JPS63142242A - Method and apparatus for inspecting heat resistant multilayer container made of synthetic resin - Google Patents

Method and apparatus for inspecting heat resistant multilayer container made of synthetic resin

Info

Publication number
JPS63142242A
JPS63142242A JP28986486A JP28986486A JPS63142242A JP S63142242 A JPS63142242 A JP S63142242A JP 28986486 A JP28986486 A JP 28986486A JP 28986486 A JP28986486 A JP 28986486A JP S63142242 A JPS63142242 A JP S63142242A
Authority
JP
Japan
Prior art keywords
resin
heat
ultraviolet rays
light
resistant multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28986486A
Other languages
Japanese (ja)
Other versions
JPH0697211B2 (en
Inventor
Masaru Hoshino
優 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP28986486A priority Critical patent/JPH0697211B2/en
Publication of JPS63142242A publication Critical patent/JPS63142242A/en
Publication of JPH0697211B2 publication Critical patent/JPH0697211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To judge the quality of a product in a non-destructive manner, by projecting ultraviolet rays on the mouth part of a heat resistant multilayer container made of a synthetic resin and receiving transmitted ultraviolet rays to detect ultraviolet rays having a specific wavelength. CONSTITUTION:A heat resistant multilayer container 3 is molded by laminating PET (polyester resin) as a main resin and a polyallate resin as a heat resistant resin. Said main resin is more excellent in ultraviolet ray transmissivity as compared with the heat resistant resin and this property is utilized to perform inspection. In this inspection method, ultraviolet rays are passed through an optical quartz fiber 22 to be throttled by a slit 32 and projected on the upper end part 33 of the mouth part of the container 3. The light transmitted through the upper end part 33 of said mouth part is received by the quartz fiber 24 for a detector and the specific wavelength thereof is extracted by a sensor part and converted to an electrical signal to detect the transmissivity of ultraviolet rays. Then, the adhesion state of the main resin and the heat resistant resin is judged from the transmissivity of ultraviolet rays. Since the transmissivity of ultraviolet rays is detected, the quality of the container can be certainly judged within a short time.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は耐熱多層容器において、製品の良否の判定を非
破壊で行ない得るようにした合成樹脂製の耐熱多層容器
の検査方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method and apparatus for inspecting a heat-resistant multi-layered container made of synthetic resin, which enables non-destructive determination of the quality of the product.

(発明の技術的背景とその問題点) 合成樹脂製容器、特にPET(ポリエチレンテレフタレ
ート)製容器は、大型清涼飲料用容器を中心に市場の拡
大が続いている。そして、最近では耐熱多層容器のニー
ズが高まり、それを受けて、研究、開発が進められてい
る。一般的な合成樹脂製容器(耐熱多層容器も含む)の
製法について第6図(A)〜(DJを参照して説明する
と、まず射出成形機(図示せず)によりパリソン1を作
製しく第6図(A))、次に延伸ブロー成形機(図示せ
ず)の金型2にパリソンlの口部を把持して(第6図(
B))、延伸ブロー成形することで(第6図([:))
、所定の形状の容器3を得ることができる(第6図(D
))。
(Technical background of the invention and its problems) The market for containers made of synthetic resin, particularly containers made of PET (polyethylene terephthalate), continues to expand, mainly for large soft drink containers. Recently, the need for heat-resistant multilayer containers has increased, and in response, research and development are progressing. The manufacturing method for general synthetic resin containers (including heat-resistant multilayer containers) will be explained with reference to FIGS. (A)), then hold the mouth of the parison l in the mold 2 of a stretch blow molding machine (not shown) (see Fig. 6 (A)).
B)), by stretch blow molding (Fig. 6 ([:))
, a container 3 with a predetermined shape can be obtained (see FIG. 6(D)
)).

