JPH0382717A - Heat treatment method for steel strip and method for measuring oxide film on steel strip surface - Google Patents
Heat treatment method for steel strip and method for measuring oxide film on steel strip surfaceInfo
- Publication number
- JPH0382717A JPH0382717A JP21722989A JP21722989A JPH0382717A JP H0382717 A JPH0382717 A JP H0382717A JP 21722989 A JP21722989 A JP 21722989A JP 21722989 A JP21722989 A JP 21722989A JP H0382717 A JPH0382717 A JP H0382717A
- Authority
- JP
- Japan
- Prior art keywords
- steel strip
- heat treatment
- oxide film
- reduction
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 76
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 55
- 239000010959 steel Substances 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims description 14
- 230000003647 oxidation Effects 0.000 claims description 26
- 238000007254 oxidation reaction Methods 0.000 claims description 26
- 238000005259 measurement Methods 0.000 claims description 2
- 238000007747 plating Methods 0.000 abstract description 13
- 239000000446 fuel Substances 0.000 abstract description 11
- 230000001590 oxidative effect Effects 0.000 abstract description 6
- 238000002485 combustion reaction Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract description 2
- 238000010304 firing Methods 0.000 abstract 5
- 230000009977 dual effect Effects 0.000 abstract 1
- 238000005246 galvanizing Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、鋼帯の熱処理方法及び鋼帯表面の酸化膜厚測
定方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for heat treating a steel strip and a method for measuring the thickness of an oxide film on the surface of a steel strip.
(従来の技術と発明の解決しようとする課題)直火無酸
化加熱処理は一般に空燃比を約0.85にして鋼帯を加
熱処理し、次いで直火又は間接加熱により、還元雰囲気
中で熱処理するとともに直火無酸化加熱処理で表面に生
成した酸化膜等を還元するものである。(Prior Art and Problems to be Solved by the Invention) Direct flame non-oxidation heat treatment generally involves heat treating a steel strip at an air-fuel ratio of approximately 0.85, and then heat treatment in a reducing atmosphere by direct flame or indirect heating. At the same time, it reduces the oxide film etc. generated on the surface by direct flame non-oxidation heat treatment.
このような熱処理後、鋼帯表面が白濁色を呈し、商品価
値を低下させることがある、又このような鋼帯に溶融金
属メツキ、例えば、亜鉛メツキを施すと、メツキ密着性
を著しく損う等の難点をともなうものである。After such heat treatment, the surface of the steel strip may take on a cloudy color, which may reduce its commercial value.Also, if such steel strip is plated with molten metal, such as galvanized, the adhesion of the plating will be significantly impaired. This method is accompanied by other difficulties.
本発明は、このような欠点を有利に解決するためなされ
たものである。The present invention has been made to advantageously solve these drawbacks.
(課題を解決するための手段)
本発明の特徴とするところは、角帯を直火無酸化加熱処
理に引き続き還元熱処理を施すに際し。(Means for Solving the Problems) The present invention is characterized in that a rectangular band is subjected to direct fire non-oxidation heat treatment followed by reduction heat treatment.
還元熱処理前で鋼帯の放射エネルギーを検出して、酸化
膜厚を測定し、この測定結果に基き、直火無酸化加熱処
理条件を調整することを特徴とする、鋼帯の熱処理方法
。A method for heat treatment of a steel strip, characterized by detecting radiant energy of the steel strip before reduction heat treatment, measuring the oxide film thickness, and adjusting direct flame non-oxidation heat treatment conditions based on the measurement results.
及び直火無酸化加熱処理に引き続き還元熱処理を施すに
際し、還元熱処理前で鋼帯の放射率を検出し、該検出値
に基き、酸化膜厚を測定することを特徴とする。鋼帯表
面の酸化膜厚測定方法に関するものである。When applying reduction heat treatment subsequent to the direct fire non-oxidation heat treatment, the emissivity of the steel strip is detected before the reduction heat treatment, and the oxide film thickness is measured based on the detected value. This invention relates to a method for measuring oxide film thickness on the surface of a steel strip.
