JPH0382712A - Manufacture of pipe sample in which scc is generated - Google Patents

Manufacture of pipe sample in which scc is generated

Info

Publication number
JPH0382712A
JPH0382712A JP21942189A JP21942189A JPH0382712A JP H0382712 A JPH0382712 A JP H0382712A JP 21942189 A JP21942189 A JP 21942189A JP 21942189 A JP21942189 A JP 21942189A JP H0382712 A JPH0382712 A JP H0382712A
Authority
JP
Japan
Prior art keywords
steel pipe
scc
metal tube
stress
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21942189A
Other languages
Japanese (ja)
Inventor
Atsushi Tanaka
淳 田中
Shuji Furuya
古屋 修治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP21942189A priority Critical patent/JPH0382712A/en
Publication of JPH0382712A publication Critical patent/JPH0382712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To manufacture the sample steel pipe for inspecting steel pipes in which stress corrosion cracking is generated by generating stress more than the yield point on the outer surface of a heated metallic pipe via a cooling fluid, cooling it and thereafter filling the inside of the steel pipe with a corrosive fluid in the state where tensile stress is applied to the inside of the steel pipe. CONSTITUTION:At the time of using a steel pipe, particularly an austenitic stainless steel pipe in a corrosive factor-existing environment in the state where tensile residual stress is present, stress corrosion cracking(SCC) is generated. The presence or absence of the SCC generation is detected by a ultrasonic flow inspection, and for improving the reliability in the detection, a standard steel pipe for inspection in which SCC is generated in the structure is manufactured. An initial flaw part 3 is previously formed in the neighborhood of the heat affected zone at the time of forming a girth welded joint 2 in a steel pipe 1; an induction heating coil 4 is fitted to its outer circumference, which is energized and heated, and after that, cooling water Y is jetted from a nozzle 5 provided in the coil 4 to cool the outer surface of the steel pipe. Temperature difference is produced in the thickness direction of the steel pipe to generate tensile residual stress on the inner face of the steel pipe. In this state, the inner part of the steel pipe is fitted with high temp. water contg. much dissolved oxygen to generate SCCX with the initial flaw part 3 as a starting point.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、SCC入りパイプサンプルの製作方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing SCC-containing pipe samples.

「従来の技術とその課題」 原子力発電関連プラント、各種エネルギ関連プラント、
化学プラント、火力発電プラント等には、優れた特性を
有するオーステナイト系ステンレス鋼管等の金属管が使
用されている。また、オーステナイト系ステンレス鋼に
おいては、腐食因子が存在する環境と、引っ張り残留応
力と、鋭敏化組織とが同時に存在する場合に、応力腐食
割れ(以下、SCCという )が進行し易い傾向がある
"Conventional technology and its issues" Nuclear power generation related plants, various energy related plants,
Metal pipes such as austenitic stainless steel pipes, which have excellent properties, are used in chemical plants, thermal power plants, and the like. Furthermore, in austenitic stainless steel, stress corrosion cracking (hereinafter referred to as SCC) tends to progress easily when an environment in which corrosive factors exist, tensile residual stress, and a sensitized structure simultaneously exist.

したがって、前記各プラントに使用されているオーステ
ナイト系ステンレス鋼管等は、定期点検時等において、
例えば超音波探傷検査を行なって健全性を確認すること
が望ましく、応力腐食割れが認められた場合には、その
部分の補修等の的確な処理を行なうことが必要となる。
Therefore, during periodic inspections of the austenitic stainless steel pipes used in each of the above plants,
For example, it is desirable to conduct an ultrasonic flaw detection test to confirm the soundness, and if stress corrosion cracking is found, it is necessary to take appropriate measures such as repairing the affected part.

