JPH038238A - Electrodepositing method - Google Patents
Electrodepositing methodInfo
- Publication number
- JPH038238A JPH038238A JP13963189A JP13963189A JPH038238A JP H038238 A JPH038238 A JP H038238A JP 13963189 A JP13963189 A JP 13963189A JP 13963189 A JP13963189 A JP 13963189A JP H038238 A JPH038238 A JP H038238A
- Authority
- JP
- Japan
- Prior art keywords
- electrodeposition
- substrate
- substrates
- segment
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004070 electrodeposition Methods 0.000 claims abstract description 109
- 239000000758 substrate Substances 0.000 claims abstract description 85
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000007788 liquid Substances 0.000 claims abstract description 37
- 230000005684 electric field Effects 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims description 33
- 230000015572 biosynthetic process Effects 0.000 abstract description 17
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000013011 mating Effects 0.000 abstract 2
- 238000003756 stirring Methods 0.000 description 12
- 238000001962 electrophoresis Methods 0.000 description 5
- 239000002659 electrodeposit Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、蛍光表示管、ドツトアレイ蛍光管等における
蛍光面形成に適用される電着方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrodeposition method applied to the formation of phosphor screens in fluorescent display tubes, dot array fluorescent tubes, and the like.
従来の技術
従来、蛍光表示管は、一方向にアレイ状に形成された多
数のセグメント電極上に蛍光面を形成し、熱陰極ととも
に真空容器中に封入し、熱陰極から熱電子を発生させる
一方、表示させるべき情報に応じてセグメントmNに選
択的に正電圧を印加して、熱電子を選択されたセグメン
ト電極に引き付け、引き付けられた熱電子が、蛍光面に
衝突する際に発する蛍光により、情報の表示を行う素子
であって、バーコード表示管やドツトアレイ蛍光管とし
て知られている。Conventional technology Conventionally, in a fluorescent display tube, a fluorescent screen is formed on a large number of segment electrodes formed in an array in one direction, and the fluorescent screen is sealed together with a hot cathode in a vacuum container, and the hot cathode generates thermionic electrons. , a positive voltage is selectively applied to the segments mN according to the information to be displayed to attract thermoelectrons to the selected segment electrodes, and the attracted thermoelectrons emit fluorescence when they collide with the phosphor screen. A device that displays information, and is known as a barcode display tube or dot array fluorescent tube.
このような蛍光表示管において、セグメント電極上に良
好な蛍光面を形成する方法としては、例えば実公昭57
−55728号公報に示されるように電気泳動を利用す
る方法が知られている。これは、セグメント電極列が形
成された電着基板を、蛍光体粒子を分散させた分散液中
に浸漬し、セグメント電極列に対向させた対向電極とこ
のセグメント電極列との間に電圧を印加して電界を形成
し、分散液中の蛍光体粒子をセグメント電極上に付着さ
せるものである。ここに、対向電極とセグメント電極列
とは、互いに平行に対峙して配置される。In such a fluorescent display tube, as a method of forming a good fluorescent screen on the segment electrodes, for example,
A method using electrophoresis is known, as shown in Japanese Patent No. 55728. In this method, an electrodeposited substrate on which a segment electrode array is formed is immersed in a dispersion liquid in which phosphor particles are dispersed, and a voltage is applied between the segment electrode array and a counter electrode facing the segment electrode array. This creates an electric field to cause the phosphor particles in the dispersion to adhere to the segment electrodes. Here, the counter electrode and the segment electrode array are arranged parallel to each other and facing each other.
また、これらの電極間の間隙、いわゆる対向間隙を電界
の面から見ると、微小である程、印加電圧が小さくても
大きな値の電界強度が得られる。電気泳動法は、電界強
度に対応して分散粒子が液中を移動するものであるので
、この電界強度という因子はかなり重要なものである。Furthermore, when looking at the gap between these electrodes, the so-called opposing gap, from the viewpoint of electric field, the smaller the gap, the greater the electric field intensity can be obtained even if the applied voltage is small. In the electrophoresis method, dispersed particles move in a liquid in response to the electric field strength, so the electric field strength is a very important factor.
しかし、セグメント電極列のみに蛍光体粒子を付着させ
、他の部分には付着させないためには、電界のみで制御
することは極めて困難であり、液流を利用して他の部分
の付着粒子を掻き取り除去することが有効であることが
経験的に判ってきた。However, it is extremely difficult to control the phosphor particles only on the segment electrode rows and not on other parts using an electric field alone. It has been empirically found that scraping and removing is effective.
そこで、回転翼、例えばプロペラ状の撹拌部材等で液層
内を撹拌したり、ポンプ等で液を循環させたりして液流
を生じさせるようにしたものがある。しかし、流れの安
定性には限界があり、特に電極面サイズが大なる場合や
、セグメント電極配列密度が大なる場合には、電極対向
間隙に所定濃度の分散液が安定して供給されないため、
セグメント電極への蛍光体粒子の緻密な付着が望めない
という問題がある。Therefore, there are devices in which a liquid flow is generated by stirring the inside of the liquid layer with a rotary blade, for example, a propeller-shaped stirring member, or by circulating the liquid with a pump or the like. However, there is a limit to the stability of the flow, and especially when the electrode surface size is large or the segment electrode arrangement density is large, a dispersion liquid of a predetermined concentration cannot be stably supplied to the gap between the opposing electrodes.