直火無酸化加熱炉で鋼帯に生成する酸化膜厚の変動は、
操業中に大気を炉内へ吸込む、又は直火バーナー火炎の
酸化炎が鋼帯に接触している場合等により起る。The variation in the thickness of the oxide film formed on the steel strip in a direct-fired non-oxidation heating furnace is as follows:
This occurs due to atmospheric air being sucked into the furnace during operation, or when the oxidizing flame of the direct burner flame comes into contact with the steel strip.
しかして、本発明者等の知見によれば、直火無酸化加熱
により、1!帯表面に生成した酸化膜は還元熱処理によ
り、還元されるが、この表面はポーラス状になっており
、膜厚により光の反射角が変化し、白濁色を呈し、又硬
く、かつ脆いためにメツキの密着性が損われることが明
らかになった。According to the findings of the present inventors, direct flame non-oxidation heating can achieve 1! The oxide film formed on the band surface is reduced by reduction heat treatment, but this surface is porous and the angle of light reflection changes depending on the film thickness, giving it a cloudy color and being hard and brittle. It became clear that the adhesion of the matte coating was impaired.
しかして、このような原因となる直火無酸化加熱処理に
際し、生成する酸化膜をライン内で正確に測定する手段
がなく、この酸化膜を測定することについて、開発を進
めた結果1例えば、2波長型放射温度計により、鋼帯の
放射エネルギーから放射率を検出し次記のごとく、酸化
膜厚を測定することを開発した。However, there is no means to accurately measure the oxide film generated in the line during direct flame non-oxidation heat treatment, which causes such problems, and as a result of progressing development to measure this oxide film1, for example: We have developed a method to detect the emissivity from the radiant energy of the steel strip using a two-wavelength radiation thermometer and measure the oxide film thickness as described below.
一例を挙げるとあらかじめPbS+ Qe、si等の検
出素子によって測定された放射率(ε)に対する酸化膜
厚(τ)を実験的に求めておく。さらにこのデータに基
づいて鋼板放射率(ε)と酸化膜厚(τ)の相関関係を
下記の如き数式に整理し、実測放射率(ε′)を代入す
ることにより酸化膜厚を算出する6
検出器波長 λ=16[μIII]の場合θ〜400大
τ= 44952ε−0,57[入]
400〜100OA
τ= 1884.7 t ”−3705,7ε+223
5.I EA ]このようにして測定するライン内の
個所としては、直火無酸化熱処理炉の炉内出側近傍、炉
出側等還元熱処理炉の前で測定する。For example, the oxide film thickness (τ) with respect to the emissivity (ε) measured by a detection element such as PbS+ Qe, Si, etc. is determined experimentally in advance. Furthermore, based on this data, the correlation between the steel plate emissivity (ε) and the oxide film thickness (τ) is organized into the following formula, and the oxide film thickness is calculated by substituting the actually measured emissivity (ε'). When detector wavelength λ=16 [μIII], θ~400 large τ= 44952ε-0,57 [in] 400~100OA τ=1884.7 t''-3705,7ε+223
5. I EA ] The locations within the line to be measured in this way are near the exit side of the direct-fired non-oxidizing heat treatment furnace, in front of the reduction heat treatment furnace, such as on the furnace exit side.
しかして酸化膜厚と鋼帯表面のエネルギー放射率εの関
係を調査したところ、鋼帯が直火無酸化加熱炉内へ移動
し、加熱により表面が黄色→青色→灰色→黒色に順次変
化し、鋼帯表面の明度も変化することから黄色域では放
射率約0.47以下、青色域では0.6〜0.8、灰色
、黒色域では約0.45以下で移行し、炉外(還元熱処
理炉)へ移動する。However, when we investigated the relationship between the oxide film thickness and the energy emissivity ε of the steel strip surface, we found that when the steel strip is moved into a direct fire non-oxidation heating furnace, the surface changes sequentially from yellow → blue → gray → black due to heating. , as the brightness of the steel strip surface also changes, the emissivity shifts to approximately 0.47 or less in the yellow region, 0.6 to 0.8 in the blue region, and approximately 0.45 or less in the gray and black region. Transfer to reduction heat treatment furnace).