前述の超音波探傷検査の信頼性を高めるためには、予め
金属管の内部組織中にSCCを発生させたものを製作し
て標準化しておき、標準化金属管によって超音波探傷作
業手順の検討及び感度の確認を行なうことや、該標準化
金属管と披検査金属管とを超音波探傷装置によって比較
する方法を駆使すること等が有効であると考えられる。
In order to improve the reliability of the above-mentioned ultrasonic flaw detection, a metal tube with SCC generated in its internal structure is manufactured and standardized, and the ultrasonic flaw detection work procedure can be studied and tested using the standardized metal tube. It is considered effective to check the sensitivity and to make full use of a method of comparing the standardized metal pipe and the tested metal pipe using an ultrasonic flaw detector.

しかし、金属管の内面に標準的なSCCを意図的に発生
させることは、技術的に困難であるとされており、偶然
、SCCが発生した金属管がある場合には、これをサン
プルとして切り取って+lI用することができるか、一
般的にはSCC入りバイブサンプルを得ることができな
い状況である。
However, it is technically difficult to intentionally generate standard SCC on the inner surface of a metal tube, and if there is a metal tube in which SCC has occurred by chance, it can be cut out as a sample. Generally speaking, it is not possible to obtain a vibe sample containing SCC.

本発明は、このような従来技術に鑑みてなされたもので
、金属管の内面に深く大きなSCCを確実に発生させる
ことを目的とするものである。
The present invention has been made in view of such prior art, and aims to reliably generate deep and large SCC on the inner surface of a metal tube.

「課題を解決するための手段 J 本発明は、上記課題を解決するための二つの手段を提案
している。
"Means for Solving the Problems J The present invention proposes two means for solving the above problems.

第1の手段は、金属管を加熱するとともに、金属管の外
表面に冷却流体を介在させて、加熱状態の管壁と金属管
外表面との温度差により降伏点を越える応力を発生させ
、金属管の冷却後に金属管内面に引っ張り残留応力を付
与した状態とした後、該金属管の内部に腐食流体を充満
させてSCCを成長させるSCC入りバイブサンプルの
製作方法としている。
The first method is to heat the metal tube and interpose a cooling fluid on the outer surface of the metal tube to generate stress exceeding the yield point due to the temperature difference between the heated tube wall and the outer surface of the metal tube. The method for producing a vibrator sample containing SCC involves applying a tensile residual stress to the inner surface of the metal tube after cooling the metal tube, and then filling the inside of the metal tube with a corrosive fluid to grow SCC.

第2の手段は、金属管の内面に初期欠陥部を形成する処
理を前工程として、第1の手段に付加するSCC入りバ
イブサンプルの製作方法としている。
The second means is a method for manufacturing a vibrator sample containing SCC, which is added to the first means, with a process of forming an initial defect portion on the inner surface of a metal tube as a pre-process.

「作用コ 金属管の内面に初期欠陥部を形成した状態としておくこ
とにより、SCCの発生点が形成される。
``By leaving an initial defect portion formed on the inner surface of the working metal tube, a point where SCC occurs is formed.

金属管の管壁の加熱と、金属管外表面の冷却とにより、
管壁に内面が高温、外表面が低温となる温度差を付与す
ると、高温部分の膨張現象を低温部分で制限することに
基づいて、高温部分が圧縮及び低温部分が引っ張りとな
り、かつ、降伏点を越える応力が管壁の各部に発生する
By heating the tube wall of the metal tube and cooling the outer surface of the metal tube,
When a temperature difference is applied to the tube wall such that the inner surface is hot and the outer surface is cold, the expansion phenomenon of the high temperature part is limited by the low temperature part, so the high temperature part becomes compressive and the low temperature part becomes tensile, and the yield point Stresses in excess of

その後、加熱を停止して管壁全体が冷却されると、加熱
時に高温状態であった部分、つまり、管壁の内面等に引
っ張り残留応力が付与された状態となる。
Thereafter, when the heating is stopped and the entire tube wall is cooled, a tensile residual stress is applied to the portion that was in a high temperature state at the time of heating, that is, the inner surface of the tube wall.

