JPH038259A - Polymer coated foam body electrode and manufacture thereof - Google Patents

Polymer coated foam body electrode and manufacture thereof

Info

Publication number
JPH038259A
JPH038259A JP1141104A JP14110489A JPH038259A JP H038259 A JPH038259 A JP H038259A JP 1141104 A JP1141104 A JP 1141104A JP 14110489 A JP14110489 A JP 14110489A JP H038259 A JPH038259 A JP H038259A
Authority
JP
Japan
Prior art keywords
foam body
polymer
felt
conductive
immersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1141104A
Other languages
Japanese (ja)
Inventor
Shinji Higo
肥後 信司
Minoru Oda
稔 織田
Akira Sumiya
住谷 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1141104A priority Critical patent/JPH038259A/en
Publication of JPH038259A publication Critical patent/JPH038259A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the surface area of a conductive polymer, decreasing inner resistance, and remarkably improve an output by chemically synthesizing the conductive polymer at least inside a conducting foam body such as Ni felt. CONSTITUTION:A conducting polymer is synthesized at least inside a conductive foam body such as Ni felt for a polymer coated foam body electrode. The conductive foam body such as Ni felt is immersed in an aqueous solution containing ammonium persulfate, it is then immersed in a hydrochloric acid aqueous solution containing aniline, and it is thoroughly washed with water and dried to obtain the polymer coated foam body electrode. The conductive foam body such as Ni felt is immersed in the hydrochloric acid aqueous solution containing ammonium persulfate, it is then immersed in a liquid of aniline single substance, and it is thoroughly washed with water and dried for manufacture. Filtering and pressure-molding processes are not required in manufacturing the foam body electrode, and manufacturing processes can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラスチック電池、コンデンサ、化学センサ
、電子デバイス等に用いられる高分子被覆発泡体電極及
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polymer-coated foam electrode used in plastic batteries, capacitors, chemical sensors, electronic devices, etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

導電性高分子の化学的酸化重合法は古くから知られてい
る。例えば、ポリアニリンの場合は塩酸1モル/gの水
溶液にアニリンを加え、これに開始剤として過硫酸アン
モニウム(NH4)+S+O+ を添加して合成する(
Allar+、G。
Chemical oxidative polymerization of conductive polymers has been known for a long time. For example, polyaniline is synthesized by adding aniline to an aqueous solution of 1 mol/g of hydrochloric acid, and adding ammonium persulfate (NH4) + S + O + as an initiator to this (
Allar+, G.

MacDiarmid  et、al、Mol。MacDiarmid et, al, Mol.

Cryst、Liq、Cryst、1985゜Vol、
121、pp173−180)。
Cryst, Liq, Cryst, 1985° Vol.
121, pp173-180).

この方法で得られるポリアニリンは、反応槽内で粉末状
の浮遊物として存在し、従って、これを電池の電極とし
て用いるには、これを濾過し、メタノール等で洗浄後、
ペレット状に加圧成形する必要があった。
The polyaniline obtained by this method exists as a suspended powder in the reaction tank. Therefore, in order to use it as a battery electrode, it must be filtered, washed with methanol, etc.
It was necessary to press and mold it into pellets.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の合成法ではベレット状に加圧成形するため、
これを電池に組み込んだ時に出力が小さくなり、性能が
°黒かった。またその製造工程で濾過、加圧成形の工程
が必要で、これの製造工程が多かった。
In the conventional synthesis method mentioned above, pressure molding is carried out into a pellet shape.
When this was incorporated into a battery, the output was small and the performance was poor. In addition, the manufacturing process required filtration and pressure molding, which required many manufacturing steps.

本発明は上記のことにかんがみなされたもので、上記従
来の化学的酸化重合法にて製造された電極に対して出力
が格段に向上できる高分子被覆発泡体電極を、またこの
高分子被覆発泡体電極を少ない工程で簡単に製造できる
製造方法を提供することを目的とするものである。
The present invention has been made in view of the above, and provides a polymer-coated foam electrode that can significantly improve the output compared to the electrode manufactured by the conventional chemical oxidation polymerization method. The object of the present invention is to provide a manufacturing method that allows body electrodes to be easily manufactured with a small number of steps.