There is a problem in that dense adhesion of the phosphor particles to the segment electrodes cannot be expected.
このような問題点を解決するため、種々の方法が提案さ
れている。例えば、特願昭61−134280号や特願
昭62−178484号によれば、第11図及び第12
図に示すように、電着基板11−に配列形成された多数
のセグメント電極2に蛍光体粒子を電着するために蛍光
体粉その分散された電着液3を電着N4に収容し、この
電着槽4に設けた回転軸5の回りに複数枚の電着基板1
を、保持部材6を介して多角形状に構成することによっ
て、拡散翼7による液撹拌の安定性を増し、セグメント
電極2上のみに蛍光体粒子を緻密に付着させる方法が示
されている。8は各セグメント電極2列に対向配置させ
た対向電極であり、セグメント電極2との間には電源9
により電圧が印加されている。Various methods have been proposed to solve these problems. For example, according to Japanese Patent Application No. 61-134280 and Japanese Patent Application No. 62-178484, Figures 11 and 12
As shown in the figure, in order to electrodeposit phosphor particles on a large number of segment electrodes 2 arranged in an electrodeposition substrate 11-, an electrodeposition liquid 3 containing dispersed phosphor powder is accommodated in an electrodeposition N4. A plurality of electrodeposited substrates 1 are mounted around a rotating shaft 5 provided in this electrodeposition tank 4.
A method is shown in which the stability of liquid stirring by the diffusion blade 7 is increased by configuring the phosphor particles into a polygonal shape via the holding member 6, and the phosphor particles are densely adhered only to the segment electrodes 2. 8 is a counter electrode disposed opposite to each segment electrode 2, and a power source 9 is connected between the segment electrode 2 and the segment electrode 2.
A voltage is applied by.
このような電着装置ないしは方法によれば、液撹拌の安
定性及び蛍光体粒子の緻密付着とともに、多数枚の基板
1上に対し同時に電着を行うことができ、効率がよいも
のである。According to such an electrodeposition apparatus or method, it is possible to perform electrodeposition on a large number of substrates 1 at the same time, in addition to stable liquid stirring and dense adhesion of phosphor particles, which is efficient.
発明が解決しようとする課題
上記提案方法によれば、−度に複数枚の基板について電
着を行い得る利点を持つが、電着基板lで多角形状を構
成するために、電着装置全体の大きさの制約から、−枚
の電着基板1の大きさをあまり大きくすることはできな
い。通常、「定形サイズ基板」と称される、ある程度大
型サイズの基板から所望サイズの基板を複数枚切出して
用いることが多く、上記のような一枚の電着基板lの場
合も、定形サイズ基板から例えば5〜20枚程度の基板
にカッティングしたものを用いるのが普通である。ここ
に、蛍光管などの製造工程全体がらすると、定形サイズ
基板から管球サイズへの基板カッティングはできるだけ
後工程で実施するようにしたほうが、品質の安定化、自
動化、搬送性等の面で利点が多い。ところが、第11図
等に示した電着方法による場合の製造プロセスを考える
と、[セグメント電極形成」→「絶縁層形成」までの工
程を定形サイズ基板にて行い、[定形サイズ基板のカッ
ティング」により基板を管球サイズにカットした後、[
蛍光面形成(電着)」→「管球化J工程を管球サイズで
行うことになる。このように、電着の直前といった、製
造工程でも前段階での基板カットは好ましくないもので
ある。Problems to be Solved by the Invention The proposed method has the advantage of being able to electrodeposit multiple substrates at once, but since the electrodeposited substrates form a polygonal shape, the entire electrodeposition apparatus needs to be Due to size constraints, the size of the minus electrodeposited substrate 1 cannot be increased too much. Usually, a plurality of substrates of a desired size are cut out from a somewhat large-sized substrate called a "standard size substrate", and in the case of a single electrodeposited substrate l as described above, a regular size substrate is used. For example, it is common to use substrates cut into about 5 to 20 sheets. Considering the entire manufacturing process of fluorescent tubes, etc., it is advantageous in terms of quality stabilization, automation, transportability, etc. to carry out the cutting of the board from a standard size board to the size of a tube as late as possible. There are many. However, considering the manufacturing process using the electrodeposition method shown in FIG. 11, etc., the steps from "segment electrode formation" to "insulating layer formation" are performed on a regular size substrate, and then "cutting of the regular size substrate" is performed. After cutting the board to the tube size using [
Phosphor screen formation (electrodeposition) → "Tube formation J process will be performed to the size of the tube. In this way, it is not desirable to cut the substrate at the previous stage of the manufacturing process, such as immediately before electrodeposition. .
