JPH0382971A - Electromagnetic induction type conductivity meter - Google Patents

Electromagnetic induction type conductivity meter

Info

Publication number
JPH0382971A
JPH0382971A JP22003989A JP22003989A JPH0382971A JP H0382971 A JPH0382971 A JP H0382971A JP 22003989 A JP22003989 A JP 22003989A JP 22003989 A JP22003989 A JP 22003989A JP H0382971 A JPH0382971 A JP H0382971A
Authority
JP
Japan
Prior art keywords
coil
circuit
magnetic flux
excitation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22003989A
Other languages
Japanese (ja)
Inventor
Shinichi Urushibata
漆畑 晋一
Yoshizumi Takao
高尾 宣積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP22003989A priority Critical patent/JPH0382971A/en
Publication of JPH0382971A publication Critical patent/JPH0382971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To correct a change of magnetic flux and to perform excitation at stable frequency by detecting the magnetic flux generated in a troidal coil on an exciting side by a magnetic flux detection coil and forming a fundamental wave by an exciting circuit to shape the same. CONSTITUTION:Troidal coils T1, T2 on exciting and detection sides are arranged in a liquid to be measured in a non-contact state and exciting and detection coils COIL1a, COIL3 are provided to the respective coils T1, T2. When an AC is supplied to the coil COIL1a, the coil T3 detects said AC by electromagnetic induction to calculate the signal proportional to the conductivity of the liquid to be measured by the coil COIL3. At this time, a magnetic flux detection coil COIL1b is provided to the coil T1 other than the COIL1a to detect the magnetic flux generated in the coil T1. The voltage generated in the coil COIL1b is inputted to an exciting coil 10 to be compared with reference voltage Vref by a comparator 13 and, as a result, a fundamental waveform is formed 15 on the basis of the reference frequency from an oscillator 14. This waveform is shaped 16 to a fundamental wave component to be outputted to the coil COIL1a.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は電磁誘導作用を用いて被測定液の導電率を測定
する電磁誘導式導電率計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electromagnetic induction conductivity meter that measures the conductivity of a liquid to be measured using electromagnetic induction.

〈従来の技術〉 従来、絶縁被膜で覆った二つの1−ランスを被測定液に
浸漬し、一方のトランスから電磁誘導で被測定液に電流
を流し、この電流を他方のトランスで再び電磁誘導によ
り検j封シ、前記被測定液の導電率に比例した電圧信号
を得るものは従来より公知である。このような導電率計
は原理的に浸漬式であるため、管内を流れる被測定液を
測定する場合、前記被測定液を流通させるケースを検出
部の外測に別に設けなければならなかった。またこのよ
うなケースを取付けた場合、ケースの形状によってセル
定数が変ってしまう欠点があり、流通液の測定にはこの
方式は向いてなかった。更に、この方式では前記l・ラ
ンスと絶縁材とが一体成型されており、後でメンテナン
ス等の目的で組込んだ前記トランスを取外すことはでき
なかった。
<Conventional technology> Conventionally, two 1-lances covered with an insulating film are immersed in the liquid to be measured, a current is passed through the liquid to be measured by electromagnetic induction from one transformer, and this current is passed back to the liquid by electromagnetic induction in the other transformer. A method for obtaining a voltage signal proportional to the electrical conductivity of the liquid to be measured is conventionally known. Since such a conductivity meter is basically an immersion type, when measuring a liquid to be measured flowing inside a pipe, a case through which the liquid to be measured flows must be separately provided outside the detection section. Furthermore, when such a case is installed, the cell constant changes depending on the shape of the case, making this method unsuitable for measuring circulating liquids. Furthermore, in this method, the L lance and the insulating material are integrally molded, and it is not possible to remove the incorporated transformer later for purposes such as maintenance.

