JPH0382504A - Extruder for multi-layer parison - Google Patents

Extruder for multi-layer parison

Info

Publication number
JPH0382504A
JPH0382504A JP1219668A JP21966889A JPH0382504A JP H0382504 A JPH0382504 A JP H0382504A JP 1219668 A JP1219668 A JP 1219668A JP 21966889 A JP21966889 A JP 21966889A JP H0382504 A JPH0382504 A JP H0382504A
Authority
JP
Japan
Prior art keywords
layer
parison
temperature
infrared rays
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1219668A
Other languages
Japanese (ja)
Other versions
JP2761595B2 (en
Inventor
Keiji Fukuhara
福原 啓二
Masao Hara
正雄 原
Masakatsu Osugi
大杉 政克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1219668A priority Critical patent/JP2761595B2/en
Publication of JPH0382504A publication Critical patent/JPH0382504A/en
Application granted granted Critical
Publication of JP2761595B2 publication Critical patent/JP2761595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To accurately control the extrusion of a multi-layer parison by selectively detecting infrared rays radiated from the inner layer that has the highest plasticizing temperature among extruded inner layers and identifying the existing conditions of the inner layers on the basis of a detected signal. CONSTITUTION:The temperature of HDPE (high-density polyethylene) shows 190 to 210 deg.C immediately after a parison 50 is extruded, while PA has a temperature of 230 to 250 deg.C, and an adhesive layer has a temperature therebetween. Infrared rays transmitted through the HDPE to come out to the external side are separated at 180 deg.C, (200 deg.C) 220 deg.C and selectively sensed by using a high-sensitive infrared ray sensor (in this case, a CCD camera 61) with an infrared ray filter 61A that permits the infrared rays alone to pass therethrough. Upon comparison of each measured output with normal patterns stored in a normal pattern storage unit 64 by means of an identifier 63 via an image processing unit 62, whether the difference i.e. DEV between the measured output thus compared and a preset value is within a predetermined range is determined. In the case of YES, an YES display unit 65 displays YES, while in the case of NO, its DEV signal is sent to an inner-layer ring parison control circuit 72. The control circuit 72 sends a correction output signal corresponding to the DEV signal to servo valves 31, 32, and a controlled hydraulic pressure is sent to each of hydraulic cylinders 19, 20 from a hydraulic source 30.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多層パリソンの押出成形装置に関し、より詳
しくは赤外線による内層の状態判別手段を備える多層パ
リソンの押出成形装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multilayer parison extrusion molding apparatus, and more particularly to a multilayer parison extrusion molding apparatus equipped with means for determining the condition of an inner layer using infrared rays.

[従来の技術] 従来、自動車用燃料タンク等の移動型炭化水素容器には
スペースユーティリティの向上、軽量化、内外面の耐錆
性、耐衝撃性の向上、生産工程の省力化等の見地より金
属製タンクに代わってプラスチック製タンクが既に用い
られ始めている。しかし、プラスチック製タンクは内容
物であるガソリン等(ガソホール等の代替燃料を含む。
[Conventional technology] Conventionally, mobile hydrocarbon containers such as automobile fuel tanks have been developed from the viewpoints of improving space utility, reducing weight, improving rust resistance and impact resistance on the inside and outside surfaces, and saving labor in the production process. Plastic tanks are already beginning to be used to replace metal tanks. However, plastic tanks contain gasoline, etc. (including alternative fuels such as gasohol).

)の透過性が問題であり、事実、HDPE (高密度ポ
リエチレン)単層のタンクではHDPE自体がガソリン
を構成する炭化水素と親和性が高いため、透過量が大き
い傾向がある。
) is a problem, and in fact, in single-layer HDPE (high-density polyethylene) tanks, the amount of permeation tends to be large because HDPE itself has a high affinity for the hydrocarbons that make up gasoline.

環境保全上ガソリン透過量は厳しく規制されるので、プ
ラスチック製タンクにはガソリン透過防止手段を講じる
事が必要となる。
Since the amount of gasoline permeation is strictly regulated for environmental conservation reasons, it is necessary to take measures to prevent gasoline permeation in plastic tanks.