次いで、金属管の内部に腐食流体を充満した状態とする
と、腐食因子が存在する環境に引っ張り残留応力と初期
欠陥部による感受性との要因が加わり、初期欠陥部を発
生点としてSCCが成長し、腐食因子との接触時間によ
りSCCの深さが設定される。
Next, when the inside of the metal tube is filled with a corrosive fluid, tensile residual stress and susceptibility due to the initial defect are added to the environment where corrosive factors exist, and SCC grows from the initial defect. The contact time with the corrosive agent sets the depth of the SCC.

「実施例J 以下、本発明に係るSCC入りバイブサンプルの製作方
法の一実施例を第1図ないし第4図に基づいて説明する
Embodiment J An embodiment of the method for manufacturing a vibrator sample containing SCC according to the present invention will be described below with reference to FIGS. 1 to 4.

該−実施例にあっては、第1図に示すように、金属管(
例えばオーステナイト系ステンレス鋼管の一種である5
OS3041i管)1に周溶接継手2が形成されている
ものを対象とし、金属管1の内面でかつ周溶接継手2の
近傍に、周方向に沿ってSCCを発生させるものである
In this embodiment, as shown in FIG.
For example, 5 is a type of austenitic stainless steel pipe.
This method is aimed at a metal pipe (OS3041i pipe) 1 in which a circumferential weld joint 2 is formed, and SCC is generated along the circumferential direction on the inner surface of the metal pipe 1 and near the circumferential weld joint 2.

以下、SCCを発生させる処理工程について説明する。The processing steps for generating SCC will be described below.

く初期欠陥部の形成〉 第1図に示すように、金属管lの内面でかつ周溶接継手
2の近傍位置に、意図的に小クラック状の初期欠陥部3
を形成する。該初期欠陥部3は、例えば周溶接継手2を
形成する際の溶接時の熱影響部の範囲内に設定され、該
熱影響部に組織の鋭敏化した鋭敏化域が形成されている
可能性のある場合は、これをM用してその範囲に設定す
るものであり、周溶接継手2の近傍の内面を集中的に腐
食させる等の方法で、内周に沿って円弧状に浅く形成す
る。
Formation of Initial Defects> As shown in FIG.
form. The initial defect portion 3 is set within the range of a heat affected zone during welding, for example, when forming the circumferential weld joint 2, and there is a possibility that a sensitized region with a sensitized structure is formed in the heat affected zone. If there is, M is used to set it in that range, and it is formed in a shallow arc shape along the inner circumference by a method such as intensively corroding the inner surface near the circumferential weld joint 2. .

く加熱及び冷却手段の作動〉 第2図に示すように、金属管lの周溶接継手2の回りに
、誘導加熱コイル(加熱手段)4と、該誘導加熱コイル
4の中に形成した冷却水供給路に接続されかつ半径内方
向に向けられている冷却水吐出ノズル(冷却手段)5と
を配設しておく。
Operation of Heating and Cooling Means> As shown in FIG. A cooling water discharge nozzle (cooling means) 5 connected to the supply path and oriented radially inward is provided.

誘導加熱コイル4への給電により金属管1の管壁を誘導
加熱して、金属管1の管壁を処理適温まで高める。金属
管1の材質がオーステナイト系ステンレスw4(例えば
5US304  )である場合には、例えば550〜6
00℃前後に設定する。
The wall of the metal tube 1 is heated by induction by supplying power to the induction heating coil 4, and the wall of the metal tube 1 is raised to an appropriate temperature for processing. When the material of the metal tube 1 is austenitic stainless steel W4 (for example, 5US304), for example, 550 to 6
Set around 00℃.

また、誘導加熱時または直後に、冷却水吐出ノズル5か
ら冷却水Yをシャワー状に噴出させる等により、金属管
lの外表面を冷却する。
Further, during or immediately after the induction heating, the outer surface of the metal tube 1 is cooled by ejecting cooling water Y in a shower form from the cooling water discharge nozzle 5 or the like.