〔38を解決するための手段〕 上記目的を達成するために、本発明に係る高分子被覆発
泡体電極は、N1フェルト等の導電性発泡体の少なくと
も内部に導電性高分子を化学的に合成した構成となって
いる。
[Means for Solving Problem 38] In order to achieve the above object, the polymer-coated foam electrode according to the present invention has a conductive polymer chemically synthesized at least inside a conductive foam such as N1 felt. The structure is as follows.

また上記高分子被覆発泡体電極を、Niフェルト等の導
電性発泡体を過硫酸アンモニウムを含む水溶液に浸漬後
、アニリンを含む塩酸水溶液に浸漬し、その後充分水洗
して乾燥して製造した。
The polymer-coated foam electrode was manufactured by immersing a conductive foam such as Ni felt in an aqueous solution containing ammonium persulfate, followed by immersing it in an aqueous hydrochloric acid solution containing aniline, followed by thorough washing with water and drying.

さらにNiフェルト1等の導電性発泡体を過硫酸アンモ
ニウムを含む塩酸水溶液に浸漬後、アニリン単体の液に
浸漬し、その後充分水洗して乾燥して製造した。
Furthermore, a conductive foam such as Ni Felt 1 was immersed in an aqueous hydrochloric acid solution containing ammonium persulfate, then immersed in a solution of aniline alone, and then sufficiently washed with water and dried to produce a conductive foam.

〔作 用〕[For production]

Niフェルト等の導電性発泡体は過硫酸アンモニウムの
水溶液、または過硫酸アンモニウを含む塩酸水溶液に浸
漬した後、アニリンを含む塩酸水溶液またはアニリン単
体の液に浸漬することにより、少なくともその内部に導
電性高分子であるポリアニリンが化学的に合成された。
A conductive foam such as Ni felt is immersed in an aqueous solution of ammonium persulfate or an aqueous solution of hydrochloric acid containing ammonium persulfate, and then immersed in an aqueous solution of hydrochloric acid containing aniline or a solution of aniline alone, thereby making at least the inside of the material highly conductive. The molecule polyaniline was chemically synthesized.

〔実  施  例  1〕 0、 1mol /Rの過硫酸アンモニウム(NI+4
)r St Or の水溶液にて化学合成用の電解液で
あるA液を作り、また、0.In+ol/Ωのアニリン
と1.  Clgol /(lの塩酸化水溶液とを混合
して同じく化学合成用の電解液であるB液を作る。
[Example 1] Ammonium persulfate (NI+4
) r St Or A solution, which is an electrolytic solution for chemical synthesis, is prepared from an aqueous solution of 0. In+ol/Ω aniline and 1. Solution B, which is also an electrolytic solution for chemical synthesis, is prepared by mixing Clgol/(l) with a hydrochloric oxide aqueous solution.

導電性発泡体である板状のNiフェルト(住友電工製、
商品名、セルメット#4、厚さ2.Omm)1をまずA
液に浸漬しく第1図)、このN1フェルト1中にA液を
充分含ませる。
Platy Ni felt, which is a conductive foam (manufactured by Sumitomo Electric,
Product name, Celmet #4, thickness 2. Omm) 1 first A
The N1 felt 1 is immersed in the liquid (Fig. 1) so that the N1 felt 1 is sufficiently soaked with the liquid A.

次に上記A液を充分含ませたNiフェルト1をB液に浸
漬(第2図)して10分間放置した。
Next, the Ni felt 1 sufficiently impregnated with the liquid A was immersed in the liquid B (FIG. 2) and left for 10 minutes.

これにより、Niフェルト1の内部及び表面にポリアニ
リンが合成された。
As a result, polyaniline was synthesized inside and on the surface of the Ni felt 1.

その後、充分に水洗し乾燥させて高分子被覆発泡体電極
を得た。
Thereafter, it was sufficiently washed with water and dried to obtain a polymer-coated foam electrode.