ガソリン透過防止手段としては、F2ガスやSO3ガス
による処理技術が確立している。しかし、これらのガス
は人体に有害なので、この処理技術は一般には用いられ
ない。
As means for preventing gasoline permeation, processing techniques using F2 gas and SO3 gas have been established. However, since these gases are harmful to humans, this treatment technique is not commonly used.

そこで採用される別の手段が多層パリソンを押出しプロ
ー成形して多層プラスチック製燃料タンクを作る技術で
ある。
Another method employed is to extrude and blow mold a multilayer parison to create a multilayer plastic fuel tank.

従来、3層乃至5層の多層プラスチック製燃料タンクが
発案されており、これらの各層は外層がHDPE、内層
がPA(ポリアミドすなわちナイロン)またはエチレン
酢酸ビニール共重合体けん化樹脂等のバリア形成樹脂で
ある。
Hitherto, multilayer plastic fuel tanks have been devised with three to five layers, each of which has an outer layer of HDPE and an inner layer of barrier-forming resin such as PA (polyamide or nylon) or ethylene-vinyl acetate copolymer saponified resin. be.

また、これらの高価なバリア層を製品タンクの全面に積
層すると上下ピンチオフ部まで多層となり、その部分の
強度減少、高コスト、リサイクルの困難性等を招くので
、製品タンクの必要部分のみを多層とする一部多層化(
もしくは重点多層化と呼ばれる。)が行われている。
Furthermore, if these expensive barrier layers are laminated over the entire surface of the product tank, the layers will become multi-layered up to the top and bottom pinch-off areas, resulting in reduced strength in those areas, high costs, and difficulty in recycling. some multi-layered (
It is also called focused multi-layering. ) is being carried out.

この場合、特に必要部分が必ず多層化されていることの
全数保証が必要となって来る。
In this case, it is especially necessary to guarantee that all necessary parts are multi-layered.

その手段として、パリソン押出機において押出量の源流
管理をする方法(1)とパリソンまたは製品タンクの状
態で全数非破壊検査する方法(2)の2つがある。
There are two methods for this: a method (1) of controlling the extrusion amount at the source in the parison extruder, and a method (2) of non-destructively testing the entire parison or product tank.

方法(1)としては、押出機のトルク(電流)と、押出
機先端の樹脂圧力からダイの直前の樹脂圧力を引いた圧
力を制御する方法が発表されている。(Dr、Re1n
er  Hegie、  ”C0EXTRUSION 
  BLOW  MOULDINGS   OF   
LARGE   HOLLOW  ARTICLES、
”C0EX  EUROPE−86゜p、368)  
(IA)。
As method (1), a method has been announced in which the torque (current) of the extruder and the pressure obtained by subtracting the resin pressure immediately before the die from the resin pressure at the tip of the extruder have been announced. (Dr, Re1n
er Hegie, ”C0EXTRUSION
BLOW MOULDINGS OF
LARGE HOLLOW ARTICLES,
"C0EX EUROPE-86°p, 368)
(IA).

しかしこの方法は、押出機のトルク(電流)と押出量が
比例関係にある前提に基づいているため、押出樹脂温度
の変更などによって可塑化条件を変更し、比例関係が失
われた場合には補正を行う必要が生じ、あらゆる成形条
件で適用することは困難である。
However, this method is based on the premise that the torque (current) of the extruder and the extrusion rate are proportional to each other, so if the plasticizing conditions are changed by changing the extrusion resin temperature, etc. It becomes necessary to perform correction, and it is difficult to apply it under all molding conditions.

そこで改善された方法(1)として、例えば特公昭58
−23212に記載されているように、タイマーにより
射出側の各電磁弁の作動時期をずらせ且時定数発生型制
御装置により各射出シリンダの立上り特性を制御する様
構成したことを特徴とする多層ブロー成形機のパリソン
ヘッド制御装置が提案されている(IB)。
As an improved method (1), for example,
23212, a multilayer blower characterized in that a timer is used to shift the operating timing of each solenoid valve on the injection side, and a time constant generation type control device is used to control the rise characteristics of each injection cylinder. A parison head control device for a molding machine has been proposed (IB).