そこで本願出願人はこの様な問題点を解決するために、
実願昭63−94957号「電磁誘導式導電率計」 (
以下「先行技術」という)を提案した。この先行技術は
、セル定数か一定で、流通式の測定に適し、トランスを
含む検出部を着脱H1来、メンテナンスが容易な電磁誘
導式導電率計を実現したものである。その構成の概要は
、ml磁トランスを構成するリング状コア(以下「励磁
能トロイダルコイル」という)と検出1〜ランスを構成
するリング状コア(以下「検出ffl +−ロイタルコ
イル」という)の中心孔に被測定液か流通可能な管状体
が挿入されたトランス・アセンブリユニットで構成され
、このl−ランス・アセンブリュニツlへが密に接続可
能で、1ヘランス・アセンブリュニツl−か接続された
ときには被測定液の流入流m口を有し内部を被測定液か
流れる管体によってトランス・アセンブリユニットの周
囲に被測定液による閉ループを形成する。この時、セル
定数は被測定液のループの状態によって決まるがこの先
行技術ではループは本体によって固定されておりセル定
数が変ることはない。
Therefore, in order to solve such problems, the applicant of the present application
Utility Application No. 63-94957 “Electromagnetic induction conductivity meter” (
(hereinafter referred to as "prior art"). This prior art realizes an electromagnetic induction conductivity meter that has a constant cell constant, is suitable for flow-type measurement, and has a detecting section including a transformer that can be attached and detached, making maintenance easy. The outline of its configuration is as follows: The ring-shaped core (hereinafter referred to as "excitation toroidal coil") that constitutes the ml magnetic transformer, and the center hole of the ring-shaped core (hereinafter referred to as "detection ffl + - Loytal coil") that constitutes the detection 1 to lance. It consists of a transformer assembly unit into which a tubular body through which the liquid to be measured can flow is inserted, and it can be tightly connected to the lance assembly, and when the lance assembly l is connected, the to-be-measured liquid A closed loop of the liquid to be measured is formed around the transformer assembly unit by a tube having m openings for liquid inflow and through which the liquid to be measured flows. At this time, the cell constant is determined by the state of the loop of the liquid to be measured, but in this prior art, the loop is fixed by the main body and the cell constant does not change.

第3図はこの先行技術の電磁誘導式導電率計の原理図で
ある。
FIG. 3 is a diagram showing the principle of this prior art electromagnetic induction conductivity meter.

第3図において、被測定液(図省略)中に2つのトロイ
タルコイル(T、、T2 )が配置される。
In FIG. 3, two troital coils (T, , T2) are placed in the liquid to be measured (not shown).

励磁II]、!l l−ロイタルコイル′■゛、には両
端に励磁電源Emか接続された励磁コイルC0I1.+
か巻き回されて配置され、検出側)へロイタルコイル′
r2にもよ両側から検出電圧E0を検出することができ
る検出コイルCo■13か巻き回されて配置されている
。2つの1−ロイダルコイルT1と′1゛2の中心孔に
は被測定液か流通されることとなり、これを電気的に表
すと、2つの1−ロイタルコイルT、と′I゛2に夫々
鎖交するように鎖交コイルCO]L2か巻き回されて配
置される形となる。この様に内部を被測定液が流れるこ
とによってl−ランス・アセンブリュニッ)〜の周囲に
被測定液による閉ループか形成されることとなるから、
励磁電源EWにより励磁コイルCO]L+に交流電流か
流される時に、励磁側トロイダルコイル1゛1 と鎖交
する鎖交コイル(被測定液部) C0IL2に被測定液
の導電率に比例した誘導電流lが流れ、これを検出1則
1−ロイダルコイル1゛2で再び電磁誘導により検出し
、検出コイルc o r t3から検出電圧E。とじて
取出すことで、検出電圧E。から被測定液の導電率を非
接液状態において測定することが可能となる。
Excitation II],! The excitation coil C0I1. is connected to the excitation power supply Em at both ends of the l-Roytal coil '■゛. +
The Royal coil is placed on the detection side).
A detection coil Co2 13 that can detect the detection voltage E0 from both sides is also wound around r2. The liquid to be measured will flow through the center holes of the two 1-loydal coils T1 and '1゛2, and to express this electrically, it will be linked to the two 1-loydal coils T1 and 'I'2, respectively. The interlinking coil CO]L2 is wound and arranged so that As the liquid to be measured flows inside in this way, a closed loop of the liquid to be measured is formed around the L-lance assembly.
When an alternating current is passed through the excitation coil CO]L+ by the excitation power source EW, an induced current proportional to the conductivity of the liquid to be measured is generated in the linkage coil (liquid to be measured) C0IL2 which interlinks with the excitation side toroidal coil 1゛1. 1 flows, this is detected again by electromagnetic induction in the detection 1 law 1-loidal coil 1-2, and the detection voltage E is output from the detection coil co r t3. By closing and taking out the detection voltage E. This makes it possible to measure the conductivity of the liquid to be measured in a non-liquid state.