鋼帯の表面色調としては、このような経過をたどるもの
であるが、酸化膜の生成は、黄色域(放射率約0.47
以下)では約300Å以下、青色域(放射率0.6〜0
.8)では300〜600λ、灰色、黒色域では、60
0人1以上になる。このような明度(色調域)は炉の形
状例えば竪型、水平型、炉の長さ等により若干ずれるこ
とがある。The surface color of a steel strip follows this process, but the formation of an oxide film occurs in the yellow range (emissivity of approximately 0.47).
(below) is approximately 300 Å or less, and blue region (emissivity 0.6 to 0
.. 8), 300 to 600λ, and 60 for gray and black areas.
The number of people becomes 0 or more. Such brightness (color range) may vary slightly depending on the shape of the furnace, such as vertical or horizontal type, length of the furnace, etc.
このようなことから直火無酸化加熱炉内の出側近傍又は
、炉出側1例えば還元熱処理炉への導通11F(路)で
鋼帯のエネルギー放射率εの検出することにより直火無
酸化加熱炉での鋼帯表面に生成した酸化膜厚を確実に測
定することができる。For this reason, by detecting the energy emissivity ε of the steel strip near the exit side of the direct-fired non-oxidation heating furnace or at the exit side 1 of the furnace, for example, at the 11F (passage) leading to the reduction heat treatment furnace, the energy emissivity ε of the steel strip can be detected. The thickness of the oxide film formed on the surface of the steel strip in the heating furnace can be reliably measured.
しかして、酸化膜厚が800Å超になると還元熱処理に
より還元された酸化膜の表面色調が白濁色になり、商品
価値を低下させ、かつ、このような鋼帯に溶融金属メツ
キを施すと、メツキ金属の密着性が低下し、プレス成形
等に問題が生ずる。However, when the oxide film thickness exceeds 800 Å, the surface color of the oxide film reduced by the reduction heat treatment becomes cloudy, reducing the commercial value. Metal adhesion deteriorates, causing problems in press molding, etc.
従って酸化膜厚は、800A未満にすることにより、還
元処理後の表面色調は、銀灰色を呈し、又溶融金属メツ
キの密着性も向上する。Therefore, by setting the oxide film thickness to less than 800A, the surface color tone after reduction treatment will be silver gray, and the adhesion of molten metal plating will also be improved.
溶融金属メツキにおいては、亜鉛メツキで、メツキ後加
熱処理し、亜鉛−鉄合金化処理する場合は、合金化処理
により、メツキ合金層、下層に生成する脆いr相主体の
合金層と脆い還元合金層とが重なることになりメツキN
(合金層)の密着性を損うことがあるので、直火無酸化
加熱処理における酸化膜の生成は300Å以下にするこ
とにより、密着性の劣化を防止することができる。In molten metal plating, when galvanizing is performed, heat treatment is performed after plating, and zinc-iron alloying treatment is performed, the alloying treatment produces a plating alloy layer, a brittle r-phase-based alloy layer formed below, and a brittle reduced alloy. The layers will overlap, making it impossible to
Since the adhesion of the alloy layer may be impaired, deterioration of the adhesion can be prevented by limiting the formation of an oxide film in the direct fire non-oxidation heat treatment to 300 Å or less.
次に直火無酸化加熱処理に際し、酸化膜厚の調整方法に
ついて述べる。Next, a method for adjusting the oxide film thickness during direct flame non-oxidation heat treatment will be described.