しかし、パリソン押出機の制御で重点多層ブロー製品の
積層状態について全数保証する事には問題があり、10
0%の信頼性を期特出来ない。
However, there is a problem in fully guaranteeing the laminated state of multilayer blow products by controlling the parison extruder.
0% reliability cannot be guaranteed.

方法(2)としては、成形時に内層 を間接監視する方法がある。Method (2) is to remove the inner layer during molding. There is a way to monitor indirectly.

例えば、成形時の内層検出手段として、外層材のアキュ
ームレータ位置に対し、内層(接着剤、PA)のアキュ
ームレータ位置及び各々の樹脂圧力を監視し、各々を一
定の許容幅内に収める方法である(2A)。この方法に
よって、間接的に非破壊でパリソンの層管理が行える。
For example, as an inner layer detection means during molding, the accumulator position of the inner layer (adhesive, PA) and each resin pressure are monitored with respect to the accumulator position of the outer layer material, and each is kept within a certain tolerance range ( 2A). This method allows indirect and non-destructive layer management of the parison.

更に、樹脂詰まりや可塑化条件の変動など、外乱の影響
を打ち消すことも可能である。また、成形時の内層確認
と同様に重要な技術として、成形した重点多層プラスチ
ック燃料タンクの内層の非破壊検査技術がある。これに
ついては超音波によって、樹脂密度の差を捉えることで
理論的には判別が可能である(2B)。
Furthermore, it is also possible to cancel out the effects of disturbances such as resin clogging and fluctuations in plasticizing conditions. Also, as important as checking the inner layer during molding, there is a non-destructive inspection technology for the inner layer of a molded multilayer plastic fuel tank. Theoretically, this can be determined by detecting the difference in resin density using ultrasound (2B).

しかし、前者の方法は間接的に検出する方法であるため
充分な信頼性を期特出来ないという問題がある。また、
後者の超音波検査は非接触で行えない難点があり、ブロ
ー成形直後のまだ冷却不充分のプラスチック燃料タンク
に、液状の接触媒質(バリア層) を介して超音波探触子を接当し、内層の存在状態を測定
する事は製造現場では仲々に困難であった。
However, since the former method is an indirect detection method, there is a problem in that sufficient reliability cannot be guaranteed. Also,
The latter type of ultrasonic inspection has the disadvantage that it cannot be performed without contact, so an ultrasonic probe is placed in contact with a plastic fuel tank that has just been blow-molded and has not been sufficiently cooled through a liquid couplant (barrier layer). It has been difficult to measure the state of existence of the inner layer at manufacturing sites.

加えて超音波検査は1回の検査範囲が狭く、全面の検査
をするためには時間がかかり過ぎるという問題点があっ
た。
In addition, the ultrasonic test has a problem in that the inspection range is narrow at one time, and it takes too much time to inspect the entire surface.

また(2)の他の例としては特開昭63−260417
号公報に記載されているように、内層材(バリア層材)
に予め鉄粉、ガラス短繊維等の検出媒体を混入しておき
、パリソン成形後に外部より磁気センサ、超音波センサ
等で内層材分布を検出する方法(2C)があった。
Another example of (2) is JP-A No. 63-260417.
As stated in the publication, inner layer material (barrier layer material)
There is a method (2C) in which a detection medium such as iron powder or short glass fibers is mixed in advance, and the distribution of the inner layer material is detected from the outside using a magnetic sensor, ultrasonic sensor, etc. after forming the parison.

しかし、この方法は当然の事乍らパリソン自体又はブロ
ー成形品において検出媒体の存在による弊害を免れず、
問題点を残していた。
However, this method naturally suffers from the disadvantages of the presence of a detection medium in the parison itself or in the blow-molded product.
It left a problem.

[発明が解決しようとする課題] 本発明の目的は、非接触・非破壊で押出し工程において
直接目視出来ない内層(バリア層)の存在状態を測定し
、その結果をフィードバックする事により多層パリソン
の正確な押出制御が可能となる多層パリソンの押出成形
装置を提供する事である。
[Problems to be Solved by the Invention] The purpose of the present invention is to measure the presence of the inner layer (barrier layer) that cannot be directly observed during the extrusion process in a non-contact and non-destructive manner, and to feed back the results to improve the quality of multilayer parisons. An object of the present invention is to provide a multilayer parison extrusion molding device that enables accurate extrusion control.

