recording film 3 having a Curie temperature of 170 t was formed, and a highly thermally conductive layer 5 of An was formed thereon from the innermost peripheral portion R0 of the recording area IO to a position at a radius r. The thickness of the highly thermally conductive layer 5 is the innermost circumferential portion Rr of the disk recording area 10 (radius 55 mm
) is about 20 nm, and from the innermost circumference R1 to the outermost circumference Ro
The distance gradually decreases to position r, which is about 2/3 of the distance, and becomes substantially zero at position r, and from position r to the outermost circumference Ro (radius 9
5 mm) is essentially zero. Sputtering of AI was performed with a mask 7 placed between the substrate 1' on which the recording film was formed and the AI cover 8, as shown in FIG. There is a gap between these three as in normal sputtering. As for the shape of the mask 7, it is sufficient to have a simple circular transmission hole 6 as shown in the figure. When sputtering of AI is performed in this manner, the layer 5 of AI is formed with the sloped thickness as described above by spreading from the transmission hole to the surrounding area. The position r can be adjusted by adjusting the size of the transmission hole 6 of the mask 7, the distance between the substrate 1'' and the mask 7, the distance between the mask 7 and the target 8, etc. On the substrate on which the high thermal conductivity layer 5 is formed, a layer with a thickness of about 1
A top protective layer 4 of Tb-3i○2 of 00nrn was formed.

比較のために、高熱伝導層5を設けない第2図の従来の
光磁気ディスクも作製した。作製方法は、AAの高熱伝
導層5を設けない他は、上記と同様である。ただし、キ
ューリー温度による比較を行うために、TbFeCoの
組成の調整によって記録膜のキューリー温度を上記と同
じ170℃と210℃の2水準とした。
For comparison, a conventional magneto-optical disk shown in FIG. 2 without the high thermal conductivity layer 5 was also produced. The manufacturing method is the same as above except that the high thermal conductivity layer 5 of AA is not provided. However, in order to make a comparison based on Curie temperature, the Curie temperature of the recording film was set to two levels, 170° C. and 210° C., which are the same as above, by adjusting the composition of TbFeCo.

作製した各光磁気ディスクの記録膜のキューリー温度、
AI高熱伝導層の有無を第1表にまとめて示す。
Curie temperature of the recording film of each manufactured magneto-optical disk,
Table 1 summarizes the presence or absence of the AI high thermal conductivity layer.

第1表 これらの光磁気ディスクについて最小書込パワーと最大
許容続出パワーを測定した。結果を第4図に示す。
Table 1 The minimum write power and maximum allowable continuous output power of these magneto-optical disks were measured. The results are shown in Figure 4.

同図から分かるように、キューリー温度の高い従来例A
では最小書込パワーが最大4.2mW(最外周部〉と高
いという欠点があり、一方書込感度を高めるために従来
例Bのようにキューリー温度を低めると最大許容続出パ
ワーが最小1.6mW (最内周部)と低くなってしま
うという欠点がある。これに対して、本発明の実施例で
は内周側だけ書込感度を低下させであるので、最小書込
パワーの最大値(最外周部)を従来例Bと同じ低レベル
に抑えながら、最大許容続出パワーの最小値が1.8m
W(最内周部)に高められており、その結果、最小書込
パワー・最大許容続出パワーの半径方向変化が緩和され
ている。
As can be seen from the figure, conventional example A has a high Curie temperature.
However, if the Curie temperature is lowered as in Conventional Example B in order to increase the writing sensitivity, the maximum allowable continuous power is a minimum of 1.6 mW. On the other hand, in the embodiment of the present invention, the writing sensitivity is reduced only on the innermost side, so the maximum value of the minimum writing power (the highest The minimum value of the maximum allowable continuous power is 1.8 m while keeping the outer circumference) to the same low level as conventional example B.
W (innermost periphery), and as a result, radial changes in the minimum write power and maximum allowable successive power are moderated.

なお、上記の実施例では、高熱伝導層5を記録領域10
の半径上の途中の位置rまで設けた例を説明したが、第
1図(bl)および(b2)に示したように記録領域1
0全体に渡って本発明の高熱伝導層5を設けてもよい。
In addition, in the above embodiment, the high heat conductive layer 5 is placed in the recording area 10.
Although we have explained an example in which the recording area 1 is provided up to a position r halfway on the radius of the recording area 1, as shown in FIGS.
The high thermal conductivity layer 5 of the present invention may be provided over the entire surface of the substrate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、角速度−恵方式
の光磁気ディスクの続出安定性を十分に確保しなから書
込感度を向上させることができる。
As described above, according to the present invention, it is possible to improve the writing sensitivity of an angular velocity-type magneto-optical disk while ensuring sufficient successive stability.