耐熱多層容器で問題となることは第6図からも明らかな
ように、容器の口部が延伸されることなく、射出した状
態そのままであるため、口部の耐熱変形性、耐薬品性9
強度等が劣ることであり、これらを改善するため、従来
(a)口部を加熱結晶化させる方法、(b)耐熱性樹脂
等を2色成形して口部を作る方法、(C)耐熱性樹脂等
を用いて口部の外周部分を予成形しておぎ、この予成形
品を用いてインサート成形して口部を作る方法などが採
用されている二 ところが、前記(a)の方法により製造される口部は、
加熱結晶化の過程で形状変形が発生しやすいため口部の
ネジ山、ネジ谷径9寸法等が安定しないばかりか、シー
ル部天面形状の変形によりシール性能が劣り、また結晶
化により不透明化するため容器全体を透明にしなければ
ならない場合には適用できないという欠点がある。さら
に、結晶化のための別工程が必要であるため生産性が劣
り、コストアップを招くことになる。
As is clear from Figure 6, the problem with heat-resistant multilayer containers is that the mouth of the container remains in the injected state without being stretched.
In order to improve these problems, conventional methods include (a) heating and crystallizing the mouth, (b) forming the mouth by two-color molding of heat-resistant resin, and (C) heat-resistant. There are two methods in which the outer periphery of the mouth part is preformed using a plastic resin, etc., and the mouth part is made by insert molding using this preformed product. The mouth part to be manufactured is
Shape deformation is likely to occur during the heating crystallization process, so not only are the threads at the mouth and thread root diameter 9 dimensions not stable, the sealing performance is poor due to deformation of the top surface of the sealing part, and it becomes opaque due to crystallization. It has the disadvantage that it cannot be applied when the entire container must be transparent. Furthermore, since a separate process for crystallization is required, productivity is poor and costs increase.

また、前記(b)の方法により得た口部は、メイン樹脂
と耐熱性樹脂との層間接着強度が充分でなく、また製造
するためには複数の成形用金型を用意しなければならず
、工程が複雑になり、コストアップを招くことになる。
In addition, the opening obtained by the method (b) above does not have sufficient interlayer adhesive strength between the main resin and the heat-resistant resin, and multiple molds must be prepared in order to manufacture it. , the process becomes complicated and costs increase.

さらに、前記(C)の方法により製造される口部は、や
はりメイン樹脂と耐熱性樹脂との層間接着強度が充分で
なく、また製造するためには複数の成形用金型ばかりで
なく、インサート装置も必要となるため、多大の工数と
費用を要することになる。
Furthermore, the mouth part manufactured by the method (C) above still does not have sufficient interlayer adhesive strength between the main resin and the heat-resistant resin, and in order to manufacture it, not only multiple molds but also inserts are required. Since a device is also required, a large amount of man-hours and costs are required.

そこで、上記の諸欠点を解消する方法として、メイン樹
脂及び耐熱性樹脂を共射出して口部を作る方法がある。
Therefore, as a method for solving the above-mentioned drawbacks, there is a method of making the mouth part by co-injecting the main resin and the heat-resistant resin.

この方法ではキャビティ間の射出成形条件、即ちメイン
樹脂及び耐熱性樹脂の溶融樹脂を決められたタイミング
及び充填量で均一に共射出するためのホットランナ−が
必要となる。本出願人は、ホットランナ−分岐点及びそ
の近傍を除いたホットランナ一部分が、相互に接近して
走る同一断面形状の1対の溶融樹脂流路より成り、かつ
ホットランナ−分岐点に2木の樹脂流を一時的に合流す
る領域が設けられているホットランナ−を開発し、この
ホットランナ−を適用した共射出成形機を得た(特願昭
61−252997号参照)。
This method requires injection molding conditions between the cavities, that is, a hot runner for uniformly co-injecting the molten resins of the main resin and the heat-resistant resin at a predetermined timing and filling amount. The present applicant has proposed that a portion of the hot runner excluding the hot runner branching point and its vicinity consists of a pair of molten resin channels having the same cross-sectional shape running close to each other, and that there are two wood runners at the hot runner branching point. We have developed a hot runner provided with a region where the resin flows of 2 and 3 are temporarily merged, and obtained a co-injection molding machine to which this hot runner is applied (see Japanese Patent Application No. 252997/1982).

第7図はこの共射出成形機の概略の断面側面図を示すも
ので、共射出用ホットランナ−ノズル部4はメイン樹脂
用ホットランナ−ノズル5及び耐熱性樹脂用ホットラン
ナ−ノズル6を有し、さらに共射出用ホットランナ−ノ
ズル部4を支えるホットランナ−メインブロック7、ス
ペーサーブロック8.ホットランナ−サブブロック9及
び断熱板lOを具備しており、またホホットランナーメ
インブロック7内にはメイン樹脂用ランナー11が、ホ
ットランナ−サブブロック9内には耐熱性樹脂用ランナ
ー12が設けられている。そして、共射出用ホットラン
ナ−ノズル部4の上部には、金型であるインクジエクシ
ョンキャビティ型13.リップキャビティ型14及びイ
ンジェクションコア15が設けられている。
FIG. 7 shows a schematic cross-sectional side view of this co-injection molding machine, and the co-injection hot runner nozzle section 4 has a hot runner nozzle 5 for main resin and a hot runner nozzle 6 for heat-resistant resin. Furthermore, a hot runner main block 7 that supports the co-injection hot runner nozzle section 4, and a spacer block 8. It is equipped with a hot runner sub-block 9 and a heat insulating plate 1O, and a main resin runner 11 is provided in the hot runner main block 7, and a heat-resistant resin runner 12 is provided in the hot runner sub-block 9. It is being At the top of the co-injection hot runner nozzle section 4, there is an ink injection cavity mold 13 which is a mold. A lip cavity mold 14 and an injection core 15 are provided.