また、電気泳動法による蛍光体粒子の電着は、蛍光体粒
子の分散された電着液を用い、被電着電極となるセグメ
ント電極と対向電極との間に電界を形成し、被電着電極
のみに選択的に蛍光体粒子を付着させるものであるが、
電着後に、電着液から基板を引上げる際に上部にあった
電着液が下部に流れることによりセグメント電極間に残
留したり、空気中に出る時に付着蛍光体粒子に乱れが生
じてしまうこともある。In addition, electrodeposition of phosphor particles by electrophoresis uses an electrodeposition liquid in which phosphor particles are dispersed, and an electric field is formed between a segment electrode and a counter electrode to be electrodeposited. This method selectively attaches phosphor particles only to the electrodes,
After electrodeposition, when the substrate is pulled up from the electrodeposition solution, the electrodeposition solution at the top flows to the bottom and remains between the segment electrodes, or when it comes out into the air, the adhered phosphor particles are disturbed. Sometimes.
課題を解決するための手段
請求項1記載の発明では、電着基板上に配列形成した多
数のセグメント電極と対向電極とを蛍光体粒子を分散さ
せた電着液中に浸漬させた状態で、前記セグメント電極
とMjf記対面対向電極開に電界を形成して、前記セグ
メント電極上に蛍光体粒子を電着させるようにした電着
方法において、多数のセグメント電極が複数列設けられ
後工程で各列毎に切断される定形サイズ基板を対向電極
とともに電着液中に浸漬させ、前記定形サイズ基板と1
11記電着液とを相対的に移動させて各列の各セグメン
ト電極上に同時に蛍光体粒子を電着させるようにした。Means for Solving the Problems In the invention as set forth in claim 1, a large number of segment electrodes and a counter electrode arranged in an array on an electrodeposition substrate are immersed in an electrodeposition liquid in which phosphor particles are dispersed. In the electrodeposition method, an electric field is formed between the segment electrode and an electrode facing the Mjf surface to electrodeposit phosphor particles on the segment electrode. A regular size substrate cut into rows is immersed in an electrodeposition solution together with a counter electrode, and the regular size substrate and 1
The phosphor particles were simultaneously electrodeposited on each segment electrode in each row by moving the electrodeposition liquid relatively to the electrodeposition liquid No. 11.
請求項2記載の発明では、電着基板−1−に配列形成し
た多数のセグメント電極と対向電極とを蛍光体粒子を分
散させた電着液中に浸漬させた状態で、前記セグメント
電極と前記対向電極との間に電界を形成して、前記セグ
メント電極上に蛍光体粒子を電着させ、電着後に前記電
着基板を電着液中から引上げて乾燥させるようにした電
着方法において、少なくとも電着液中からの引上げ工程
時に電着基板表面を含む平面と引上げ方向とが直角とな
らない状態に前記電着基板の姿勢を制御した。In the invention according to claim 2, the segment electrodes and the counter electrode are immersed in an electrodeposition liquid in which phosphor particles are dispersed. In the electrodeposition method, the phosphor particles are electrodeposited on the segment electrodes by forming an electric field between them and a counter electrode, and after the electrodeposition, the electrodeposition substrate is pulled up from the electrodeposition solution and dried. The attitude of the electrodeposited substrate was controlled so that at least during the pulling process from the electrodeposition solution, the plane containing the surface of the electrodeposited substrate and the pulling direction were not perpendicular to each other.
作用
請求項1記載の発明によれば、定形サイズ基板の複数列
のセグメント電極上に電気泳動法により蛍光体粒子が同
時に形成されるものであり、後工程で定形サイズ基板を
セグメント電極列毎に切断して各々機能デバイスをなす
ようにすればよく、製造プロセスが有利なものとなる。According to the invention described in claim 1, phosphor particles are simultaneously formed by electrophoresis on a plurality of rows of segment electrodes on a regular size substrate, and in a post process, the regular size substrate is divided into multiple rows of segment electrodes. They can be cut into functional devices, making the manufacturing process advantageous.
請求項2記載の発明によれば、電着後の電着基板の電着
液中からの引上げ時に、電着基板を含む平面と引上げ方
向とが直交しないので、蛍光体粒子の付着した電着面が
空気中に出る際に乱れを生ずることはなく、品質低下は
防止される。According to the invention as claimed in claim 2, when the electrodeposited substrate is pulled up from the electrodeposition solution after electrodeposition, the plane containing the electrodeposition substrate and the pulling direction are not perpendicular to each other, so that the electrodeposited substrate with attached phosphor particles is removed. When the surface exits into the air, no turbulence occurs and quality deterioration is prevented.
実施例
本発明の第一の実施例を第1図ないし第3図に基づいて
説明する。Embodiment A first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
まず、電着に供される本実施例の基板は、第2図に示す
ような定形サイズ基板1 、Oである。図示例は、セグ
メント電極11列が6列形成され、管球化後の後工程で
砿線で示す部分で切断され、調1〜6で示す各々が一つ
の機能素子を構成するという、6枚取りのケースを示す
。即ち、本発明にいう「定形サイズ基板」とは、このよ
うに一つの機能デバイスを構成するための多数のセグメ
ント電極11の列を複数列設けた基板をいう。First, the substrate of this embodiment to be subjected to electrodeposition is a regular size substrate 1, O as shown in FIG. In the illustrated example, 6 rows of 11 segment electrodes are formed, each of which is cut at the part shown by the red line in the post process after tube formation, and each of the segments shown in keys 1 to 6 constitutes one functional element. The case of taking is shown. That is, the term "regular size substrate" as used in the present invention refers to a substrate provided with a plurality of rows of a large number of segment electrodes 11 for constructing one functional device in this way.