その結果、設計上の自由度も著しく高まる。As a result, the degree of freedom in design increases significantly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al)および(a2〉は、本発明の光磁気ディ
スクの一例を示すそれぞれ平面図および断面図、同図(
bl)および(b2)は本発明の光磁気ディスクの他の
一例を示すそれぞれ平面図および断面図、 第2図(al)および(a2〉は、従来の光磁気ディス
クを示すそれぞれ平面図および断面図、第3図は、本発
明の光磁気ディスクの高熱伝導層を形成するスパッタリ
ングの方法を模式的に示す斜視図、および 第4図は、光磁気ディスクの半径方向位置と最小書込パ
ワーおよび最大許容続出パワーとの関係を示すグラフで
ある。 に基板、2:下地保護膜、 3:記録膜、4: 5=高熱伝導層、 7:マスク、8: 10:光磁気デイ 上地保護膜、 6:透過孔、 ターゲット、 スフの記録領域。
FIGS. 1(al) and (a2) are a plan view and a cross-sectional view, respectively, showing an example of the magneto-optical disk of the present invention, and FIG.
bl) and (b2) are a plan view and a cross-sectional view, respectively, showing another example of the magneto-optical disk of the present invention, and Figures 2 (al) and (a2) are a plan view and a cross-section, respectively, showing a conventional magneto-optical disk. 3 is a perspective view schematically showing a sputtering method for forming a highly thermally conductive layer of the magneto-optical disk of the present invention, and FIG. 4 shows the radial position, minimum write power, and This is a graph showing the relationship between the maximum allowable continuous power. 2: Substrate, 2: Base protective film, 3: Recording film, 4: 5 = High thermal conductive layer, 7: Mask, 8: 10: Magneto-optical day top protective film. , 6: Recording area of transmission hole, target, and suf.

Claims (1)

【特許請求の範囲】[Claims] 1、角速度一定方式の光磁気ディスクにおいて、記録膜
上に、この記録膜のための保護膜よりも高い熱伝導率の
層を、ディスクの記録領域最内周部からディスクの半径
上所定位置まで連続させて、ディスクの中心に関して同
心円状に、かつ上記最内周部から上記所定位置まで漸減
する厚さで設けたことを特徴とする光磁気ディスク。
1. In a magneto-optical disk using a constant angular velocity method, a layer with higher thermal conductivity than the protective film for the recording film is placed on the recording film from the innermost periphery of the recording area of the disc to a predetermined position on the radius of the disc. 1. A magneto-optical disk characterized in that the magneto-optical disks are provided continuously and concentrically with respect to the center of the disk, and have a thickness that gradually decreases from the innermost circumferential portion to the predetermined position.
JP21753389A 1989-08-25 1989-08-25 Magneto-optical disk Pending JPH0383238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21753389A JPH0383238A (en) 1989-08-25 1989-08-25 Magneto-optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21753389A JPH0383238A (en) 1989-08-25 1989-08-25 Magneto-optical disk

Publications (1)

Publication Number Publication Date
JPH0383238A true JPH0383238A (en) 1991-04-09

Family

ID=16705742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21753389A Pending JPH0383238A (en) 1989-08-25 1989-08-25 Magneto-optical disk

Country Status (1)

Country Link
JP (1) JPH0383238A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751511A2 (en) * 1995-06-30 1997-01-02 Sony Corporation Magneto-optical disc
US6898796B2 (en) * 2000-06-09 2005-05-24 Tdk Corporation Optical information medium and making method
US6965492B2 (en) * 2001-03-29 2005-11-15 Matsushita Electric Industrial Co., Ltd. Rotor assembly, information-recording/-reproducing device using the rotor assembly and method of assembling the rotor assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751511A2 (en) * 1995-06-30 1997-01-02 Sony Corporation Magneto-optical disc
EP0751511A3 (en) * 1995-06-30 1997-06-25 Sony Corp Magneto-optical disc
US5751670A (en) * 1995-06-30 1998-05-12 Sony Corporation Magneto-optical disk having variable thickness recording layer but adequate uniform reflectance value
US6898796B2 (en) * 2000-06-09 2005-05-24 Tdk Corporation Optical information medium and making method
US7055162B2 (en) 2000-06-09 2006-05-30 Tdk Corporation Optical information medium and making method
US6965492B2 (en) * 2001-03-29 2005-11-15 Matsushita Electric Industrial Co., Ltd. Rotor assembly, information-recording/-reproducing device using the rotor assembly and method of assembling the rotor assembly
KR100817996B1 (en) * 2001-03-29 2008-03-31 마츠시타 덴끼 산교 가부시키가이샤 Rotor assembly and information-recording/-reproducing device using the rotor assembly

Similar Documents

Publication Publication Date Title
JPH0253855B2 (en)
JPS63153744A (en) Optical recording medium and recording method using the medium
JPH0383238A (en) Magneto-optical disk
JPH0256746A (en) Information carrier disk
JPH01298545A (en) Disk-shaped optical information recording medium and its production
JPH0714170A (en) Optical disk device
JPS61243966A (en) Optical information carrier disk
JPH1173680A (en) Optical recording medium
JPH05303781A (en) Magnetic optical recording medium
JPH02146120A (en) Optical recording medium
JPS62298948A (en) Information carrier disk
JPS62298947A (en) Information carrier disk
JPH0440638A (en) Optical recording medium
JP3557761B2 (en) Magneto-optical disk
JPS5845635A (en) Recording medium
JPS63102052A (en) Magneto-optical disk
JPS61292239A (en) Information recording medium
JPH0554434A (en) Optical recording medium and production thereof
JPH04252442A (en) Optical information recording medium
JPH06282887A (en) Magneto-optical recording medium and manufacture thereof
JPH0378137A (en) Magneto-optical disk medium
JP2002312977A (en) Optical recording medium and recording and reproducing method therefor
JPH0296941A (en) Optical information recording medium and optical information recording system using this medium
JPH04205938A (en) Optical recording method
JPS61145739A (en) Optical disk