〈発明か解決しようとする課題〉 ところでこの様な先行技術の電磁誘導式導電率計にあっ
ては、以下のような問題点かあった。
<Problems to be Solved by the Invention> However, the electromagnetic induction conductivity meter of the prior art has the following problems.

■:励磁コイルC0I1..に印加する交流電圧の振幅
を一定にした上で励磁コイルC0JL+に電流を流して
いるか、温度変化により励磁側トロイダルコイル′F1
の透磁率の変化や、励磁能の電気回路のドリフト等によ
って、励磁能トロイダルコイルT。
■: Excitation coil C0I1. .. Either current is flowing through the excitation coil C0JL+ while keeping the amplitude of the AC voltage applied to the excitation coil C0JL+ constant, or the excitation side toroidal coil 'F1
The excitation capacity of the toroidal coil T changes due to changes in magnetic permeability and drift of the excitation capacity of the electric circuit.

内の磁束か変化し、この変化が出力誤差となる。The magnetic flux inside changes, and this change causes an output error.

■:この様な構成においては、励磁電圧周波数が変化し
ても出力誤差となるか、安定した周波数の励磁電圧発生
回路で簡単な電気回路はなかった。
(2) In such a configuration, even if the excitation voltage frequency changes, an output error occurs, or there is no simple electric circuit for generating an excitation voltage with a stable frequency.

本発明は、先行技術の有するこのような問題点に鑑みて
なされたものであり、その目的とするところは、励磁側
トロイダルコイル内の磁束の変化を補正でき、且つ安定
した周波数で励磁を行えるような励磁回路を具備するよ
うにした電磁誘導式導電率計を提供するものである。
The present invention has been made in view of the problems of the prior art, and its purpose is to correct changes in magnetic flux within the excitation side toroidal coil and to excite at a stable frequency. The present invention provides an electromagnetic induction conductivity meter equipped with such an excitation circuit.

く課題を解決するための手段〉 上記目的を達成するために、本発明の電磁誘導式導電率
計は、 被測定液中に励磁側トロイタルコイルと検出側トロイダ
ルコイルが被測定液と非接触状態で配置され、前記励磁
側トロイダルコイルに励磁コイルか前記検出1plJ 
1〜ロイダルコイルに検出コイルが夫々設けられて、前
記励磁コイルに交流電流を供給し電磁誘導で前記被測定
液に電流を流し、該電流を電磁誘導で前記検出側1〜ロ
イダルコイルで検出して前記検出側コイルに前記被測定
液の導電率に比例した信号を得る電磁誘導式導電率計に
おいて、前記励磁側トロイダルコイルに前記励磁コイル
の他に励磁l11jl +−ロイダルコイル内に発生す
る磁束を検出する磁束検出コイルを設(づ、 この磁束検出コイルで発生ずる電圧を入力として比較回
路により基準電圧と比較し、波形生成回路でこの時の比
較結果を発振器からの基準周波数に基づいて基本波形を
作り、波形整形回路で波形生成回路からの出力を基本波
成分に整形して前記励磁コイルに出力する励磁回路を設
けたものである。
Means for Solving the Problems> In order to achieve the above object, the electromagnetic induction conductivity meter of the present invention has the following features: An excitation-side troital coil and a detection-side toroidal coil are placed in a liquid to be measured in a non-contact manner with the liquid to be measured. The excitation side toroidal coil is arranged in such a state that the excitation side toroidal coil is connected to the excitation side toroidal coil.
A detection coil is provided in each of the detection side 1 to the loidal coil, and an alternating current is supplied to the excitation coil to cause a current to flow through the liquid to be measured by electromagnetic induction, and the current is detected by the detection side 1 to the loidal coil by electromagnetic induction. In an electromagnetic induction conductivity meter that obtains a signal proportional to the conductivity of the liquid to be measured in a detection coil, the excitation side toroidal coil detects magnetic flux generated in the excitation toroidal coil in addition to the excitation coil. A magnetic flux detection coil is installed.The voltage generated by this magnetic flux detection coil is input and compared with a reference voltage by a comparator circuit.The waveform generation circuit generates a basic waveform based on the comparison result based on the reference frequency from the oscillator. , an excitation circuit is provided in which the waveform shaping circuit shapes the output from the waveform generation circuit into a fundamental wave component and outputs the fundamental wave component to the excitation coil.