次に上述した共射出成形機にパリソン1用金型を設置し
、その成形過程を第8図(八)〜(D)を参照して説明
する。
Next, a mold for parison 1 is installed in the above-mentioned co-injection molding machine, and the molding process will be described with reference to FIGS. 8(8) to 8(D).

まずメイン樹脂16がメイン樹脂用ホットランナ−ノズ
ル5から射出され、インジェクションキャビティ型13
とインクシェクションコア15との間に形成されるキャ
ビティa内に侵入しく第8図(A))、少し遅れて耐熱
性樹脂17が耐熱性樹脂用ホットランナ−ノズル6がら
射出されてキャビティa内のメイン樹脂の中間層に圧入
され(第8図(B))、メイン樹脂16先端がりップキ
ャヒ゛ティ型:Aとンン゛シェクションコア15との問
に形成されるキャビティbに達する付近で、耐熱性樹脂
17の先端部分がメイン樹脂16の先端部から噴出して
メイン樹脂16の先端面を被覆する(第8図(C))。
First, the main resin 16 is injected from the main resin hot runner nozzle 5, and the main resin 16 is injected into the injection cavity mold 13.
The heat-resistant resin 17 enters the cavity a formed between the ink injection core 15 and the ink injection core 15 (FIG. 8(A)), and after a short delay, the heat-resistant resin 17 is injected from the heat-resistant resin hot runner nozzle 6 and enters the cavity a. The main resin 16 is press-fitted into the intermediate layer of the main resin (FIG. 8 (B)), and the heat-resistant The distal end portion of the adhesive resin 17 is ejected from the distal end portion of the main resin 16 and covers the distal end surface of the main resin 16 (FIG. 8(C)).

さらに進んでキャビティbの閉そく部分に、前工程で形
成された被覆している耐熱性樹脂17が達すると、リッ
プキャビティ型14とインジェクションコア15との壁
面に沿って耐熱性樹脂17が回り込み(第8図(D) 
) 、5層の構造をした口部及び3層の構造をした胴部
から成る成形体(パリソン1)を得ることができる。
Proceeding further, when the covering heat-resistant resin 17 formed in the previous step reaches the closed part of the cavity b, the heat-resistant resin 17 wraps around along the wall surfaces of the lip cavity mold 14 and the injection core 15 (the first Figure 8 (D)
), a molded body (parison 1) consisting of a mouth part with a five-layer structure and a body part with a three-layer structure can be obtained.

しかるに、上述した方法で得られたパリソンを延伸ブロ
ー成形して作られた耐熱多層容器の性能の良否を判定す
る必要があり、その基準は耐熱多層容器全体に耐熱性樹
脂が均一に存在していれば、良と判定するものである。
However, it is necessary to judge the performance of a heat-resistant multilayer container made by stretch-blow molding the parison obtained by the method described above, and the criterion for this is that the heat-resistant resin is uniformly present throughout the heat-resistant multilayer container. If so, it is judged as good.

従来の判定方法としては目視によるチェックがあるが、
メイン樹脂と耐熱性樹脂が同一色もしくは透明であると
きは判定できないという欠点がある。また、サンプリン
グによる破壊検査は良否の判定をすることができるが、
耐熱多層容器は単体の容器に比べ、製造上に不安定な要
因が多く、突発的な不良を発生する恐れがあるため信頼
性に欠けるなどの問題があフた。
The conventional method of determination is visual inspection, but
There is a drawback that determination cannot be made when the main resin and the heat-resistant resin are the same color or transparent. In addition, destructive testing using sampling can determine pass/fail, but
Compared to single containers, heat-resistant multilayer containers have many manufacturing instability factors, and problems such as a lack of reliability due to the risk of unexpected defects have been resolved.