本発明の他の目的は、短時間内にパリソン又はブロー成
形品のほぼ全面について設計どおりの積層がなされてい
るかどうかを判別し得る手段を備えるところの多層パリ
ソンの押出成形装置を提供する事である。
Another object of the present invention is to provide a multilayer parison extrusion molding apparatus that is equipped with a means for determining whether or not lamination has been carried out as designed over almost the entire surface of a parison or blow-molded product within a short period of time. be.

[課題を解決するための手段] 本発明により、最外層とこれよりも可塑化温度の高い少
なくとも一層の内層とが積層されてなる多層パリソンの
押出成形装置において、押出された内層のうち可塑化温
度が最も高い内層から放射される赤外線を選択検出する
赤外線検出手段と、前記赤外線検出手段の検出信号に基
づき上記内層の存在状態を判別する判別手段とを備える
事を特徴とする多層パリソンの押出成形装置が提供され
る。
[Means for Solving the Problems] According to the present invention, in an extrusion molding apparatus for a multilayer parison in which an outermost layer and at least one inner layer having a higher plasticizing temperature than the outermost layer are laminated, plasticizing of the extruded inner layer is provided. Extrusion of a multilayer parison characterized by comprising an infrared detecting means for selectively detecting infrared rays emitted from the inner layer having the highest temperature, and a determining means for determining the presence state of the inner layer based on a detection signal of the infrared detecting means. A molding device is provided.

以下に実施例により本発明を作用と共に詳細に説明する
EXAMPLES The present invention will be explained below in detail with reference to examples.

第1図は本発明実施例である5層パリソン押出成形装置
のアキュムレータヘッド1と制御回路を示す断面・回路
図である。
FIG. 1 is a cross-sectional and circuit diagram showing an accumulator head 1 and a control circuit of a five-layer parison extrusion molding apparatus according to an embodiment of the present invention.

通常3層パリソンの場合、外側乃至内側から見て厚み方
向に第1層/第2層/第3層(=第1層)と対称に構成
される。
Normally, in the case of a three-layer parison, the structure is symmetrical with the first layer/second layer/third layer (=first layer) in the thickness direction when viewed from the outside or the inside.

また5層パリソンの場合も同様に、 第1層/第2層/第3層/第4層/第5層(=第2層)
(=第1層) と対称に構成される。
Similarly, in the case of a 5-layer parison, 1st layer / 2nd layer / 3rd layer / 4th layer / 5th layer (= 2nd layer)
(=first layer).

しかし、必要に応じて例えばタンク外面に耐候性樹脂層
、内面に耐溶剤性樹脂層(バリア層)を設ける等して厚
み方向に非対称の構成をとることも出来る。但し、押出
機が複雑化することは避けられない。また各層を構成す
る樹脂成分や接着剤についても工夫が必要となろう。
However, if necessary, it is also possible to provide an asymmetrical structure in the thickness direction, for example by providing a weather-resistant resin layer on the outer surface of the tank and a solvent-resistant resin layer (barrier layer) on the inner surface. However, it is inevitable that the extruder becomes complicated. It will also be necessary to consider the resin components and adhesives that make up each layer.

但し、その存在状態を判別しようとする内層を形成する
樹脂の可塑化温度は他の層の可塑化温度より最も高くな
ければならない。
However, the plasticizing temperature of the resin forming the inner layer whose existence state is to be determined must be higher than that of the other layers.

これは後述するように、パリソンにおいて夫々押出し直
後に上記内層から放射される赤外線を外側から選択検出
する必要があるからである。つまり、可塑化温度が最も
高くないとその内層から放射される赤外線エネルギーを
検出出来ないからである。
This is because, as will be described later, it is necessary to selectively detect infrared rays emitted from the inner layer of the parison from the outside immediately after extrusion. In other words, unless the plasticizing temperature is the highest, infrared energy emitted from the inner layer cannot be detected.