〈実施例〉 実施例について図面を参照して説明する。<Example> Examples will be described with reference to the drawings.

尚、以下の図面において、第3図と重複する部分は同一
番号を付してその説明は省略する。
In the following drawings, parts that overlap with those in FIG. 3 are given the same numbers, and their explanations will be omitted.

第1図は本発明の電磁誘導式導電率計の実施例を示すブ
ロック系統図である。
FIG. 1 is a block diagram showing an embodiment of the electromagnetic induction conductivity meter of the present invention.

第1図において、C0IL+ aは励磁コイル、001
[1hは磁束検出コイル、10は励磁回路である。励磁
回路10において、11は整流・平滑回路、12は基準
電圧発生手段、13は比較回路、14は発振器、15は
波形生成回路、16は波形整形回路、20は検出回路部
である。
In Fig. 1, C0IL+ a is an exciting coil, 001
[1h is a magnetic flux detection coil, 10 is an excitation circuit. In the excitation circuit 10, 11 is a rectifier/smoothing circuit, 12 is a reference voltage generation means, 13 is a comparison circuit, 14 is an oscillator, 15 is a waveform generation circuit, 16 is a waveform shaping circuit, and 20 is a detection circuit section.

第2図は第1図の電磁誘導式環@早計を具体的にした一
回路例を示す図である。
FIG. 2 is a diagram showing an example of a circuit in which the electromagnetic induction ring shown in FIG. 1 is made concrete.

第2図を用いて更に本発明の電磁誘導式導電率計につい
て詳細に述べる。
The electromagnetic induction conductivity meter of the present invention will be further described in detail with reference to FIG.

第2図において、磁束検H,(4コイルC0IL+ b
は励磁測トロイダルコイル′I゛1内に発生する磁束を
検出する。
In Fig. 2, magnetic flux detection H, (4 coils C0IL+ b
detects the magnetic flux generated in the excitation measurement toroidal coil 'I'1.