前記のごとく、直火、va化加熱炉出側でIfのエネル
ギー放射率を検出し、酸化膜厚を把握し、例えば、80
0人超0酸化膜が生成している場合は、空燃比を低下さ
せる、又は、直火バーナー火炎の還元帯が鋼帯に位置す
るごとく、火炎長さを燃料、空気等の調整により制御す
る、あるいは、複数本のバーナーの内数本のバーナーを
停止して燃焼バーナーの火炎の還元帯が鋼帯に位置する
ごとく、燃料、空気量を調整する等により酸化膜厚を制
御するものである。As mentioned above, the energy emissivity of If is detected on the outlet side of the direct flame and VA heating furnace, and the oxide film thickness is determined.
If a more than zero oxide film is formed, reduce the air-fuel ratio or control the flame length by adjusting the fuel, air, etc. so that the reduction zone of the direct burner flame is located on the steel strip. Alternatively, the oxide film thickness is controlled by stopping several of the multiple burners and adjusting the amount of fuel and air so that the reduction zone of the flame of the combustion burner is located on the steel strip. .
又直火無酸化加熱処理において、鋼帯表面に生成した酸
化膜厚に応じて、上記のごとく直火無酸化加熱処理炉で
の空燃比制御等により酸化膜生成を抑制するほか、例え
ば酸化膜生成厚が800A以下の範囲で増加した場合は
、還元熱処理条件として還元熱処理炉内の還元雰囲気中
のH2量を増加し、還元能力を向上し、酸化膜を確実に
還元して、色調、メツキ密着性を向上させるものである
。In addition, in direct fire non-oxidation heat treatment, depending on the thickness of the oxide film formed on the surface of the steel strip, in addition to suppressing oxide film formation by controlling the air-fuel ratio in the direct fire non-oxidation heat treatment furnace as described above, for example, If the thickness of the oxide film increases within the range of 800A or less, increase the amount of H2 in the reducing atmosphere in the reduction heat treatment furnace as a reduction heat treatment condition to improve the reduction ability, reliably reduce the oxide film, and improve the color tone and plating. This improves adhesion.
更に前記のごとく、直火無酸化加熱条件と上記のごとき
還元熱処理条件の双方を調整することもできる。Furthermore, as described above, both the direct flame non-oxidation heating conditions and the above-mentioned reduction heat treatment conditions can be adjusted.
(実施例) 次に本発明の実施例を比較例とともに挙げる。(Example) Next, examples of the present invention will be listed together with comparative examples.
実施例1
1)直火無酸化加熱
(1)炉温1350℃、(2)板温700℃、 (3)
空燃比0.85、在炉時間9秒(通板速度Loom/分
)、
2)還元熱処理
(1)炉温850℃、(2)板温800℃、(3)炉内
雰囲気H,10%、残N2、在炉時間54秒、このよう
な条件でtR帯(0、6m厚)を連続熱処理し、このと
きの鋼帯エネルギー放射率を直火無酸化加熱(炉)と還
元熱処理(炉)の間で、検出したところ0.40であっ
た、 このときの酸化膜厚は780Aで表面色調は銀灰
色と美れいな色調を示した。Example 1 1) Direct fire non-oxidation heating (1) Furnace temperature 1350°C, (2) Plate temperature 700°C, (3)
Air-fuel ratio 0.85, furnace time 9 seconds (threading speed Loom/min), 2) Reduction heat treatment (1) Furnace temperature 850°C, (2) Plate temperature 800°C, (3) Furnace atmosphere H, 10% , remaining N2, furnace time 54 seconds, tR band (0.6 m thickness) was continuously heat treated under these conditions, and the energy emissivity of the steel strip at this time was determined by direct fire non-oxidation heating (furnace) and reduction heat treatment (furnace). ), the detected value was 0.40.The oxide film thickness at this time was 780A, and the surface color was a beautiful silvery gray.