本実施例は、このような定形サイズ基板10をそのまま
用いて電着を行うようにしたものである。In this embodiment, electrodeposition is performed using such a standard size substrate 10 as it is.
まず、このような定形サイズ基板10を複数枚着脱自在
にセットさせる円盤状回転体12が設けられている。本
実施例では、第1図に示すように4枚の定形サイズ基板
10を対称位置に着脱自在にセットさせ得るものである
。このような回転体12が第3図に示すように回転軸1
3により電着槽14内に複数段平行に設けられて、電着
液15に浸漬される。ここに、各回転体12の下面には
、その下の回転体12上にセットされた定形サイズ基板
lOのセグメント電極11に平行に対向し両押間に電圧
が印加される対向電極16が設けられている。このため
、第3図図示のように、最上位の回転体12は上に対向
すべき対向電極を持たないので、定形サイズ基板が搭載
されていない。これにより、各回転体12間では、上部
側の対向電極】6と下部側のセグメント電極11との間
で電着用の電界が形成される。定形サイズ基板10と電
着液15との相対的移動は前記回転軸13駆動による回
転体12の回転による定形サイズ基板lOの移動による
。First, a disk-shaped rotary body 12 is provided on which a plurality of such regular size substrates 10 are set in a detachable manner. In this embodiment, as shown in FIG. 1, four regular-sized substrates 10 can be set in symmetrical positions in a detachable manner. As shown in FIG.
3 are provided in parallel in multiple stages in the electrodeposition bath 14 and immersed in the electrodeposition liquid 15. Here, on the lower surface of each rotating body 12, there is provided a counter electrode 16 that faces parallel to the segment electrode 11 of the standard size substrate 10 set on the rotating body 12 below, and to which a voltage is applied between both presses. It is being For this reason, as shown in FIG. 3, the uppermost rotating body 12 does not have a counter electrode that should be opposed above it, and therefore no regular size substrate is mounted thereon. As a result, between each rotating body 12, an electric field for electrodeposition is formed between the opposing electrode 6 on the upper side and the segment electrode 11 on the lower side. The relative movement between the regular size substrate 10 and the electrodeposition liquid 15 is caused by the movement of the regular size substrate 10 due to the rotation of the rotating body 12 driven by the rotating shaft 13.
このような電着装置により、複数枚の定形サイズ基板1
0の各セグメント電極ll上への蛍光体粒子の電着によ
る付着が同時に行われる。即ち、「セグメント電極形成
」 「絶縁層形成」 「蛍光面形成」及び「管球化」ま
でのほとんどの工程が、定形サイズ基板10のままで行
われ、電着・管球化の最終工程で、各々の定形サイズ基
板10を各セグメント電極列毎に管球サイズに切断すれ
ばよいことになる。よって、製造工程上、品質の安定化
、自動化、搬送性等の点で有利なものとなる。With such an electrodeposition device, a plurality of regular size substrates 1
The deposition of phosphor particles by electrodeposition onto each segment electrode ll of 0 is performed simultaneously. That is, most of the steps up to "segment electrode formation,""insulating layer formation,""phosphor screen formation," and "tube formation" are performed on the standard size substrate 10, and the final process of electrodeposition and tube formation is performed as is. , it is sufficient to cut each regular size substrate 10 into tube size pieces for each segment electrode row. Therefore, it is advantageous in terms of quality stabilization, automation, transportability, etc. in the manufacturing process.
ところで、第1図及び第3図等による電着時に、セグメ
ント電極1】が定形サイズ基板】Oのほぼ全面に設けら
れていることから、基板のほぼ全面に渡って均一に電着
することが必要となる。ここに、セグメント電極11と
対向電極16との間のギャップ、印加電圧、電圧印加時
間、回転体12の回転数等のパラメータを変化させるこ
とにより、電着品質を可変し得ることは、従来から行わ
れている電着方法と同じであり、最適条件となる水fi
11′。By the way, during electrodeposition as shown in FIGS. 1 and 3, since the segment electrode 1 is provided on almost the entire surface of the regular-sized substrate O, it is possible to electrodeposit uniformly over almost the entire surface of the substrate. It becomes necessary. Here, it has been known that the electrodeposition quality can be varied by changing parameters such as the gap between the segment electrode 11 and the counter electrode 16, the applied voltage, the voltage application time, and the rotation speed of the rotating body 12. It is the same as the electrodeposition method currently being used, and the optimum condition is water fi.
11'.
の組合せによりこれらのパラメータが設定される。These parameters are set by a combination of .
今、第1図に示す方式の場合、ある程度大きな定形サイ
ズ基板10を円盤状の回転体12上に配置させるもので
あり、回転体12が回転することによるため、定形サイ
ズ基板10上のセグメント電極11の列の内・外周の位
置(例えば、最内周側の寛6のものと最外周側の胤1の
もの)によって移動速度が異なるので、セグメント電極
+1上への蛍光体粒子の供給、或いは、逆に蛍光体粒子
の掻き取り(スキャベンジ)能力が異なることになる。Now, in the case of the method shown in FIG. 1, a somewhat large regular-sized substrate 10 is placed on a disc-shaped rotating body 12, and since the rotating body 12 rotates, the segment electrodes on the regular-sized substrate 10 Since the moving speed differs depending on the position of the inner and outer periphery of the row No. 11 (for example, those of Kan 6 on the innermost periphery and those of Seed 1 on the outermost periphery), the supply of phosphor particles onto segment electrode +1, Or, conversely, the scavenge ability of the phosphor particles differs.