励磁回路10において各部は以下のように具体的に構成
できる。整流・平滑回路11は、磁束検量コイルC0I
L+ bで発生ずる電圧を入力として、例えばオペアン
プQ、と整流素子D1とコンデンサC4等で構成するこ
とができる回路により整流・平滑する。基準電圧発生手
段12は、基準電圧vrefを出力する回路構成から成
る。比較回路13は、整流・平滑回路11からの磁束検
出コイルCOI 1. + 11での発生電圧を整流・
平滑された電圧と、基準電圧発生手段12からの基準電
圧VTI3fとを比較して、その偏差がゼロとなった時
に出力(比較結果)が安定するような回路組成、例えば
、比較器13aと、積分回路13bとで構成することが
できる。発振器14は、基準周波数を発振する、例えば
水晶発振器等を用いて構成することができる。波形生成
回路15は、比較回路13の出力(電圧)と発振器14
の出力(基本周波数)とを入力して合成(ここでいう合
成とは後述するように比112 :、1力を基本周波数
に基づいて変形することをいう)し、比較出力が矩形波
の振縞に対応する値となるような矩形波を作り、更にこ
の矩形波を三角波に生成して基本波形として出力するよ
うにするために、例えば、発振器14の出力周波数に基
づいてスイッチング動作して比較出力を矩形波に変換す
るトランジスタ等から成るスイッチング手段15aと、
このスイッチング手段15aで変換された比較出力に対
応する値の矩形波振幅をインピーダンス変換するインピ
ーダンス変換回路15bと、このインピーダンス変換回
路15bでインピーダンス変換された信号の直流分をカ
ットするコンデンサC2で構成するDCカット手Ji1
5cと、このDCカット手115cで直流分がカットさ
れた信号に基づいて三角波を生成して基本波として出力
する例えば積分回路等から成る三角波発生手段15dと
で構成することができる。波形整形回路16は、波形生
成回路15からの角波を通過させることにより励磁コイ
ルC0IL+ aに正弦波電圧E@ s j nωもの
基本波成分を出力・印加する例えば帯域フィルタ(バン
ドパスフィルタ)の構成とすることができる。
Each part of the excitation circuit 10 can be specifically configured as follows. The rectification/smoothing circuit 11 includes a magnetic flux calibration coil C0I.
The voltage generated at L+b is input and rectified and smoothed by a circuit that can be configured, for example, with an operational amplifier Q, a rectifying element D1, a capacitor C4, and the like. The reference voltage generating means 12 consists of a circuit configuration that outputs a reference voltage vref. The comparison circuit 13 includes a magnetic flux detection coil COI from the rectification/smoothing circuit 11. Rectifying the voltage generated at +11
A circuit composition, such as a comparator 13a, that stabilizes the output (comparison result) when the deviation between the smoothed voltage and the reference voltage VTI3f from the reference voltage generation means 12 becomes zero; It can be configured with an integrating circuit 13b. The oscillator 14 can be configured using, for example, a crystal oscillator that oscillates at a reference frequency. The waveform generation circuit 15 uses the output (voltage) of the comparison circuit 13 and the oscillator 14.
The output (fundamental frequency) of In order to create a rectangular wave with a value corresponding to the stripes, and then generate a triangular wave from this rectangular wave and output it as a basic waveform, for example, a switching operation is performed based on the output frequency of the oscillator 14 for comparison. switching means 15a consisting of a transistor or the like that converts the output into a rectangular wave;
It is composed of an impedance conversion circuit 15b that converts the rectangular wave amplitude of the value corresponding to the comparison output converted by this switching means 15a into impedance, and a capacitor C2 that cuts the DC component of the signal whose impedance has been converted by this impedance conversion circuit 15b. DC cut hand Ji1
5c, and a triangular wave generating means 15d comprising, for example, an integrating circuit, which generates a triangular wave based on the signal whose DC component has been cut by the DC cutter 115c and outputs it as a fundamental wave. The waveform shaping circuit 16 outputs and applies a fundamental wave component of a sinusoidal voltage E@s j nω to the exciting coil C0IL+a by passing the square wave from the waveform generating circuit 15. It can be configured as follows.

一方、検出回路部20は検出側トロイダルコイルT2に
設けられた検出コイルC0113からの検Efj (I
tを入力して必要な処理をして出力するために、例えば
、増幅回路21と、整流・平滑回路22と、被測定液の
温度を補償しある温度に換算して被測定液の導電率に比
例した!&適出力を得ることで温度補償回路23とによ
り構成することかできる。
On the other hand, the detection circuit unit 20 detects the detection Efj (I
In order to input t, perform the necessary processing, and output it, for example, an amplifier circuit 21, a rectification/smoothing circuit 22, and a compensating circuit for compensating the temperature of the liquid to be measured and calculating the conductivity of the liquid to be measured by converting it to a certain temperature. It was proportional to! & By obtaining an appropriate output, it can be configured with a temperature compensation circuit 23.

この様な構成においてその動作は以下のようになる。In such a configuration, the operation is as follows.