本実施例では対称型3種5層パリソンの場合について述
べる。
In this embodiment, a case of a symmetrical three-type five-layer parison will be described.

すなわち、HDPEは極性基を有しないので接着性が乏
しく、PAとの間に接着剤層を介在させる必要があるか
ら接着剤層も層に加えると対称型3種5層構造となる。
That is, since HDPE does not have a polar group, it has poor adhesion, and since it is necessary to interpose an adhesive layer between it and PA, when an adhesive layer is also added to the layers, a symmetrical three-layer five-layer structure is obtained.

即ち外側から見ると前述のように、 第1層/第2層/第3層/第4層/第5層(IIDPE
) (接着剤層) IP A) (接着剤層) (HD
PE)となる。ここに第1層/第2層、第1層/第2層
である。
That is, when viewed from the outside, as described above, the first layer/second layer/third layer/fourth layer/fifth layer (IIDPE
) (Adhesive layer) IP A) (Adhesive layer) (HD
PE). Here, there are first layer/second layer and first layer/second layer.

第2図は第1図のn−n“断面図であり、第3図は環状
ノズル周辺の樹脂通路を示す要部拡大断面図である。
FIG. 2 is a cross-sectional view taken along the line nn'' in FIG. 1, and FIG. 3 is an enlarged cross-sectional view of a main part showing the resin passage around the annular nozzle.

アキュムレータヘッド1の構造は概路次の通りである。The structure of the accumulator head 1 is roughly as follows.

第1図、第2図、第3図において、第1層、第5層材で
あるHDPEは押出機11より供給され、環状樹脂通路
8を通って樹脂貯留室2を経てリングプランジャ5によ
って押出され、樹脂通路10に達するようになっている
。第2層、第4層となる接着剤は押出機12により供給
され、アキュームレータ4、接着剤樹脂通路42を経て
プランジャ7によって押出され、樹脂通路10A、1Q
13において成層されるようになっている。バリア層で
あるPAは押出機13より供給され、アキュームレータ
3、バリア樹脂通路41を経てプランジャ6によって押
出され、樹脂通路1oに供給され成層されるようになっ
ている。
In FIGS. 1, 2, and 3, HDPE, which is the material for the first and fifth layers, is supplied from an extruder 11, passes through an annular resin passage 8, passes through a resin storage chamber 2, and is extruded by a ring plunger 5. and reaches the resin passage 10. The adhesive for the second and fourth layers is supplied by an extruder 12, passes through the accumulator 4 and the adhesive resin passage 42, and is extruded by the plunger 7.
At 13, the layers are layered. PA, which is a barrier layer, is supplied from an extruder 13, passes through an accumulator 3 and a barrier resin passage 41, is extruded by a plunger 6, is supplied to a resin passage 1o, and is layered.

すなわち最終的にダイ14とコア15の間のスリット(
環状ノズル)16において3種5層のパリソンが押出さ
れる構造である。ここに40は中子、45は支持部、6
1は赤外線センサー(CODカメラ)である。
That is, the slit between the die 14 and the core 15 (
It has a structure in which parisons of three types and five layers are extruded through an annular nozzle (16). Here, 40 is the core, 45 is the support part, and 6
1 is an infrared sensor (COD camera).

本発明の要部はむしろ次に述べる内層存在状態の検出・
判別手段に存する。
Rather, the main part of the present invention is the detection and detection of the inner layer existence state described below.
It lies in the means of discrimination.

パリソン50が押出された直後のHDPEの温度は19
0〜210℃であり、一方PAは230〜250℃であ
り、接着剤層はその中間である。
The temperature of HDPE immediately after parison 50 is extruded is 19
0-210°C, while PA is 230-250°C, and the adhesive layer is in between.

従って内部であるPAもしくは接着剤層が放射する赤外
線はHDPEを透過して外部に出て来る。
Therefore, the infrared rays emitted by the internal PA or adhesive layer pass through the HDPE and exit to the outside.