よって、擢1の部分と患6の部分とでは電着品質が異な
ることになる。従って、このような定形サイズ基板10
のほぼ全面において均一な電着晶質を得ようとする場合
、回転体12の径を大きくして覧1と隘6との速度差を
無視できる程度として池のパラメータを固定するとか、
又は、このようなセグメント電極列の内・外周位置によ
る速度差による電着能力の違いを他のパラメータ(例え
ば、印加電圧、電圧印加時間、電極間ギャップ等)によ
り補うようにすればよい。Therefore, the quality of the electrodeposition differs between the portion of the scale 1 and the portion of the affected area 6. Therefore, such a regular size substrate 10
In order to obtain a uniform electrodeposited crystal over almost the entire surface, the diameter of the rotating body 12 may be increased and the parameters of the pond may be fixed to such an extent that the speed difference between the position 1 and the position 6 can be ignored.
Alternatively, the difference in electrodeposition ability due to the speed difference depending on the inner and outer peripheral positions of the segment electrode array may be compensated for by other parameters (for example, applied voltage, voltage application time, gap between electrodes, etc.).
いずれにしても、本実施例方式による場合、平面方向に
は多少なりとも装置サイズを大きくしなければならない
が、その分、回転体12の段数を増やし、多数枚の定形
サイズ基板lOに対して一度に電着できるようにすれば
、生産能カー]二、何んら問題とはならない。In any case, in the case of the method of this embodiment, the device size must be increased somewhat in the plane direction, but the number of stages of the rotating body 12 is increased accordingly, and it is necessary to If electrodeposition can be done all at once, there will be no problem with productivity.
なお、本実施例では電着液15中で回転体12により定
形サイズ基板10側を移動させて電着するようにしたが
、定形サイズ基板10(従って、回転体12)側を固定
とし、撹拌翼等により電着液15側を移動させるように
してもよい。In this example, the regular size substrate 10 side was moved by the rotating body 12 in the electrodeposition liquid 15 for electrodeposition, but the regular size substrate 10 (therefore, the rotating body 12) side was fixed and the stirring was performed. The electrodeposition liquid 15 side may be moved using a blade or the like.
さらには、上述した電着方法の基本に加え、例えば1!
着液中での蛍光体粒子の粒径分布(大粒径のものが下層
に存在)ができることを防止するために、電着液を撹拌
ないしは循環させるといった手段を用いたり、異物混入
による電着品質の低下を防止するために液のフィルタリ
ング手段を設ける等の処置をすることが好ましい。Furthermore, in addition to the basics of the electrodeposition method described above, for example, 1!
In order to prevent the formation of a particle size distribution of phosphor particles in the deposited liquid (larger particles are present in the lower layer), methods such as stirring or circulating the electrodeposition solution are used, and electrodeposition due to foreign matter In order to prevent quality deterioration, it is preferable to take measures such as providing liquid filtering means.
つづいて、本発明の第二の実施例を第4図及び第5図に
より説明する。本実施例は、複数枚、例えば6枚の定形
サイズ基板10を、保持部材17により多角形状として
電着液中に浸漬させるようにしたものである。より具体
的には、各々の定形サイズ基板10はセグメント電極1
1の列が垂直方向となり、内側に位置する状態で垂直配
置されるもので、各セグメント@111の列に対してl
:1で対向電極18が前記保持部材17により支持され
て設けられている。これらの定形サイズ基板lOによる
多角形状の中心には、撹拌羽根19を備えて電着液を撹
拌移動させる回転軸2oが設けられている。Next, a second embodiment of the present invention will be described with reference to FIGS. 4 and 5. In this embodiment, a plurality of regular size substrates 10, for example six, are formed into a polygonal shape by a holding member 17 and are immersed in an electrodeposition solution. More specifically, each regular size substrate 10 has a segment electrode 1
The column 1 is vertical and is arranged vertically in the inner position, with l for each segment @111 column.
:1, the counter electrode 18 is supported by the holding member 17 and provided. At the center of the polygonal shape formed by these regular-sized substrates 1O, there is provided a rotating shaft 2o that is equipped with stirring blades 19 and that stirs and moves the electrodeposition liquid.