磁束検出コイルCo11. bで励磁1!l!I l−
ロイタルコイルT1内に発生ずる磁束を検出して電圧出
力として励磁UgJ#110に導く。導かれた電圧は整
流・平滑回路11で整流・平滑され比較回路13に出力
される。この比較回路13においては整流・平滑回路1
1からの整流・平滑された電圧か基準電圧VTGfと比
較され、偏差電圧がゼロとなるように制御されることと
なる。即ち、偏差電圧がある時(これは温度変化等によ
っても発生ずる)は比較器13aからの偏差電圧を受け
て積分回路13bで積分動作が行なわれ、偏差電圧がセ
ロとなったところで積分回路13bの出力端の電圧はコ
ンデンサC5にチ0 ヤーンされている電圧値に安定する。この様な出力電圧
が比較回路13から波形生成回路15に出力される6波
形生成回路15においては、発振器14からの基準周波
数でスイッチング手段15aをスイッチング動作させる
ことにより、比較回路13の出力電圧はその電圧値に対
応するの矩形波信号か得られることとなり、これをイン
ピーダンス変換回路15bてインピータンス変換し、D
CカッI・手段15cで直流分をカッl−して回路コモ
ンを中心とする矩形波信号とした後に三角波発生手段1
5dで回路コモンを中心とする三角波に生成し後述する
正弦波形とするための基本波形として出力する。この様
な過程を経て波形生成回路15からの基本波を波形整形
回路16を通過させることにより正弦波電圧”EHs 
jnωt”を得、これを励磁コイルC0IL、aに出力
・印加する。尚、ここで三角波発生手段15dを設けた
ことにより、単にDCカット手段15cからの回路コモ
ンを中心とする矩形波信号を波形整形回路16を通過さ
せることにより正弦波電圧を得る時の波形に比べて数段
良好な正弦波形を1 得ることができる。このようにして、最終的に、基1F
−電圧Vrefに見合った交番磁束が励磁側1−ロイタ
ルコイルT I内に常に一定に保たれるように制御され
印加される(作用する〉こととなる。
Magnetic flux detection coil Co11. Excitation 1 with b! l! I l-
The magnetic flux generated within the Loytal coil T1 is detected and guided to the excitation UgJ#110 as a voltage output. The led voltage is rectified and smoothed by a rectification/smoothing circuit 11 and output to a comparison circuit 13 . In this comparison circuit 13, the rectification/smoothing circuit 1
The rectified and smoothed voltage from 1 is compared with the reference voltage VTGf, and the voltage deviation is controlled to be zero. That is, when there is a deviation voltage (this may also occur due to temperature changes, etc.), the integration circuit 13b performs an integration operation in response to the deviation voltage from the comparator 13a, and when the deviation voltage becomes zero, the integration circuit 13b The voltage at the output terminal of is stabilized at the voltage value connected to capacitor C5. In the six waveform generation circuit 15 in which such an output voltage is output from the comparison circuit 13 to the waveform generation circuit 15, the output voltage of the comparison circuit 13 is changed by operating the switching means 15a at the reference frequency from the oscillator 14. A rectangular wave signal corresponding to the voltage value is obtained, which is impedance-converted by the impedance conversion circuit 15b and converted to D
After cutting the DC component into a rectangular wave signal centered on the circuit common in the C cutting means 15c, the triangular wave generating means 1
5d, a triangular wave centered on the circuit common is generated and output as a basic waveform to form a sine waveform to be described later. Through such a process, the fundamental wave from the waveform generation circuit 15 is passed through the waveform shaping circuit 16 to generate a sine wave voltage "EHs".
jnωt" is output and applied to the excitation coil C0IL,a. By providing the triangular wave generating means 15d here, the rectangular wave signal centered on the circuit common from the DC cutting means 15c is simply converted into a waveform. By passing through the shaping circuit 16, it is possible to obtain a sine waveform that is several orders of magnitude better than the waveform when obtaining the sine wave voltage.In this way, finally, the base 1F
- An alternating magnetic flux corresponding to the voltage Vref is controlled and applied (acts) in the excitation side 1-Roytal coil TI so that it is always kept constant.