この赤外線を赤外線のみを通す赤外線フィルタ61Aの
ついた高感度赤外線センサ(ここではCODカメラ61
)を用いて180℃、(200℃)220℃で分離し選
択検出する。接着剤層は厚さが薄く出力が小さいので測
定が困難だから、測定を省略する場合もある。測定した
各出力を画像処理ユニット62を経て判別器63におい
て正規パターン記憶器64の記憶する正規パターンと比
較した上で、設定値との差、DEVが一定範囲以内にな
っているかどうか、すなわちYESないしNOを判別し
、YESの場合はYES表示器65でYES表示し、N
Oの場合はそのDEV信号を内層リングパリソン制御回
路72に送る。内層リングパリソン制御回路72は、こ
のDEV信号に応じた補正出力信号をサーボパルプ31
.32に送り、サーボパルプ31.32によってコント
ロールされた油圧が油圧源30より夫々油圧シリンダ1
9.20に送られる。その結果プランジャ6゜7がリン
グプランジャ5の作動と同時に必要なストロークだけ動
き、バリア層及び接着剤層の厚さをO〜設定量まで加減
するようになっている。なお外層(第1層及び第5層)
は内層とは独立してコントロールされる機構であり、押
出機11によって押出された樹脂が樹脂貯留室2に蓄積
され、リングプランジャ5が上昇した位置を検出するプ
ランジャ位置検出器70によって比例トリガされる外層
パリソン制御回路71があり、これより出力される信号
でコントロールされるサーボパルプ33を介して油圧源
30より油圧が経路34を通って油圧シリンダ18に供
給され、油圧シリンダ18によって押下げられるリング
プランジャ5によって、及び同時に前述のプランジャ6
.7によって多層パリソン50が押出成形されるように
なっている。またリングプランジャ5とプランジャ6.
7の作動を同期かつ圧力バランスさせるために外層パリ
ソン制御回路からトリガ信号が内層リングパリソン制御
回路に送られるようになっている。
A high-sensitivity infrared sensor (in this case, a COD camera 61
) for separation and selective detection at 180°C, (200°C) and 220°C. The adhesive layer is difficult to measure due to its thin thickness and low output, so the measurement may be omitted. After comparing each measured output with the regular pattern stored in the regular pattern storage device 64 via the image processing unit 62 and the discriminator 63, it is determined whether the difference from the set value, DEV, is within a certain range, that is, YES. or NO. If YES, YES is displayed on the YES display 65, and NO is displayed.
In the case of O, the DEV signal is sent to the inner ring parison control circuit 72. The inner ring parison control circuit 72 outputs a correction output signal corresponding to this DEV signal to the servo pulp 31.
.. 32, and the hydraulic pressure controlled by servo pulps 31 and 32 is sent to the hydraulic cylinders 1 from the hydraulic source 30, respectively.
Sent on 9.20. As a result, the plunger 6.7 moves by the necessary stroke simultaneously with the operation of the ring plunger 5, and the thickness of the barrier layer and the adhesive layer is adjusted from O to the set amount. In addition, the outer layer (1st layer and 5th layer)
is a mechanism that is controlled independently of the inner layer, in which the resin extruded by the extruder 11 is accumulated in the resin storage chamber 2, and the mechanism is proportionally triggered by the plunger position detector 70 that detects the raised position of the ring plunger 5. There is an outer layer parison control circuit 71, and hydraulic pressure is supplied from the hydraulic source 30 to the hydraulic cylinder 18 through the path 34 via the servo pulp 33, which is controlled by a signal output from this circuit, and is pushed down by the hydraulic cylinder 18. by the ring plunger 5 and at the same time the aforementioned plunger 6
.. 7 allows the multilayer parison 50 to be extruded. Also, ring plunger 5 and plunger 6.
A trigger signal is sent from the outer ring parison control circuit to the inner ring parison control circuit in order to synchronize and pressure balance the operation of the rings.

なお本発明は前述の従来技術(1)、(2)と組合わせ
る事により、更に精度を上げる事が出来る事は云う迄も
ない。
It goes without saying that the present invention can further improve accuracy by combining with the prior art techniques (1) and (2) described above.