このような構成において、撹拌羽根19が矢印方向に回
転すると、各セグメント電極11の表面に電着液の均一
な流れが生じ、前述したようなパラメータの適切なる設
定により均一な電着品質が得られることになる。ここに
、実際的な構成によっては、セグメント電極列毎に若干
電着液の流れの特性が異なる場合もあるが、このような
場合には、前記実施例の場合と同様に、電着液の流れ以
外のパラメータの適宜設定で補うことが可能である。ま
た、電着液側の撹拌移動に限らず、電着液に対して定形
サイズ基板lO側を相対的に移動させるようにしてもよ
い。In such a configuration, when the stirring blade 19 rotates in the direction of the arrow, a uniform flow of the electrodeposition liquid occurs on the surface of each segment electrode 11, and uniform electrodeposition quality can be obtained by appropriately setting the parameters as described above. It will be done. Depending on the actual configuration, the flow characteristics of the electrodeposition liquid may differ slightly for each segment electrode row, but in such a case, the flow characteristics of the electrodeposition liquid may differ slightly depending on the actual configuration. It is possible to compensate by appropriately setting parameters other than flow. In addition to stirring the electrodeposition liquid side, it is also possible to move the standard size substrate 10 side relative to the electrodeposition liquid.
さらに、本発明の第三の実施例を第6図により説明する
。以下の実施例は、電着基板の電着液中での姿勢ないし
は乾燥工程に供するjM XX液からの引上げ時の姿勢
に関するものであり、その71着基板しては前述した実
施例のような定形サイズ基板10でもよいが、通常の1
枚取りの基板でもよく、これらを含め、単に電着基板2
1として説明する。Furthermore, a third embodiment of the present invention will be explained with reference to FIG. The following examples relate to the posture of the electrodeposited substrate in the electrodeposition solution or the posture when it is pulled up from the jMXX solution for the drying process. A regular size board 10 may be used, but a regular size board 10 may be used.
A single electrodeposited substrate 2 may be used, including these.
This will be explained as 1.
また、電着装置の基本的な構成は、第一の実施例に準す
るものとし、電着液15を収容した電着槽14と、電着
基板21がセットされ回転軸13により回転される回転
体12とからなる。The basic structure of the electrodeposition apparatus is similar to that of the first embodiment, and an electrodeposition tank 14 containing an electrodeposition liquid 15 and an electrodeposition substrate 21 are set and rotated by a rotating shaft 13. It consists of a rotating body 12.
ここに、本実施例にあっては、回転軸13が引上げ方向
(鉛直方向)Aに対して角度θだけ傾けられており、各
回転体12も水平面に対して角度0だけ傾いた状態とさ
れている。このような傾き状態で電着液15中に浸漬さ
れて電着が行われる。In this embodiment, the rotating shaft 13 is tilted at an angle θ with respect to the pulling direction (vertical direction) A, and each rotating body 12 is also tilted at an angle 0 with respect to the horizontal plane. ing. Electrodeposition is performed by being immersed in the electrodeposition liquid 15 in such an inclined state.
そして、電着後には回転体12が回転軸13とともに矢
印Aで示す方向に引上げられるが、上記傾き状態により
、電着基板21の面方向がこの引上げ方向に直交しない
ものとなる。これにより、電着基板21の電着面が電着
液15中から空気中に出る時に、乱れを生じない。また
、回転体12が引上げ方向Aに直交する場合よりも引上
げ時の負荷も軽減されるものとなる。After electrodeposition, the rotating body 12 is pulled up together with the rotating shaft 13 in the direction shown by arrow A, but due to the above-mentioned tilted state, the surface direction of the electrodeposited substrate 21 is not perpendicular to this pulling direction. Thereby, when the electrodeposition surface of the electrodeposition substrate 21 exits from the electrodeposition liquid 15 into the air, no disturbance occurs. Further, the load during pulling is also reduced compared to when the rotating body 12 is perpendicular to the pulling direction A.
また、本発明の第四の実施例を第7図により説明する。Further, a fourth embodiment of the present invention will be explained with reference to FIG.
本実施例は、垂直配置の回転軸13に対して回転体12
を角度θだけ傾けて取付けたものである。In this embodiment, the rotating body 12 is
is installed at an angle of θ.
このような構成により、回転軸13により回転体12が
回転すると、回転体12上の電着基板21が上下動しな
がら回転移動し、そのセグメント電極上に電着される。With such a configuration, when the rotating body 12 is rotated by the rotating shaft 13, the electrodeposition substrate 21 on the rotating body 12 rotates while moving up and down, and is electrodeposited on the segment electrode.
よって、電着時においては電着液撹拌の効果も発揮され
る。電着後、矢印で示す方向A、即ち回転軸13の軸方
向に引上げれば、電着基板21の電着面と引上げ方向と
が直交せず、電着面に乱れを生じない。Therefore, during electrodeposition, the effect of stirring the electrodeposition liquid is also exhibited. After electrodeposition, if it is pulled up in the direction A shown by the arrow, that is, in the axial direction of the rotating shaft 13, the electrodeposited surface of the electrodeposited substrate 21 and the pulling direction will not be perpendicular to each other, and the electrodeposited surface will not be disturbed.
さらに、本発明の第五の実施例を第8図により説明する
。本実施例は、平面状の回転体12に代えて、外周側程
下がった状態にわん曲させた傘状の回転体22を用いた
ものである。Furthermore, a fifth embodiment of the present invention will be explained with reference to FIG. In this embodiment, instead of the planar rotating body 12, an umbrella-shaped rotating body 22 which is curved downward toward the outer circumference is used.
次いで、本発明の第六の実施例を第9図及び第1O図に
より説明する。本実施例も前記実施例と同様に回転体2
3の形状を工夫したものである。Next, a sixth embodiment of the present invention will be explained with reference to FIG. 9 and FIG. 1O. In this embodiment, as in the previous embodiment, the rotating body 2
This is a modified version of the shape of 3.