〈加熱時における応力の発生〉 金属管1を加熱して、金属管1の外面における冷却水Y
と空気雰囲気Zとの放熱量の差に基づいて、金属管1の
管壁に厚さ方向の温度差を生じさせる。つまり、金属管
1の内面側の空気雰囲気Zに接する面の温度、あるいは
その近傍の管壁の温度が高く、金属管1の外面側の冷却
水Yに接する面の温度が低く、これらに基づいて大きな
温度差が生じる場合、高温状態となる内面側には圧縮応
力が発生し、低温状態となる外面側には引っ張り応力が
発生する。その場合の温度分布が、オーステナイト系ス
テンレス鋼において、200℃以上に達していると、こ
の温度差によって金属管lの管壁内に降伏点を越える応
力が発生し、塑性変形が起こることになる。
<Generation of stress during heating> The metal tube 1 is heated and the cooling water Y on the outer surface of the metal tube 1 is heated.
Based on the difference in heat dissipation between the metal tube 1 and the air atmosphere Z, a temperature difference is generated in the tube wall of the metal tube 1 in the thickness direction. In other words, the temperature of the inner surface of the metal tube 1 that is in contact with the air atmosphere Z or the temperature of the tube wall in the vicinity is high, and the temperature of the outer surface of the metal tube 1 that is in contact with the cooling water Y is low. When a large temperature difference occurs, compressive stress is generated on the inner surface, which is in a high temperature state, and tensile stress is generated on the outer surface, which is in a low temperature state. If the temperature distribution in that case reaches 200℃ or more in austenitic stainless steel, this temperature difference will generate stress exceeding the yield point in the wall of the metal tube l, causing plastic deformation. .

く冷却による残留応力の付与〉 その後、誘導加熱コイル4を停止して、自然状態に放置
する等により、加熱されていた箇所の温度が低下して冷
却状態となると、金属管1の管壁に起きた塑性変形分に
対応して、竿3図に示すように、管壁の外表面近傍に圧
縮残留応力、管壁の内面近傍に引っ張り残留応力とを付
与した状態とすることができる。
Application of residual stress by cooling After that, by stopping the induction heating coil 4 and leaving it in a natural state, the temperature of the heated area decreases and becomes a cooling state, and the tube wall of the metal tube 1 is heated. In response to the plastic deformation that has occurred, compressive residual stress can be applied near the outer surface of the tube wall, and tensile residual stress can be applied near the inner surface of the tube wall, as shown in Figure 3.

く腐食流体によるSCCの付与〉 金属管1の内部に腐食流体として、溶存酸素量の多い高
温水を充満させるとともに、金属管1の内部圧力を高め
た状態のまま保持する。
Application of SCC by Corrosive Fluid> The interior of the metal tube 1 is filled with high-temperature water with a large amount of dissolved oxygen as a corrosive fluid, and the internal pressure of the metal tube 1 is maintained in a high state.

周溶接継手2の近傍には、溶接熱による鋭敏化域と初期
欠陥部3とが付与されている感受性と、内面に付与され
ている引っ張り残留応力と、腐食流体の存在及びこれを
浸透させようとする圧力との各条件が整い、かつ、内部
圧力によって腐食流体が初期欠陥部3に入り込んで浸透
することにより、初期欠陥部3を発生点として、第4図
に示すように、SCCが成長を始める。
In the vicinity of the circumferentially welded joint 2, there is a sensitization area due to welding heat and an initial defect area 3, a tensile residual stress is applied to the inner surface, and the presence of a corrosive fluid and the need to penetrate this. When the conditions are met and the internal pressure causes the corrosive fluid to enter and permeate into the initial defect area 3, SCC grows from the initial defect area 3 as a generation point, as shown in Figure 4. Start.

この場合の5CC(クラックX )の成長程度は、第3
図において+σで示す引っ張り残留応力の付与程度と、
内部圧力の大きさ及び処理時間とによって設定され、+
σがOとなる範囲、つまり、第3図に示すように、管壁
厚さ寸法の半分程度まで5CC(クラックX )を成長
させることができるので、目的に応じて5CC(クラッ
クX )の大きさを調整したSCC入りパイプサンプル
を自由に製作することが可能となる。
In this case, the degree of growth of 5CC (crack
The degree of application of tensile residual stress indicated by +σ in the figure,
It is set depending on the magnitude of internal pressure and processing time, +
It is possible to grow 5CC (crack It becomes possible to freely produce SCC-containing pipe samples with adjusted thickness.