この高分子被覆発泡体電極は、導電性発泡体CNiフェ
ルト)の表面もしくは内部、少なくとも内部に導電性高
分子であるポリアニリンが合成されて存在している構成
となっている。
This polymer-coated foam electrode has a structure in which polyaniline, which is a conductive polymer, is synthesized and exists on or at least inside a conductive foam (CNi felt).

上記製造方法にて製造した上記高分子被覆発泡体電極を
電池の集電極として組込んでこれの性能のテストを行な
った。
The polymer-coated foam electrode manufactured by the above manufacturing method was incorporated as a collector electrode in a battery, and its performance was tested.

このときの電解液はLiBF4をプロピレンカーボネー
トにl sol/ρ溶解したものを用い、対向極にLi
に用いた。
The electrolyte at this time was LiBF4 dissolved in propylene carbonate at l sol/ρ, and the opposite electrode was
It was used for.

この電池の出力密度は約6 kv/ kg (ポリアニ
リンff1jl基準)であって、従来の方法で製造した
電池に対して約10倍もの性能向上が見られた。
The output density of this battery was approximately 6 kv/kg (based on polyaniline ff1jl), and the performance was approximately 10 times higher than that of batteries manufactured by conventional methods.

〔実  施  例  2〕 過硫酸アンモニウム(NH+ )+ S、Orを2Nの
塩酸水溶液に溶解したものをA液とし、アニリン単体に
てB液として上記実施例1と同様の方法で高分子被覆発
泡体Tl5t51を作成した。
[Example 2] Ammonium persulfate (NH+) + S, Or dissolved in a 2N hydrochloric acid aqueous solution was used as liquid A, and aniline alone was used as liquid B to form a polymer-coated foam in the same manner as in Example 1 above. Tl5t51 was created.

上記方法で作成した高分子被覆発泡体電極の少なくとも
内部に導電性高分子であるポリアニリンが合成されてい
る。
Polyaniline, which is a conductive polymer, is synthesized at least inside the polymer-coated foam electrode produced by the above method.

上記高分子被覆発泡体電極を上記実施例]と同様の方法
で性能のテストを行なったところ、同じ〈従来の方法で
製造した電極を用いた電池に比較して約10倍の出力を
示した。
When the above polymer-coated foam electrode was tested for performance in the same manner as in the above example, it showed approximately 10 times the output compared to a battery using the same electrode manufactured using a conventional method. .

〔発明の効果〕 本発明による高分子被覆発泡体電極は発泡体であるため
、これの内部に合成される導電性高分子の表面積が大き
くなり、また内部抵抗が小さく、これを電池とした場合
に出力が格段に向上された。
[Effects of the Invention] Since the polymer-coated foam electrode according to the present invention is a foam, the surface area of the conductive polymer synthesized inside the electrode is large, and the internal resistance is small, so when this is used as a battery. The output was significantly improved.

また上記高分子被覆発泡体電極を製造する際に、従来の
ように濾過、加圧成形の工程がいらなくなり、製造工程
を簡素化できる。
Furthermore, when manufacturing the polymer-coated foam electrode, the conventional steps of filtration and pressure molding are no longer necessary, and the manufacturing process can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の製造工程を示す説明図である
。 1はNiフェルト、A液、B液は化学合成用の電解液。
FIGS. 1 and 2 are explanatory diagrams showing the manufacturing process of the present invention. 1 is Ni felt, A solution and B solution are electrolytes for chemical synthesis.