(発明の目的) 本発明は上述のような事情からなされたものであり、本
発明の目的は、目視による製品の良否の判定ができない
場合でも、製品を破壊することなく全製品の良否の判定
を行なうことができるようにした合成樹脂製の耐熱多層
容器の検査方法及び装置を提供することにある。
(Object of the Invention) The present invention was made in view of the above-mentioned circumstances, and the purpose of the present invention is to determine the quality of all products without destroying the product, even when it is impossible to visually determine the quality of the product. An object of the present invention is to provide a method and apparatus for inspecting a heat-resistant multilayer container made of synthetic resin, which enables the inspection of heat-resistant multilayer containers made of synthetic resin.

(発明の概要) 本発明は合成樹脂製の耐熱多層容器を検査する方法に関
するもので、前記耐熱多層容器の口部上端部に紫外線を
投光し、前記口部上端部を透過した紫外線を受光し、特
定波長のみの紫外線を抽出して検出した後に電気信号と
して出力し、その値で前記耐熱多層容器の良否を判定す
るようにしている。また、上記方法を実現する装置とし
て、紫外線を発生するための光源装置と、この光源装置
に接続されて前記紫外線を伝送し、合成樹脂製の耐熱多
層容器の口部上端部に投光するための投光用ファイバと
、この投光用ファイバに対置され、前記口部上端部を透
過した紫外線を受光して伝送するための受光用ファイバ
と、前記受光用ファイバから出力される特定波長の紫外
線を抽出して検出するためのセンサと、このセンサから
の電気信号を受けて処理するための処理回路とを具備し
た合成樹脂製の耐熱多層容器の検査装置を提案する。
(Summary of the Invention) The present invention relates to a method for inspecting a heat-resistant multilayer container made of synthetic resin, in which ultraviolet rays are projected onto the upper end of the mouth of the heat-resistant multilayer container, and ultraviolet rays transmitted through the upper end of the mouth are received. However, after extracting and detecting ultraviolet rays of only a specific wavelength, it is output as an electrical signal, and the quality of the heat-resistant multilayer container is determined based on the value. Further, as a device for realizing the above method, a light source device for generating ultraviolet rays, and a device connected to this light source device to transmit the ultraviolet rays and project the light onto the upper end of the mouth of a heat-resistant multilayer container made of synthetic resin. a light-emitting fiber, a light-receiving fiber placed opposite to the light-emitting fiber for receiving and transmitting the ultraviolet light transmitted through the upper end of the mouth, and a light-receiving fiber having a specific wavelength output from the light-receiving fiber. We propose an inspection device for heat-resistant multilayer containers made of synthetic resin, which is equipped with a sensor for extracting and detecting electrical signals, and a processing circuit for receiving and processing electrical signals from the sensors.

(発明の実施例) 本発明による検査方法の原理は、メイン樹脂が耐熱性樹
脂に比べ特定波長の紫外線透過率に優れているという性
質を利用したものでる。
(Embodiments of the Invention) The principle of the inspection method according to the present invention utilizes the property that the main resin has superior ultraviolet transmittance at a specific wavelength compared to heat-resistant resins.

第1図はメイン樹脂としてPET(ポリエチレンテレフ
タレート)系樹脂を、耐熱性樹脂としてボリアリレート
系樹脂を用いて前述した方法で作製した耐熱多層容器1
8及びPET系樹脂のみを用いて、前述した方法で作製
した単体容器19の波長による紫外線透過率を示したも
のである。
Figure 1 shows a heat-resistant multilayer container 1 manufactured by the method described above using PET (polyethylene terephthalate) resin as the main resin and polyarylate resin as the heat-resistant resin.
8 shows the ultraviolet transmittance according to the wavelength of a single container 19 manufactured by the method described above using only PET resin.

図から明らかなように、透過率の差は波長350nm付
近で顕著に表われている。
As is clear from the figure, the difference in transmittance is noticeable around a wavelength of 350 nm.