なお、前述した加熱及び冷却による残留応力付与時にお
いて、連続的に冷却水を流しながら加熱する等の方法に
よっても、金属管lの内面に引っ張り残留応力を付与す
ることができる。
Note that when applying residual stress by heating and cooling as described above, tensile residual stress can also be applied to the inner surface of the metal tube l by a method such as heating while continuously flowing cooling water.

「発明の効果」 第■の発明に係るSCC人リパすブサンプルの製作方法
によれば、金属管の内面に引っ張り残留応力を付与した
状態としてから、金属管の内面を腐食流体と接触させる
ものであるから、周溶接継手の形成時にその近傍に鋭敏
化域が発生している場合の感受性に、引っ張り応力と腐
食流体との条件が付加されて、SCCを確実に発生させ
ることができる。また、引っ張り残留応力を付与する範
囲を大きくすることにより、金属管の内面から、管壁の
内部の奥深い部分にまで、十分な深さのSCCを発生さ
せることができる。
"Effects of the Invention" According to the method for producing an SCC human repair sample according to the invention No. Therefore, the conditions of tensile stress and corrosive fluid are added to the susceptibility when a sensitized region occurs near the circumferential weld joint when it is formed, and SCC can be reliably generated. Furthermore, by enlarging the range to which tensile residual stress is applied, it is possible to generate SCC of sufficient depth from the inner surface of the metal tube to deep inside the tube wall.

第2の発明に係る800人りパイプサンプルの製作方法
によれば、第1の発明に、金属管の内面に初期欠陥部を
形成する前処理を付加しているので、第1の手段による
作用効果に加えて、SCCの発生点を目的とする位置に
設定して、その後におけるSCCを管理状態で成長させ
、顕著な状態のSCCを付与した良質のSCC入りパイ
プサンプルを自由に製作することができる。
According to the method for manufacturing an 800-person pipe sample according to the second invention, a pretreatment for forming an initial defect portion on the inner surface of the metal pipe is added to the first invention, so that the effect of the first means is improved. In addition to the effect, it is possible to set the point of SCC generation at a desired location, grow subsequent SCC under controlled conditions, and freely produce high-quality SCC-containing pipe samples with significant SCC. can.

等の優れた効果を奏する。It has excellent effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図はSCC入りパイプサンプルの製作
方法の処理工程例を示すもので、第1図は金属管の初期
状態の一部を断面した斜視図、第2図は加熱及び冷却処
理を説明する一部を切欠した正面図、第3図は熱処理に
よって生じた残留応力の状態の説明図、第4図は金属管
にSCCを形成した状態の一部を断面した斜視図である
。 l・・・・・・金属管、 2・・・・・・周溶接継手、 3・・・・・・初期欠陥部、 4・・・・・・誘導加熱オイル(加熱手段)、5・・・
・・・冷却水吐出ノズル(冷却手段)、ν X・・・・・・5cccクラツク )、Y・・・・・・
冷却水、 Z・・・・・・空気雰囲気。
Figures 1 to 4 show examples of processing steps in the method for producing SCC-containing pipe samples. Figure 1 is a partially cross-sectional perspective view of the metal pipe in its initial state, and Figure 2 is the heating and cooling treatment. FIG. 3 is an explanatory diagram of the state of residual stress caused by heat treatment, and FIG. 4 is a partially cutaway perspective view of a state in which SCC is formed in a metal tube. l...Metal tube, 2...Girth weld joint, 3...Initial defective part, 4...Induction heating oil (heating means), 5...・
...Cooling water discharge nozzle (cooling means), νX...5ccc), Y...
Cooling water, Z... Air atmosphere.