基本的には平面形状とするが、その一部を拡大して示す
第10図のように、各電着基板21の設置個所は電着液
15の流れBの下涼側が高くなる状態に角度Oだけ傾け
た傾斜部23aが形成されている。また、回転体23の
下面側も傾斜部23aに対応した傾斜形状に形成され、
電着基板21に対向する部分にはこの基板2■に平行に
対向する状態で対向@極24が取付けられている。Basically, it has a planar shape, but as shown in FIG. 10, which shows a partially enlarged view, each electrodeposited substrate 21 is installed at an angle so that the cooler side of the flow B of the electrodeposited liquid 15 is higher. An inclined portion 23a inclined by O is formed. Further, the lower surface side of the rotating body 23 is also formed in an inclined shape corresponding to the inclined part 23a,
A counter electrode 24 is attached to a portion facing the electrodeposited substrate 21 so as to face the substrate 2 in parallel.
本実施例によれば、電着時に回転体23が回転すること
によシバ各回転体23間には第10図に示すように十r
動じながら移動する電着液15の流れBが生じ、撹拌効
果も発揮され良好に電着される。電着後の引上げ時には
、重連した実施例と同様に引上げ方向Aに電着面が直交
せず、乱れを生じない。According to this embodiment, as the rotating bodies 23 rotate during electrodeposition, there is a distance of 100 mm between each of the rotating bodies 23, as shown in FIG.
A flow B of the electrodeposition liquid 15 is generated, which moves while moving, and a stirring effect is also exerted, resulting in good electrodeposition. At the time of pulling up after electrodeposition, the electrodeposited surface is not perpendicular to the pulling direction A and no disturbance occurs, as in the case of the multiplexed embodiments.
なお、これらの第三〜第六の実施例において、遊着後の
電着基板21の引上げ時には、電着基板21と電着液1
5とを電着時と同様に相対的に移動させながら行っても
、移動を停止させた状態で行ってもよく、これは、電着
品質、電着条件等との関連で決めればよい。In addition, in these third to sixth embodiments, when pulling up the electrodeposited substrate 21 after free deposition, the electrodeposition substrate 21 and the electrodeposition liquid 1 are
5 and 5 may be carried out while moving relative to each other in the same manner as during electrodeposition, or may be carried out while the movement is stopped, and this may be determined in relation to the electrodeposition quality, electrodeposition conditions, etc.
発明の効果
本発明は、上述したように構成したので、請求項1記載
の発明によれば、定形サイズ基板の複数列のセグメント
電極!極上に電気泳動法により蛍光体粒子が同時に形成
されることになり、電着後の後工程で定形サイズ基板を
セグメント電極列毎に切断して各々機能デバイスをなす
ようにすればよく、電着品質とともに製造プロセスを有
利なものとすることができ、また、請求項2記載の発明
によれば、電着後の電着基板の電着液中からの引」−げ
時に、電着基板を含む平面と引上げ方向とが直交しない
ので、蛍光体粒子の付着した電着面が空気中に出る際の
乱れ発生が防止され、よって、乾燥工程に供される電着
基板の電着品質を維持することができる。Effects of the Invention Since the present invention is configured as described above, according to the invention described in claim 1, segment electrodes in multiple rows on a regular size substrate can be obtained! Phosphor particles are simultaneously formed on top of the electrode by electrophoresis, and in the post-electrodeposition process, the standard size substrate can be cut into segment electrode rows to form functional devices. It is possible to make the manufacturing process advantageous in addition to the quality, and according to the invention set forth in claim 2, when the electrodeposited substrate is removed from the electrodeposition solution after electrodeposition, the electrodeposition substrate is removed. Since the containing plane and the pulling direction are not perpendicular to each other, turbulence is prevented when the electrodeposited surface with phosphor particles comes out into the air, thus maintaining the electrodeposited quality of the electrodeposited substrate subjected to the drying process. can do.
第1図は本発明の第一の実施例を示す平面図、第2図は
拡大して示す定形サイズ基板の平面図、第3図は電着装
置を示す概略断面図、第4図は本発明の第二の実施例を
示す概略平面図、第5図はその一部の縦断側面図、第6
図は本発明の第三の実施例を示す概略段面図、第7図は
本発明の第四の実施例を示す概略段面図、第8図は本発
明の第五の実施例を示す概略段面図、第9図は本発明の
第六の実施例を示す概略段面図、第10図はその一部を
拡大して示す段面図、第11図は従来例を示す水平断面
図、第12図はその縦断側面図である。FIG. 1 is a plan view showing the first embodiment of the present invention, FIG. 2 is an enlarged plan view of a standard size substrate, FIG. 3 is a schematic sectional view showing an electrodeposition apparatus, and FIG. A schematic plan view showing the second embodiment of the invention, FIG. 5 is a longitudinal sectional side view of a part thereof, and FIG.