このようにして操業を続け、放射率0.46となったの
で、 空燃比を0.8に調整したところ0.38になり
、このときの酸化膜厚は745犬で、表面色調も銀灰色
であった。As the operation continued in this way, the emissivity was 0.46, so when the air-fuel ratio was adjusted to 0.8, it became 0.38, and the oxide film thickness at this time was 745 mm, and the surface color was silver gray. there were.
実施例2
実施例上による熱処理鋼帯に通常の亜鉛浴組成の溶融亜
鉛メツキを40 g / rd施し後述のごとく密着性
評価したところ黒色巾5.4 mと優れた効果を示した
。Example 2 Hot-dip galvanizing with a normal zinc bath composition was applied to the heat-treated steel strip according to the above example at a rate of 40 g/rd, and the adhesion was evaluated as described below, showing an excellent effect with a black width of 5.4 m.
実施例3
空燃比0.75. 他の条件は実施例1と同一で熱処
理した鋼帯の直火無酸化加熱(炉)出側での放射率0.
31で酸化膜厚300人で、還元熱処理後、溶融亜鉛メ
ツキを40g/rrr施し、次いで800℃×10秒加
熱し合金化処理(メツキ金属中の鉄量8.1%残亜鉛)
を施し1合金化処理溶融亜鉛メツキ鋼板とし、メツキ密
着性評価したところ黒色巾5.1+n++と優れた効果
を示した。Example 3 Air-fuel ratio 0.75. Other conditions were the same as in Example 1, and the emissivity of the heat-treated steel strip at the exit side of the direct fire non-oxidation heating (furnace) was 0.
At No. 31, the oxide film thickness was 300, and after reduction heat treatment, hot dip galvanizing was applied at 40g/rrr, and then alloying treatment was performed by heating at 800°C for 10 seconds (the iron content in the plating metal was 8.1% residual zinc).
A hot-dip galvanized steel sheet was prepared by applying 1-alloying treatment, and the plating adhesion was evaluated, showing an excellent effect with a black width of 5.1+n++.
゛実施例4
実施例上と同条件で鋼帯の熱処理中に通板速度を65m
1分に低下させた。このとき直火無酸化加熱炉出側の鋼
帯放射率0.41で、m化膜厚800人(実施例1は7
80A)に増加したので、還元熱処理炉内の雰囲気をH
213%、残N2と還元熱処理条件を調整し、酸化膜の
還元を確実に行ない表面色調を銀灰色に維持した。゛Example 4 The threading speed was set at 65 m during heat treatment of the steel strip under the same conditions as in the example.
The time was reduced to 1 minute. At this time, the emissivity of the steel strip on the exit side of the direct fire non-oxidation heating furnace was 0.41, and the film thickness was 800 m (Example 1 was 7
80A), the atmosphere inside the reduction heat treatment furnace was changed to H
213%, the residual N2 and the reduction heat treatment conditions were adjusted to ensure reduction of the oxide film and maintain the surface color to silver gray.
実施例S
実施例1と同条件で熱処理し1次いで溶融亜鉛メツキ(
40g/rrr)中に、該メツキ鋼板を800”CXl
0秒の加熱処理をメツキ後ライン内で施し。Example S Heat treated under the same conditions as Example 1 and then hot-dip galvanized (
40g/rrr), the plated steel plate was heated to 800” CXl
Heat treatment for 0 seconds is applied in the line after plating.
合金化溶融亜鉛メツキ鋼板の製造に切替えたため、直火
無酸化加熱炉の空燃比0.8 に調整するとともに還
元熱処理炉の雰囲気をH212%、残N2に調整し、酸
化膜厚300人とした。Since we switched to manufacturing alloyed hot-dip galvanized steel sheets, we adjusted the air-fuel ratio of the direct fire non-oxidation heating furnace to 0.8, and adjusted the atmosphere of the reduction heat treatment furnace to 12% H2 and residual N2, and the oxide film thickness was 300. .