Claims (2)

【特許請求の範囲】[Claims] 1.金属管を加熱するとともに、金属管の外表面に冷却
流体を介在させて、加熱状態の管壁と金属管外表面との
温度差により降伏点を越える応力を発生させ、金属管の
冷却後に金属管内面に引っ張り残留応力を付与した状態
とした後、該金属管の内部に腐食流体を充満させてSC
Cを成長させることを特徴とするSCC入りパイプサン
プルの製作方法。
1. At the same time as heating the metal tube, a cooling fluid is interposed on the outer surface of the metal tube to generate stress exceeding the yield point due to the temperature difference between the heated tube wall and the outer surface of the metal tube. After applying tensile residual stress to the inner surface of the tube, the inside of the metal tube is filled with corrosive fluid and subjected to SC
A method for producing a pipe sample containing SCC, which is characterized by growing C.
2.金属管の内面に初期欠陥部を形成する処理を前工程
として付加することを特徴とする請求項1記載のSCC
入りパイプサンプルの製作方法。
2. The SCC according to claim 1, characterized in that a treatment for forming an initial defect portion on the inner surface of the metal tube is added as a pre-process.
How to make a pipe sample.
JP21942189A 1989-08-25 1989-08-25 Manufacture of pipe sample in which scc is generated Pending JPH0382712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21942189A JPH0382712A (en) 1989-08-25 1989-08-25 Manufacture of pipe sample in which scc is generated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21942189A JPH0382712A (en) 1989-08-25 1989-08-25 Manufacture of pipe sample in which scc is generated

Publications (1)

Publication Number Publication Date
JPH0382712A true JPH0382712A (en) 1991-04-08

Family

ID=16735130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21942189A Pending JPH0382712A (en) 1989-08-25 1989-08-25 Manufacture of pipe sample in which scc is generated

Country Status (1)

Country Link
JP (1) JPH0382712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195975A (en) * 2007-02-08 2008-08-28 Hitachi-Ge Nuclear Energy Ltd Method for improving residual stress in pipe and high-frequency heating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195975A (en) * 2007-02-08 2008-08-28 Hitachi-Ge Nuclear Energy Ltd Method for improving residual stress in pipe and high-frequency heating apparatus

Similar Documents

Publication Publication Date Title
EP0212921B2 (en) Method for repairing a steam turbine or generator rotor
US7559251B2 (en) Apparatus for forming thermal fatigue cracks
US20070031591A1 (en) Method of repairing a metallic surface wetted by a radioactive fluid
US4348041A (en) Butt welded tubular structure of austenite stainless steel
JP2005121023A (en) Welded rotor used for thermal machine and method of manufacturing the rotor
JP5614313B2 (en) Standard specimen for nondestructive inspection and its manufacturing method
Le Duff et al. High cycle thermal fatigue issues in RHRS mixing tees and thermal fatigue test on a representative 304 L mixing zone
JPH0382712A (en) Manufacture of pipe sample in which scc is generated
JP4055278B2 (en) Method for manufacturing non-destructive test specimen and non-destructive test method
CN113406213B (en) Curved surface sound-transmitting wedge design method for circumferential ultrasonic detection of small-diameter pipe
KR100801404B1 (en) Apparatus for fomating a thermal-fatigue crack
Hwang et al. Leak behavior of SCC degraded steam generator tubings of nuclear power plant
JPS63112089A (en) Improving method for residual stress of double metal pipe and the like
JPH03138314A (en) Production of pipe sample with stress corrosion cracking
JPS55112196A (en) Repair welding method of pipe structure
JPS61119619A (en) Heat treatment of metallic pipe
JPH0230716A (en) Method for improving residual stress in circumferential weld zone
JP2016079470A (en) Defect progress suppression method
JPH07119885A (en) Repairing method of container penetrating piping
JPS59107068A (en) Treatment in weld zone of nickel alloy
JPH0718789B2 (en) Method of manufacturing stress corrosion crack test tube
Sugimoto et al. Development of outer surface irradiated laser stress improvement Process (L-SIP)
JPH02210296A (en) Method and structure for repairing long-sized housing
JP2000218388A (en) Jointing method of metallic materials
JPH02173218A (en) Method and apparatus for improving residual stress at welded part for penetrated piping in vessel