ここで、耐熱多層容器に用いられるメイン樹脂であるP
ET系樹脂には、テレフタル酸またはそのエステル形成
性誘導体(例えば低級アルキルエステル、フェニルエス
テル等)及びエチレングリコールま□たはそのエステル
形成性誘導体(例えばモノカルボン酸エステルエチレン
オキサイド等)を重合させて得られるポリエステルがあ
り、さらに約20モル零未満のジカルボン酸あるいはフ
タル酸、イソフタル酸、ナフタリンジカルボン酸、ジフ
ェニルジカルボン酸類、ジフェノキシエタンジカルボン
酸類等の芳香族ジカルボン酸類あるいはアジピン酸、セ
パチン酸、アゼライン酸、デカンジカルボン酸、シクロ
ヘキサンジカルボン酸等の脂肪族または脂環族ジカルボ
ン酸類を共重合させるか、約20モル零未満のグリコー
ルあるいはトリメヂレングリコール、プロピレングリコ
ール、テトラメチレングリコール、ネオペンチルグリコ
ール、へキサメチレングリコール、ドデカメチレングリ
コール、シクロヘキサンジメタツール等の脂肪族または
脂環族グリコール類あるいはビスフェノール類、ハイド
ロキノン、2.2−ビス(4−β−ヒドロキシエトキシ
フェニル)プロパン等の芳香族ジオール類を共重合させ
ても良い。また、P−ヒドロキシエトキシ安息香酸、α
−オキシカプロン酸等のオキシ酸類あるいはオキシ酸類
の低級アルキルエステル、その他のエステル形成性誘導
体を共重合させることも可能である。次に耐熱性樹脂で
あるボリアリレート系樹脂には、ボリアリレート及びポ
リエチレンテレフタレートのブレンドポリマーがある。
Here, P is the main resin used in heat-resistant multilayer containers.
The ET resin is made by polymerizing terephthalic acid or its ester-forming derivatives (e.g., lower alkyl esters, phenyl esters, etc.) and ethylene glycol or its ester-forming derivatives (e.g., monocarboxylic acid ester ethylene oxide, etc.). There is a polyester obtained, and further contains less than about 20 moles of dicarboxylic acids or aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acids, diphenoxyethane dicarboxylic acids, or adipic acid, sepatic acid, azelaic acid. , aliphatic or alicyclic dicarboxylic acids such as decanedicarboxylic acid and cyclohexanedicarboxylic acid, or copolymerize less than about 20 moles of glycol or trimedylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexa Aliphatic or alicyclic glycols such as methylene glycol, dodecamethylene glycol, and cyclohexane dimetatool; or aromatic diols such as bisphenols, hydroquinone, and 2,2-bis(4-β-hydroxyethoxyphenyl)propane. It may be polymerized. Also, P-hydroxyethoxybenzoic acid, α
It is also possible to copolymerize oxyacids such as -oxycaproic acid, lower alkyl esters of oxyacids, and other ester-forming derivatives. Next, polyarylate resins that are heat-resistant resins include blend polymers of polyarylate and polyethylene terephthalate.

第2図は検査装置の概略構成の斜視図を、第3図にはセ
ンサ部の構造の断面側面図を示す。
FIG. 2 is a perspective view of the general configuration of the inspection device, and FIG. 3 is a cross-sectional side view of the structure of the sensor section.

この検査装置20は水銀・キセノンランプ(図示せず)
で紫外線及び可視光線を発生する光源装置21と、この
光源装置21に接続して前記紫外線及び可視光線を集光
、伝送する直径2+n+nのライト用石英系ファイバ2
2を有する投光部23と、投光された光を受ける直径1
mmのディテクタ用石英系ファイバ24及びこのディテ
クタ用石英系ファイバ24を支えるガイド25を有する
受光部2δとを有している。ここで、光源に水銀・キセ
ノンランプを使用する理由は紫外部の光量を増加させる
ためである。またライト用石英系ファイバ22及びディ
テクタ用石英系ファイバ24の先端を位置合わせする時
、紫外線のみでは見えないが可視光が出ているため容易
に行なえる。また、ディテクタ用石英系ファイバ24の
途中には、特定波長(350±1onm)のみを透過さ
せる干渉フィルタ27及び前記紫外線と可視光線とを受
光する光電変換型のガリウム・リン素子28で成るセン
サ部29と、さらにこのセンサ部29から延びているケ
ーブル30の先には増幅器(図示せず)及び判定回路(
図示せず)で成る判断部31とが設けられている。
This inspection device 20 uses a mercury/xenon lamp (not shown)
a light source device 21 that generates ultraviolet rays and visible rays; and a quartz-based fiber 2 for light with a diameter of 2+n+n that is connected to this light source device 21 to condense and transmit the ultraviolet rays and visible rays.
2 and a diameter 1 for receiving the projected light.
It has a light-receiving section 2δ having a quartz-based fiber 24 for a detector of mm and a guide 25 that supports the quartz-based fiber 24 for a detector. Here, the reason why a mercury/xenon lamp is used as a light source is to increase the amount of light in the ultraviolet region. Further, when aligning the ends of the light quartz fiber 22 and the detector quartz fiber 24, it is easy to align the ends of the light quartz fiber 22 and the detector quartz fiber 24 because visible light is emitted, although it cannot be seen with ultraviolet light alone. Further, in the middle of the quartz-based fiber 24 for the detector, there is a sensor section consisting of an interference filter 27 that transmits only a specific wavelength (350±1 onm) and a photoelectric conversion type gallium phosphide element 28 that receives the ultraviolet rays and visible light. 29, and an amplifier (not shown) and a determination circuit (
A determination unit 31 consisting of (not shown) is provided.