The figure is a schematic step view showing a third embodiment of the present invention, FIG. 7 is a schematic step view showing a fourth embodiment of the present invention, and FIG. 8 is a schematic step view showing a fifth embodiment of the present invention. FIG. 9 is a schematic step view showing the sixth embodiment of the present invention, FIG. 10 is an enlarged step view of a part thereof, and FIG. 11 is a horizontal cross section showing the conventional example. 12 are longitudinal sectional side views thereof.
Claims (1)
対向電極とを蛍光体粒子を分散させた電着液中に浸漬さ
せた状態で、前記セグメント電極と前記対向電極との間
に電界を形成して、前記セグメント電極上に蛍光体粒子
を電着させるようにした電着方法において、多数のセグ
メント電極が複数列設けられ後工程で各列毎に切断され
る定形サイズ基板を対向電極とともに電着液中に浸漬さ
せ、前記定形サイズ基板と前記電着液とを相対的に移動
させて各列の各セグメント電極上に同時に蛍光体粒子を
電着させるようにしたことを特徴とする電着方法。 2、電着基板上に配列形成した多数のセグメント電極と
対向電極とを蛍光体粒子を分散させた電着液中に浸漬さ
せた状態で、前記セグメント電極と前記対向電極との間
に電界を形成して、前記セグメント電極上に蛍光体粒子
を電着させ、電着後に前記電着基板を電着液中から引上
げて乾燥させるようにした電着方法において、少なくと
も電着液中からの引上げ工程時に電着基板表面を含む平
面と引上げ方向とが直角とならない状態に前記電着基板
の姿勢を制御したことを特徴とする電着方法。[Scope of Claims] 1. While a large number of segment electrodes and a counter electrode arranged in an array on an electrodeposition substrate are immersed in an electrodeposition liquid in which phosphor particles are dispersed, the segment electrodes and the counter electrode are In this electrodeposition method, phosphor particles are electrodeposited on the segment electrodes by forming an electric field between the segment electrodes. The sized substrate was immersed in an electrodeposition solution together with a counter electrode, and the regular sized substrate and the electrodeposition solution were moved relative to each other so that phosphor particles were simultaneously electrodeposited onto each segment electrode in each row. An electrodeposition method characterized by: 2. With a large number of segment electrodes arranged and formed on an electrodeposition substrate and a counter electrode immersed in an electrodeposition liquid in which phosphor particles are dispersed, an electric field is applied between the segment electrodes and the counter electrode. phosphor particles are electrodeposited on the segment electrodes, and after the electrodeposition, the electrodeposition substrate is pulled up from the electrodeposition solution and dried. An electrodeposition method characterized in that the attitude of the electrodeposition substrate is controlled so that a plane including the surface of the electrodeposition substrate and the pulling direction are not perpendicular to each other during the process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13963189A JPH038238A (en) | 1989-06-01 | 1989-06-01 | Electrodepositing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13963189A JPH038238A (en) | 1989-06-01 | 1989-06-01 | Electrodepositing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH038238A true JPH038238A (en) | 1991-01-16 |
Family
ID=15249778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13963189A Pending JPH038238A (en) | 1989-06-01 | 1989-06-01 | Electrodepositing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH038238A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100950929B1 (en) * | 2009-08-14 | 2010-04-01 | 최철규 | Settling bath in lift-off apparatus for manufacturing light emission diode |
-
1989
- 1989-06-01 JP JP13963189A patent/JPH038238A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100950929B1 (en) * | 2009-08-14 | 2010-04-01 | 최철규 | Settling bath in lift-off apparatus for manufacturing light emission diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6001235A (en) | Rotary plater with radially distributed plating solution | |
DE69513235T2 (en) | Fluorescent screen structure and field emission display device and method of manufacturing the same | |
US6290826B1 (en) | Composite sputtering cathode assembly and sputtering apparatus with such composite sputtering cathode assembly | |
KR102280187B1 (en) | Producing method of mask integrated frame | |
KR102314854B1 (en) | Producing method of mask integrated frame | |
US7090750B2 (en) | Plating | |
JPH038238A (en) | Electrodepositing method | |
JP3341385B2 (en) | Phosphor electrodeposition method for field emission display | |
KR102357802B1 (en) | Mask integrated frame and producing method of mask integrated frame | |
JP3808148B2 (en) | Composite sputtering cathode and sputtering apparatus using the cathode | |
JPS61259434A (en) | Manufacture of fluorescent screen | |
JPH05295589A (en) | Bump electrode plating device for semiconductor wafer and plating method thereof | |
JPH03192632A (en) | Electrodeposition device | |
JPH0325829A (en) | Electrodeposition device | |
JPS61245438A (en) | Formation of fluorescent screen of fluorescent character display tube | |
JP2812483B2 (en) | Electrodeposition equipment | |
JPH0682535B2 (en) | Electro-deposition device | |
JP2754888B2 (en) | Apparatus and method for producing electrodeposited whetstone | |
JPH07111874B2 (en) | Electroplating method | |
JPH1020525A (en) | Dip coating device and production of electrophotographic photoreceptor using that device | |
JPS61148754A (en) | Manufacture of fluorescent display device | |
JP3380982B2 (en) | Electroforming device for disk type record carrier | |
JPH0412431A (en) | Electrodeposition device | |
JP2001133621A (en) | Method and device for producing color filter | |
JPH1025600A (en) | Paddle rotation type plating method and plating device |