本発明に用いられる)IDPEは、例えば中圧重合法に
よる所謂フィリップス法ポリエチレンであり、商品名と
してはBASFルボーレン(登録商標)4261A、昭
和型ニジヨウレックス(登録商標)スーパー4551H
等がある。またナイロン樹脂であるPAには、ポリアミ
ド6:0M1046[東しアミラン(登録商標)]等を
用いた。
The IDPE (used in the present invention) is, for example, the so-called Phillips process polyethylene produced by medium-pressure polymerization, and its trade names include BASF Lebolen (registered trademark) 4261A and Showa Nijiyo Rex (registered trademark) Super 4551H.
etc. Further, as PA, which is a nylon resin, polyamide 6:0M1046 [Toshi Amiran (registered trademark)] or the like was used.

なお、本発明では自己放射する赤外線のみを測。In addition, in the present invention, only self-radiated infrared rays are measured.

定したが、別にレーザービーム等の光源を設けて透過光
或いは反射光によって選択的に内層の存在状態を知る事
も可能と思われる。
However, it is also possible to selectively determine the state of existence of the inner layer by providing a separate light source such as a laser beam and transmitting or reflecting light.

[発明の効果] 本発明を実施する事に〜より前記目的のすべてが達成さ
れる。
[Effects of the Invention] By carrying out the present invention, all of the above objectives are achieved.

すなわち、押出しの直後において多層パリソンに対し非
接触・非破壊でバリア層等の各内層の存在状態を測定す
る事が出来るから、その結果を押出し装置にフィードバ
ックして全数の品質保証をする事が出来る。
In other words, it is possible to non-contact and non-destructively measure the state of each inner layer such as the barrier layer on the multilayer parison immediately after extrusion, so the results can be fed back to the extrusion equipment to guarantee the quality of all parts. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の断面・回路図、第2図は第1図
のn−n’断面図、第3図は環状ノズル周辺の樹脂通路
を示す要部拡大断面図である。 1           アキュムレータヘッド、2 
         樹脂貯留室、 5、 6. 7       プランジャ、8    
      環状樹脂通路、11、 12. 13  
  樹脂押出機、16         スリット(環
状ノズル)、18.19.20    油圧シリンダ、
31.32.33    サーボパルプ、40    
     中子、 41         バリア樹脂通路、42    
     接着剤樹脂通路、50          
パリソン、 61 赤外線センサ (CODカメラ)
FIG. 1 is a sectional/circuit diagram of an embodiment of the present invention, FIG. 2 is a sectional view taken along line nn' in FIG. 1, and FIG. 3 is an enlarged sectional view of a main part showing a resin passage around an annular nozzle. 1 Accumulator head, 2
resin storage chamber, 5, 6. 7 Plunger, 8
Annular resin passage, 11, 12. 13
Resin extruder, 16 slits (annular nozzle), 18.19.20 hydraulic cylinder,
31.32.33 Servo pulp, 40
Core, 41 Barrier resin passage, 42
adhesive resin passage, 50
Parison, 61 Infrared sensor (COD camera)

Claims (1)

【特許請求の範囲】[Claims] (1)最外層とこれよりも可塑化温度の高い少なくとも
一層の内層とが積層されてなる多層パリソンの押出成形
装置において、押出された内層のうち可塑化温度が最も
高い内層から放射される赤外線を選択検出する赤外線検
出手段と、前記赤外線検出手段の検出信号に基づき上記
内層の存在状態を判別する判別手段とを備える事を特徴
とする多層パリソンの押出成形装置。
(1) In an extrusion molding device for a multilayer parison formed by laminating an outermost layer and at least one inner layer having a higher plasticizing temperature than the outermost layer, infrared rays are emitted from the inner layer having the highest plasticizing temperature among the extruded inner layers. 1. An extrusion molding apparatus for a multilayer parison, comprising: an infrared detecting means for selectively detecting the inner layer; and a determining means for determining the presence state of the inner layer based on a detection signal of the infrared detecting means.
JP1219668A 1989-08-25 1989-08-25 Multilayer parison extrusion apparatus and method Expired - Lifetime JP2761595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1219668A JP2761595B2 (en) 1989-08-25 1989-08-25 Multilayer parison extrusion apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1219668A JP2761595B2 (en) 1989-08-25 1989-08-25 Multilayer parison extrusion apparatus and method