Claims (3)

【特許請求の範囲】[Claims] (1)Niフェルト1等の導電性発泡体の少なくとも内
部に導電性高分子を化学的に合成したことを特徴とする
高分子被覆発泡体電極。
(1) A polymer-coated foam electrode characterized in that a conductive polymer is chemically synthesized at least inside a conductive foam such as Ni felt 1.
(2)Niフェルト1等の導電性発泡体を過硫酸アンモ
ニウムの水溶液に浸漬後、アニリンを含む塩酸水溶液に
浸漬し、その後充分水洗して乾燥することを特徴とする
高分子被覆発泡体電極の製造方法。
(2) Production of a polymer-coated foam electrode characterized by immersing a conductive foam such as Ni felt 1 in an aqueous solution of ammonium persulfate, then immersing it in an aqueous solution of hydrochloric acid containing aniline, then thoroughly washing with water and drying. Method.
(3)Niフェルト1等の導電性発泡体を過硫酸アンモ
ニウムを含む塩酸水溶液に浸漬後、アニリン単体の液に
浸漬し、その後充分水洗して乾燥することを特徴とする
高分子被覆発泡体電極の製造方法。
(3) A polymer-coated foam electrode characterized in that a conductive foam such as Ni felt 1 is immersed in an aqueous hydrochloric acid solution containing ammonium persulfate, then immersed in a solution of simple aniline, and then thoroughly washed with water and dried. Production method.
JP1141104A 1989-06-05 1989-06-05 Polymer coated foam body electrode and manufacture thereof Pending JPH038259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1141104A JPH038259A (en) 1989-06-05 1989-06-05 Polymer coated foam body electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141104A JPH038259A (en) 1989-06-05 1989-06-05 Polymer coated foam body electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH038259A true JPH038259A (en) 1991-01-16

Family

ID=15284278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141104A Pending JPH038259A (en) 1989-06-05 1989-06-05 Polymer coated foam body electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH038259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054593A1 (en) * 2018-09-13 2020-03-19 パナソニック株式会社 Optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054593A1 (en) * 2018-09-13 2020-03-19 パナソニック株式会社 Optical device

Similar Documents

Publication Publication Date Title
CN101671478B (en) Preparation method of carbon nano tube/polyaniline netty compound material
CN110034279B (en) Preparation method of flexible lithium ion battery negative electrode material
CN105609326B (en) A kind of preparation method and applications of polypyrrole/graphene/bacteria cellulose conducting membrane material
DE3829541A1 (en) LEAF-SHAPED ELECTRODE, METHOD FOR PRODUCING THE SAME AND SECONDARY BATTERY CONTAINING THIS
DE69911779T2 (en) Manufacture and use of electrodes made of highly porous, conjugated polymers in electrochemical systems
CN109216048A (en) Flexible electrode and preparation method thereof based on bacteria cellulose film
CN109755043A (en) Self-healing integration gel state supercapacitor and preparation method thereof
CN102088075A (en) Electrode material of conductive polyaniline composite membrane and preparation method thereof
CN109192521B (en) Flexible electrode and preparation method and application thereof
Rajesh et al. Conducting polymeric nanotubules as high performance methanol oxidation catalyst support
CN109273271B (en) High-conductivity flexible self-supporting all-solid-state supercapacitor and preparation method thereof
JPH038259A (en) Polymer coated foam body electrode and manufacture thereof
JP2000123825A (en) High polymer electrode
JP3213994B2 (en) Method for manufacturing solid electrolytic capacitor
TW548867B (en) Method for manufacturing composite for electrode material having polymer containing quinoxaline structure, composite for electrode material thereof, electrode comprising the same, manufacturing method thereof and battery comprising the same
JPH0395910A (en) Manufacture of solid electrolytic capacitor
CN109192947B (en) Preparation method of through-hole type lithium battery cathode material
JPH0349287B2 (en)
CN104479211B (en) A kind of ethylene-vinyl acetate copolymer/polypyrrole composite conducting material and preparation method thereof
Ben Hadj Said et al. Synthesis and characterization of cellulose hydrogel/graphene oxide/polyaniline composite for high‐performing supercapacitors
CN111170422A (en) Preparation method of organic solvent-resistant anion exchange membrane
JP2882892B2 (en) Method for forming conductive polymer / polymer electrolyte composite film
JPS63301462A (en) Organic electrolyte battery including activated carbon-aniline composite as positive electrode
JPS62116552A (en) Charge-transfer complex
JP2003234248A (en) Electrode material, its manufacturing method and electrochemical storage device using the same