成形工程上、容器の口部上端部に耐熱性樹脂層グ存在し
ていれば容器全体に耐熱性樹脂層が存在していることに
なるので、検査方法は容器の口部上端部を全周に渡って
測定すればなお効果的である。一般に容器の口部にはキ
ャップで密封するためのネジが設けられている場合が多
く、ネジ部での測定は不可であるが、キャップの内側に
配設されているゴムパツキンを潰して容器のシール効果
を高める目的で設けられている容器の口部上端部のネジ
部がない円筒形状を利用して測定する。しかるに、第4
図に示すように°ライト用石英系ファイバ22とディテ
クタ用石英系ファイバ24とが前記可視光線を用いて一
直線上に配置されると、前記光源装置21から発生した
光はライト用石英系ファイバ22を通って投光され、ス
リット32で絞られて容器3の口部上端部33に照射さ
れる。そして、口部上端部33を透過してきた光はディ
テクタ用石英系ファイバ24で受光され、センサ部29
内の干渉フィルタ27で特定波長(350+ 10nm
)に抽出され、この特定波長の光がガリウム・リン素子
28で検知されるとこのガイルム・リン素子28は電圧
を発生し、この電圧は増幅器で増幅されて判定回路に入
力され容器3の良否が判定される。
Due to the molding process, if a heat-resistant resin layer is present at the upper end of the mouth of the container, it means that there is a heat-resistant resin layer over the entire container. It is even more effective if measurements are taken over a period of time. Generally, the mouth of the container is often equipped with a screw to seal it with a cap, so measurements cannot be taken at the screw, but the rubber gasket installed inside the cap can be crushed to seal the container. Measurement is performed using the cylindrical shape of the container, which has no threaded part at the upper end of the mouth, which is provided for the purpose of increasing the effectiveness. However, the fourth
As shown in the figure, when the light quartz fiber 22 and the detector quartz fiber 24 are arranged in a straight line using the visible light, the light generated from the light source device 21 is transmitted to the light quartz fiber 22. The light is projected through the slit 32 and is focused on the upper end 33 of the mouth of the container 3 . The light transmitted through the mouth upper end 33 is received by the detector quartz fiber 24, and the sensor part 29
A specific wavelength (350+10nm
), and when this specific wavelength of light is detected by the gallium phosphide element 28, the gallium phosphide element 28 generates a voltage, which is amplified by an amplifier and input to the judgment circuit to determine whether the container 3 is good or not. is determined.

上述の検査装置及び方法を用いて、具体的に測定した結
果を第5図(A)〜(C)を用いて説明する。
The results of specific measurements using the above-mentioned inspection apparatus and method will be explained using FIGS. 5(A) to 5(C).

メイン樹脂としてPET(ポリエチレンテレフタレート
)[三井PET樹脂製J125 ]を、耐耐熱性能とし
てボリアリレートとポリエチレンテレフタレートのブレ
ンドから成るUポリマー[ユニチカ%1I8400 ]
を用いて前述した容器作製方法で作製した耐熱多層容器
及びPETのみを用いて作製した単体容器の口部上端部
を全周(0°〜360°)に渡って測定した。第5図(
A)は単体容器の測定結果を示すもので、全周に渡り2
50mV以上の出力を得ている。第5図(B)は不良の
耐熱多層容器の測定結果を示すもので、位置角度が90
” 、180°、270°付近に25〜50mVの出力
を得ている。第5図(C)は良好な耐熱多層容器の測定
結果を示すもので、はとんど出力していない。
PET (polyethylene terephthalate) [Mitsui PET Resin J125] is used as the main resin, and U polymer consisting of a blend of polyarylate and polyethylene terephthalate [Unitika %1I8400] is used as the heat resistance.
Measurements were taken over the entire circumference (0° to 360°) of the upper end of the mouth of a heat-resistant multilayer container manufactured by the container manufacturing method described above and a single container manufactured using only PET. Figure 5 (
A) shows the measurement results for a single container.
Output of 50mV or more is obtained. Figure 5 (B) shows the measurement results of a defective heat-resistant multilayer container, and the position angle is 90°.
", an output of 25 to 50 mV was obtained near 180° and 270°. FIG. 5(C) shows the measurement results of a good heat-resistant multilayer container, and there was hardly any output.