Publications (2)

Publication Number Publication Date
JPH0382504A true JPH0382504A (en) 1991-04-08
JP2761595B2 JP2761595B2 (en) 1998-06-04

Family

ID=16739109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1219668A Expired - Lifetime JP2761595B2 (en) 1989-08-25 1989-08-25 Multilayer parison extrusion apparatus and method

Country Status (1)

Country Link
JP (1) JP2761595B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT106368A (en) * 2012-06-06 2013-12-06 Univ Do Minho CHARACTERIZATION SYSTEM OF THE COEFFICIENT OF HEAT TRANSFER IN THE POLYMER-CALIBRATOR INTERFACE FOR EXTRUSION APPLICATION OF PROFILES AND RESPECT METHOD.
WO2017047250A1 (en) * 2015-09-15 2017-03-23 八千代工業株式会社 Parison foreign matter detection system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT106368A (en) * 2012-06-06 2013-12-06 Univ Do Minho CHARACTERIZATION SYSTEM OF THE COEFFICIENT OF HEAT TRANSFER IN THE POLYMER-CALIBRATOR INTERFACE FOR EXTRUSION APPLICATION OF PROFILES AND RESPECT METHOD.
PT106368B (en) * 2012-06-06 2014-06-06 Univ Do Minho CHARACTERIZATION SYSTEM OF THE COEFFICIENT OF HEAT TRANSFER IN THE POLYMER-CALIBRATOR INTERFACE FOR EXTRUSION APPLICATION OF PROFILES AND RESPECT METHOD.
WO2017047250A1 (en) * 2015-09-15 2017-03-23 八千代工業株式会社 Parison foreign matter detection system
CN108136657A (en) * 2015-09-15 2018-06-08 八千代工业株式会社 Parison foreign matter detection system
JPWO2017047250A1 (en) * 2015-09-15 2018-06-14 八千代工業株式会社 Parison foreign object detection system
US10286592B2 (en) 2015-09-15 2019-05-14 Yachiyo Industry Co., Ltd. Parison foreign matter detection system
CN108136657B (en) * 2015-09-15 2019-05-17 八千代工业株式会社 Parison foreign matter detection system

Also Published As

Publication number Publication date
JP2761595B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2505353B2 (en) Laminated synthetic resin articles
JPS63260418A (en) Extrusion molding device for multi-layer parison
US20110161036A1 (en) Method For Measuring The Thickness Of Multi-Layer Films
US8796628B2 (en) Method and apparatus for inspecting sealing defect of container
US20170343342A1 (en) Method and system for thermally monitoring process for forming plastic blow-molded containers
US11718075B2 (en) High clarity, recyclable, polyethylene-based packaging films
EP0506872B1 (en) Processes and apparatus for making multilayer plastic articles
CA2331576A1 (en) Injection moulding tool
JPH0382504A (en) Extruder for multi-layer parison
US6646453B2 (en) Method for measuring the thickness of multi-layer films
US20100141274A1 (en) Method for Measuring the Thickness of Multi-Layer Films
BR112019013534A2 (en) PROCESS AND SYSTEM TO ACCESS THE CONTINUITY OF A FUNCTIONAL LAYER OF A MOBILE NETWORK
US20130334721A1 (en) Process for producing multilayered articles
US6547551B2 (en) Multilayer crosshead
US5133911A (en) Multilayer parison extruder and method
US20170102225A1 (en) System and method for non-destructive layer detection
CN1693153B (en) Multilayer polymer compound packaging container with nano-layer texture and its processing method
WO2018072009A1 (en) Molding system and method of inspecting multilayer preforms
US20120230363A1 (en) Method for controlling the melt state when producing a plastic weld seam
US20030091766A1 (en) Laminated film and packaging bag
US20090091050A1 (en) Apparatus and method for barrier layer existence determination using fluorescence measurements
KR102169144B1 (en) Coating Inspection Apparatus Composite Pipe
JPS63260417A (en) Extrusion molding method of multi-layer parison
JPS63142242A (en) Method and apparatus for inspecting heat resistant multilayer container made of synthetic resin
JP2649584B2 (en) Multi-layer parison extrusion equipment