即ち、励磁IN!!Il〜ロイタルコイル1゛、に磁束
検出コイルC0JL+ bを設けることでこの磁束検出
コイルC011,bで発生ずる電圧がある値の基準電圧
■reiどなるように制御されることから、励磁1則ト
ロイダルコイル′I′1内で発生ずる磁束は蘂′$電圧
VTefか一定であるならば励磁側トロイタルコイルT
1の温度変化等による透磁率の変化、励磁回路10での
電気的なドリフト等があっても常に一定に保たれること
となる。このことは、導電率計の出力が、第3図におい
て説明したような、誤差要因である励磁側の変動の影響
を解決できたこととなる。
That is, excitation IN! ! By providing a magnetic flux detection coil C0JL+b in Il~Roytal coil 1'', the voltage generated in this magnetic flux detection coil C011,b is controlled to be a reference voltage ■rei of a certain value, so the excitation one-law toroidal coil' If the magnetic flux generated in I'1 is constant and the voltage VTef is constant, then the magnetic flux generated in
Even if there is a change in magnetic permeability due to a change in temperature or the like, an electrical drift in the excitation circuit 10, etc., it is always kept constant. This means that the output of the conductivity meter has been able to overcome the influence of fluctuations on the excitation side, which are error factors, as explained in FIG.

ところで、設計時において基準電圧Vreiの値を決定
してしまえば、それに見合った磁束が励磁叫トロイタル
コイルT1内で自動的に一定に保たれるようになるので
、励磁l11川・ロイタルコイル 2 T +内の磁束に関する調整は一切不要となり、製造組
立て上有利となる。更に、発振器14についても、精度
の良い水晶発振器の周波数を励磁電圧正弦波の周波数に
利用することで、安定した印加電圧を安価で簡単に作る
ことかできる。
By the way, once the value of the reference voltage Vrei is determined at the time of design, the magnetic flux commensurate with it will automatically be kept constant within the excitation troytal coil T1. There is no need to make any adjustment regarding the magnetic flux within +, which is advantageous in terms of manufacturing and assembly. Furthermore, regarding the oscillator 14, by using the frequency of a highly accurate crystal oscillator as the frequency of the excitation voltage sine wave, a stable applied voltage can be easily produced at low cost.

〈発明の効果〉 本発明は、以上説明したように構成されているので、次
に記載するような効果を奏する。
<Effects of the Invention> Since the present invention is configured as described above, it produces the following effects.

■:安定した周波数の励磁回路を簡単な電気回路の構成
で製作できる。
■: An excitation circuit with stable frequency can be produced with a simple electric circuit configuration.

■:励磁回路の構成は、励磁コイルに印加する交流電圧
は励磁コイルの温度変化等による透磁率の変化や励磁回
路内部での電気ドリフト等があっても常に一定値に制御
されるようになっているから、これ等変化による影響は
受けることか無く、故にこれ等に基因する出力誤差は除
去できる。
■: The configuration of the excitation circuit is such that the AC voltage applied to the excitation coil is always controlled to a constant value even if there are changes in magnetic permeability due to temperature changes in the excitation coil or electrical drift inside the excitation circuit. Therefore, it is not affected by these changes, and therefore output errors caused by these changes can be removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電磁誘導式導電率計の実施例を示すブ
ロック系統図、第2図は第1図の@磁誘導式導電率計を
具体的にした一回路例を示す図、3 第3図は先行技術の電磁誘導式導電率計の原理図である
。 1゛、・・・励磁側トロイタルコイル、T2・・・検出
側トロイタルコイル、C0IL+ a・・・励磁コイル
、C0IL1b・・・磁束検出コイル、10・・励磁回
路、11・・・整流・平滑回路、12・・・基準電圧発
生手段、13・・・比較回路、14・・・発振器、15
・・・波形生成回路、16・・・波形整形回路、20・
・・検出回路部。 4
Fig. 1 is a block system diagram showing an embodiment of the electromagnetic induction conductivity meter of the present invention, Fig. 2 is a diagram showing an example of a specific circuit of the @magnetic induction conductivity meter shown in Fig. 1, FIG. 3 is a diagram showing the principle of a prior art electromagnetic induction conductivity meter. 1゛... Excitation side troytal coil, T2... Detection side troytal coil, C0IL+ a... Excitation coil, C0IL1b... Magnetic flux detection coil, 10... Excitation circuit, 11... Rectification. Smoothing circuit, 12... Reference voltage generating means, 13... Comparison circuit, 14... Oscillator, 15
... Waveform generation circuit, 16... Waveform shaping circuit, 20.
...Detection circuit section. 4