(発明の効果) 以上のように本発明の合成樹脂製の耐熱多層容器の検査
装置及び方法によれば、メイン樹脂及び耐熱性樹脂の特
定波長の光の透過率を検出後、電圧として出力し、その
値で耐熱多層容器の良否を判定するため、短時間で確実
に検査できることから検査工数を大幅に短縮できるばか
りでなく信顆性の高い製品を供給できるようになる・。
(Effects of the Invention) As described above, according to the inspection device and method for a heat-resistant multilayer container made of synthetic resin of the present invention, after detecting the transmittance of light of a specific wavelength of the main resin and the heat-resistant resin, it is output as a voltage. Since the quality of the heat-resistant multilayer container is judged based on this value, the inspection can be performed reliably in a short time, which not only greatly reduces the number of inspection steps, but also allows us to supply products with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光の波長による容器の透過率を示す図、第2図
は本発明方法を実現する容器の検査装置の概略を示す斜
視図、第3図はセンサ部を示す断面側面図、第4図は本
発明方法を実現する容器の検査装置による検査方法を示
す側面図、第5図(A)〜(C)は本発明方法による測
定結果を示す図、第6図(A)〜(D)は合成樹脂製容
器の製法を示す図、第7図は共射出成形機を示す断面側
面図、第8図(A)〜(D)は共射出成形機の金型内の
樹脂流の過程を示す図である。 1・・・パリソン、16・・・メイン樹脂、17・・・
耐熱性樹脂、20・・・検査装置、22・・・ライト用
石英系ファイバ、24・・・ディテクタ用石英系ファイ
バ。 出願人代理人  安 形 雄 三 六 噸 骨 ド 蔓 2 図 )2゜ 蔓 3 日
FIG. 1 is a diagram showing the transmittance of a container depending on the wavelength of light, FIG. 2 is a perspective view showing an outline of a container inspection device that implements the method of the present invention, and FIG. 3 is a cross-sectional side view showing the sensor section. FIG. 4 is a side view showing an inspection method using a container inspection device that implements the method of the present invention, FIGS. 5(A) to (C) are views showing measurement results by the method of the present invention, and FIGS. 6(A) to ( D) is a diagram showing the manufacturing method of a synthetic resin container, Figure 7 is a cross-sectional side view showing a co-injection molding machine, and Figures 8 (A) to (D) are diagrams showing the resin flow in the mold of the coinjection molding machine. It is a diagram showing a process. 1...Parison, 16...Main resin, 17...
Heat-resistant resin, 20... Inspection device, 22... Quartz fiber for light, 24... Quartz fiber for detector. Applicant's agent: Yasugata Yu Sanroku Tsune Hone Do Tsuri 2 Figure) 2゜ Tsuri 3 days

Claims (2)

【特許請求の範囲】[Claims] (1)合成樹脂製の耐熱多層容器を検査する方法におい
て、前記耐熱多層容器の口部上端部に紫外線を投光し、
前記口部上端部を透過した紫外線を受光し、特定波長の
みの紫外線を抽出して検出した後に電気信号として出力
し、その値で前記耐熱多層容器の良否を判定するように
したことを特徴とする合成樹脂製の耐熱多層容器の検査
方法。
(1) In a method for inspecting a heat-resistant multilayer container made of synthetic resin, projecting ultraviolet light onto the upper end of the mouth of the heat-resistant multilayer container,
The container is characterized in that the ultraviolet rays transmitted through the upper end of the opening are received, the ultraviolet rays of only a specific wavelength are extracted and detected, and then outputted as an electric signal, and the quality of the heat-resistant multilayer container is determined based on the value. Inspection method for heat-resistant multilayer containers made of synthetic resin.
(2)紫外線を発生するための光源装置と、この光源装
置に接続されて前記紫外線を伝送し、合成樹脂製の耐熱
多層容器の口部上端部に投光するための投光用ファイバ
と、この投光用ファイバに対置され、前記口部上端部を
透過した紫外線を受光して伝送するための受光用ファイ
バと、前記受光用ファイバから出力される紫外線を抽出
して検出するためのセンサと、このセンサからの電気信
号を受けて処理するための処理回路とを具備したことを
特徴とする合成樹脂製の耐熱多層容器の検査装 置。
(2) a light source device for generating ultraviolet rays; a light projecting fiber connected to the light source device to transmit the ultraviolet rays and project the light to the upper end of the opening of the heat-resistant multilayer container made of synthetic resin; A light-receiving fiber that is placed opposite to the light-emitting fiber and receives and transmits the ultraviolet light that has passed through the upper end of the mouth, and a sensor that extracts and detects the ultraviolet light output from the light-receiving fiber. 1. An inspection device for a heat-resistant multilayer container made of synthetic resin, comprising: a processing circuit for receiving and processing electrical signals from the sensor.
JP28986486A 1986-12-05 1986-12-05 Method and device for inspecting heat-resistant multi-layer container made of synthetic resin Expired - Lifetime JPH0697211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28986486A JPH0697211B2 (en) 1986-12-05 1986-12-05 Method and device for inspecting heat-resistant multi-layer container made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28986486A JPH0697211B2 (en) 1986-12-05 1986-12-05 Method and device for inspecting heat-resistant multi-layer container made of synthetic resin