比較例上
実施例と同条件で鋼帯の熱処理を施し、操業中直火無酸
化加熱処理(炉)後の放射率が0.40 から0.5
32に変化し、酸化膜厚950人になったが、そのまま
操業したところ還元熱処理後の鋼帯表面は白濁色に変化
し、商品価値が低下した。Comparative Example A steel strip was heat treated under the same conditions as in the example, and the emissivity after direct fire non-oxidation heat treatment (furnace) during operation was 0.40 to 0.5.
32, resulting in an oxide film thickness of 950. However, when the steel strip was operated as it was, the surface of the steel strip after the reduction heat treatment turned cloudy and its commercial value decreased.
比較例2
比較例1の鋼帯を通常の亜鉛メツキ浴組成の溶融亜鉛メ
ツキを40g/rrr施し、後述のごときメツキ密着性
評価したところ黒化中13.4nyiと密着性が劣化し
た。Comparative Example 2 The steel strip of Comparative Example 1 was subjected to hot-dip galvanizing at 40 g/rrr using a normal galvanizing bath composition, and the plating adhesion was evaluated as described below. During blackening, the adhesion deteriorated to 13.4 nyi.
注1:酸化膜厚(放射率)の測定は、直火無酸化加熱終
了後、還元熱処理前の導通路で行った。Note 1: The oxide film thickness (emissivity) was measured in the conductive path after direct flame non-oxidation heating and before reduction heat treatment.
注2=表面色調は、目視判断により行った。Note 2 = Surface color tone was determined by visual judgment.
注3=メツキ密着性は、TI密着曲げ試験(180゜曲
げ後、平板状に戻し1曲げ部内側にセロハンテープを貼
付は剥離し、粉状剥離中が黒化するのでその巾を測定)
による。Note 3 = Plating adhesion is determined by the TI adhesion bending test (after bending 180°, return to a flat plate shape, apply cellophane tape to the inside of the bent part, peel it off, and measure the width as the powdery peeling becomes black)
by.
(発明の効果)
かくすることにより、熱処理msの酸化物生成を確実に
抑制でき、鋼帯の表面色調、メツキ密着性等の劣化を防
止して品質を向上することができる。又操業条件を大巾
に変更することなく酸化物の抑制ができ、工業的に安定
してできる等の優れた効果が得られる。(Effects of the Invention) By doing so, it is possible to reliably suppress the generation of oxides during the heat treatment ms, and it is possible to prevent deterioration of the surface color, plating adhesion, etc. of the steel strip, and to improve the quality. Further, excellent effects such as being able to suppress oxides without drastically changing the operating conditions and achieving industrial stability can be obtained.
手続補正書 平成2年6月8Procedural amendment June 8, 1990
Claims (4)
を施すに際し、還元熱処理前で鋼帯の放射エネルギーを
検出して酸化膜厚を測定し、この測定結果に基き、直火
無酸化加熱処理条件を調整することを特徴とする、鋼帯
の熱処理方法。(1) When subjecting a steel strip to direct fire non-oxidation heat treatment followed by reduction heat treatment, the radiant energy of the steel strip is detected before the reduction heat treatment to measure the oxide film thickness, and based on this measurement result, direct fire non-oxidation heat treatment is performed on the steel strip. A method for heat treatment of steel strip, characterized by adjusting heat treatment conditions.
項1に記載の鋼帯の熱処理方法。(2) The method for heat treating a steel strip according to claim 1, characterized in that reducing heat treatment conditions are adjusted.
ことを特徴とする、請求項1に記載の鋼帯の熱処理方法
。(3) The method for heat treatment of a steel strip according to claim 1, characterized in that direct flame non-oxidation heating conditions and reduction heat treatment conditions are adjusted.