Claims (1)

【特許請求の範囲】[Claims] 前記励磁側トロイダルコイルに前記励磁コイルの他に励
磁側トロイダルコイル内に発生する磁束を検出する磁束
検出コイルと、該磁束検出コイルで発生する電圧を入力
として基準電圧と比較し比較結果を出力する比較回路、
該比較回路の出力を基準周波数に基づいて基本波形を出
力する波形生成回路、及び該波形生成回路の出力を基本
波成分に整形して前記励磁コイルに出力する波形整形回
路から成る励磁回路と、を具備したことを特徴とする電
磁誘導式導電率計。
In addition to the excitation side toroidal coil, the excitation side toroidal coil includes a magnetic flux detection coil that detects the magnetic flux generated in the excitation side toroidal coil, and a voltage generated in the magnetic flux detection coil is input, and is compared with a reference voltage, and a comparison result is output. comparison circuit,
an excitation circuit comprising a waveform generation circuit that outputs a fundamental waveform based on the output of the comparison circuit based on a reference frequency, and a waveform shaping circuit that shapes the output of the waveform generation circuit into a fundamental wave component and outputs the fundamental wave component to the excitation coil; An electromagnetic induction conductivity meter characterized by comprising:
JP22003989A 1989-08-25 1989-08-25 Electromagnetic induction type conductivity meter Pending JPH0382971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22003989A JPH0382971A (en) 1989-08-25 1989-08-25 Electromagnetic induction type conductivity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22003989A JPH0382971A (en) 1989-08-25 1989-08-25 Electromagnetic induction type conductivity meter

Publications (1)

Publication Number Publication Date
JPH0382971A true JPH0382971A (en) 1991-04-08

Family

ID=16744968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22003989A Pending JPH0382971A (en) 1989-08-25 1989-08-25 Electromagnetic induction type conductivity meter

Country Status (1)

Country Link
JP (1) JPH0382971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030080766A (en) * 2002-04-10 2003-10-17 장인환 candle stick
JP2019522784A (en) * 2016-09-01 2019-08-15 マルチーパス カンパニー,リミテッド Non-contact type electrical conductivity and non-conductor dielectric constant change measurement device using RF signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030080766A (en) * 2002-04-10 2003-10-17 장인환 candle stick
JP2019522784A (en) * 2016-09-01 2019-08-15 マルチーパス カンパニー,リミテッド Non-contact type electrical conductivity and non-conductor dielectric constant change measurement device using RF signal

Similar Documents

Publication Publication Date Title
US2802182A (en) Current density responsive apparatus
JP5492201B2 (en) Method and device for inductive conductivity measurement of fluid media
US6414475B1 (en) Current sensor
JP2957206B2 (en) Current sensor
CN106597351B (en) A kind of implementation method of pair of electric energy meter checking device on-line real time monitoring
JP2013124875A (en) Current sensor
US7847564B2 (en) Conductivity probe and dialysis machine comprising the probe
US4059014A (en) Electromagnetic flowmeter
CN110412336A (en) A kind of detection probe of high precision electric current transducer
US4483201A (en) Magnetic-inductive flowmeter
JPH0382971A (en) Electromagnetic induction type conductivity meter
Harrison et al. An impedance magnetometer
US5751535A (en) Control circuits for an electromagnetic flow meter
JPS63134947A (en) Measuring device for measuring content of magnetizable substance
Cataliotti et al. Characterization of clamp-on current transformers under nonsinusoidal conditions
JPH04296663A (en) Current measuring device
CN103941201A (en) Measuring method of magnetic parameters of magnetic material
JPH027031B2 (en)
JP2019152558A (en) Current sensor and voltmeter
JPS6111611Y2 (en)
SU775680A1 (en) Conductometer
SU913202A1 (en) Conductometer
SU832435A1 (en) Electric conductivity measuring device
SU1095099A1 (en) Device for measuring electric conductivity
RU1637530C (en) Device to measure transfer currents