Publications (2)

Publication Number Publication Date
JPS63142242A true JPS63142242A (en) 1988-06-14
JPH0697211B2 JPH0697211B2 (en) 1994-11-30

Family

ID=17748747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28986486A Expired - Lifetime JPH0697211B2 (en) 1986-12-05 1986-12-05 Method and device for inspecting heat-resistant multi-layer container made of synthetic resin

Country Status (1)

Country Link
JP (1) JPH0697211B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210141A (en) * 1988-06-29 1990-01-12 Dainippon Printing Co Ltd Method and device for inspecting container made of synthetic resin
WO1990008951A1 (en) * 1989-02-06 1990-08-09 Dai Nippon Insatsu Kabushiki Kaisha Method and apparatus for inspecting heat-resistant multi-layered container made of synthetic resin
US5139406A (en) * 1987-12-16 1992-08-18 Dai Nippon Insatsu Kabushiki Kaisha Apparatus and system for inspecting wall thickness of synthetic resin containers
US5328018A (en) * 1990-12-03 1994-07-12 Dai Nippon Insatsu Kabushiki Kaisha Transfer device including a rotating mechanism for rotating a container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139406A (en) * 1987-12-16 1992-08-18 Dai Nippon Insatsu Kabushiki Kaisha Apparatus and system for inspecting wall thickness of synthetic resin containers
JPH0210141A (en) * 1988-06-29 1990-01-12 Dainippon Printing Co Ltd Method and device for inspecting container made of synthetic resin
WO1990008951A1 (en) * 1989-02-06 1990-08-09 Dai Nippon Insatsu Kabushiki Kaisha Method and apparatus for inspecting heat-resistant multi-layered container made of synthetic resin
US5331167A (en) * 1989-02-06 1994-07-19 Dai Nippon Insatsu Kabushiki Kaisha Method and apparatus for inspecting heat-resistant multilayer containers made of synthetic resin
US5328018A (en) * 1990-12-03 1994-07-12 Dai Nippon Insatsu Kabushiki Kaisha Transfer device including a rotating mechanism for rotating a container

Also Published As

Publication number Publication date
JPH0697211B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JP4104022B2 (en) Method to prevent uncontrollable polymer flow in preform neck finish during filling and cooling stages
CA1271435A (en) Multi-layered vessels and method for molding the same
US6572812B2 (en) Preform and container with crystallized neck finish and method of making the same
US5049345A (en) Method of forming a multi-layer preform
JPH04144730A (en) Bottle-neck structure and manufacture thereof
JPS63142242A (en) Method and apparatus for inspecting heat resistant multilayer container made of synthetic resin
JPS63154951A (en) Inspection of heat resistant multi-layer container made of synthetic resin
JP2575727B2 (en) Inspection method and apparatus for heat resistant multilayer container made of synthetic resin
JPS63239011A (en) Parison for biaxial stretch-blow molding and molding method therefor
JPS63193047A (en) Inspection of heat resistant multilayer container made of synthetic resin
HU183667B (en) Tube
JPH0210141A (en) Method and device for inspecting container made of synthetic resin
EP0408745B1 (en) Method and apparatus for inspecting heat-resistant multi-layered container made of synthetic resin
JP2726674B2 (en) Inspection method and apparatus for synthetic resin container
US5328018A (en) Transfer device including a rotating mechanism for rotating a container
JPH0512218B2 (en)
JPS63275934A (en) Method for inspecting heat resistant multilayered container made of synthetic resin
JP2958082B2 (en) Heat-resistant light-shielding multilayer bottle
JPH0710692B2 (en) Heat resistant container
JP4659279B2 (en) Inner film inspection method for plastic bottles
JPH0788889A (en) Multilayer injection molded form
JP3135603B2 (en) Heat resistant PET container
JP6835188B2 (en) Manufacturing method and manufacturing system for composite containers
JP2566621B2 (en) Synthetic resin container and manufacturing method thereof
JPH03291553A (en) Method for inspecting synthetic resin container