を施すに際し、還元熱処理前で鋼帯の放射率を検出し、
該検出値に基き酸化膜厚を測定することを特徴とする、
鋼帯表面の酸化膜厚測定方法。(4) When subjecting the steel strip to direct fire non-oxidation heat treatment followed by reduction heat treatment, detect the emissivity of the steel strip before the reduction heat treatment,
Measuring the oxide film thickness based on the detected value,
Method for measuring oxide film thickness on steel strip surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21722989A JPH0382717A (en) | 1989-08-25 | 1989-08-25 | Heat treatment method for steel strip and method for measuring oxide film on steel strip surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21722989A JPH0382717A (en) | 1989-08-25 | 1989-08-25 | Heat treatment method for steel strip and method for measuring oxide film on steel strip surface |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0382717A true JPH0382717A (en) | 1991-04-08 |
Family
ID=16700871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21722989A Pending JPH0382717A (en) | 1989-08-25 | 1989-08-25 | Heat treatment method for steel strip and method for measuring oxide film on steel strip surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0382717A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2771330B2 (en) * | 1992-03-27 | 1998-07-02 | ハイムゾート フェアヴァルトゥンゲン ゲーエムベーハー ウント コー カーゲー ベタイリグングスゲゼルシャフト | How to heat treat metal products |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53123982A (en) * | 1977-04-04 | 1978-10-28 | Nippon Steel Corp | Method and apparatus of simultaneous measurement of surface temperature and emissivity of metals |
-
1989
- 1989-08-25 JP JP21722989A patent/JPH0382717A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53123982A (en) * | 1977-04-04 | 1978-10-28 | Nippon Steel Corp | Method and apparatus of simultaneous measurement of surface temperature and emissivity of metals |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2771330B2 (en) * | 1992-03-27 | 1998-07-02 | ハイムゾート フェアヴァルトゥンゲン ゲーエムベーハー ウント コー カーゲー ベタイリグングスゲゼルシャフト | How to heat treat metal products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2587724B2 (en) | Method for producing high Si content high tensile galvanized steel sheet with good plating adhesion | |
KR101011897B1 (en) | Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping | |
US4594137A (en) | Stainless steel overcoat for sputtered films | |
KR20070093415A (en) | Method for hot dip coating a strip of heavy-duty steel | |
JP2008523243A5 (en) | ||
CA2644459A1 (en) | Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanisating it | |
WO2006068169A1 (en) | Method and facility for hot dip zinc plating | |
BE1014997A3 (en) | Continuous annealing of steel strip prior to galvanising using direct flame preheating to form an oxide film followed by full annealing and reduction stages to mature this oxide film | |
JP2530939B2 (en) | Method for manufacturing high-strength hot-dip galvanized steel sheet containing high Si | |
JPH0382717A (en) | Heat treatment method for steel strip and method for measuring oxide film on steel strip surface | |
EP0140032B1 (en) | Method for coating substrates with a film by cathode sputtering | |
JPH0432520A (en) | Heat treatment method for steel strip | |
JPH04254532A (en) | Manufacture of galvannealed steel sheet having excellent workability | |
US3323940A (en) | Method for producing smooth galvanized sheet | |
US4123292A (en) | Method of treating steel strip and sheet surfaces for metallic coating | |
JPH02254146A (en) | Induction heating device, induction heating-type alloying furnace, and alloying method | |
US4123291A (en) | Method of treating steel strip and sheet surfaces, in sulfur-bearing atmosphere, for metallic coating | |
JPS6077931A (en) | Oxygen free heating method of steel strip | |
JPH0436452A (en) | Alloying treatment for hot-dip galvanized steel sheet | |
JP3302265B2 (en) | Manufacturing method of zinc-iron alloyed hot-dip coated steel sheet | |
JP2704819B2 (en) | Method for producing high-Si hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP3367452B2 (en) | Manufacturing method of hot-dip Zn-based alloy plated steel sheet with excellent design | |
JPH05195084A (en) | Heat treatment method of continuous galvanized steel sheet | |
JPS6237364A (en) | Method and apparatus for alloyed galvanized steel sheet | |
JP2795939B2 (en) | Galvanizing steel strip alloying furnace. |