JPH0382123A - Drying process and device therefor - Google Patents

Drying process and device therefor

Info

Publication number
JPH0382123A
JPH0382123A JP21734989A JP21734989A JPH0382123A JP H0382123 A JPH0382123 A JP H0382123A JP 21734989 A JP21734989 A JP 21734989A JP 21734989 A JP21734989 A JP 21734989A JP H0382123 A JPH0382123 A JP H0382123A
Authority
JP
Japan
Prior art keywords
wafer
drying
dried
drying chamber
wavelength infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21734989A
Other languages
Japanese (ja)
Other versions
JP2804106B2 (en
Inventor
Masaaki Harazono
正昭 原園
Toshihiko Sakurai
桜井 俊彦
Tetsuya Takagaki
哲也 高垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16702781&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0382123(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21734989A priority Critical patent/JP2804106B2/en
Publication of JPH0382123A publication Critical patent/JPH0382123A/en
Application granted granted Critical
Publication of JP2804106B2 publication Critical patent/JP2804106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To clean up any water drips sticked on a wafer surface instantaneously and throughly by a method wherein an element to be dried up is arranged in high temperature inert gas atmosphere irradiated with infrared rays so as to be dried up. CONSTITUTION:A gas feeder pipe 4 heated by emission heat from a medium wavelength infrared ray lamps 5 is led to the upper part in a drying chamber 1 and then bent downward in the drying chamber 1. Successively, short wavelength infrared ray lamps 6 are lighted with the medium wave-length infrared ray lamps 5 lighted as they are and then a carrier arm 7 fitted with a wafer 8 whose surface is turned to the short wavelength infrared ray lamps 6 side is inserted into the drying chamber 1 to be rested on a specific position. The surface of the wafer 8 is rapidly heated by the infrared rays emitted from the medium wavelength and short wavelength infrared ray lamps 5 and 6 to evaporate the water content sticked on the surface of the wafer 8. After the wafer 8 is rested in the drying chamber 1 for specific time, the carrier arm 7 is pulled out of the drying chamber 1 to replace the wafer 8 with the other wafer 8 and then inserted into the drying chamber 1 again to dry up the other wafer 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は物品の乾燥技術、特に、洗浄などを行って水滴
などの付着した被乾燥物の乾燥に用いて効果のある技術
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a technology for drying articles, and in particular, to a technology that is effective when used for drying objects to be dried that have water droplets or the like attached to them after washing or the like. .

〔従来の技術〕[Conventional technology]

例えば、半導体ウェハ(以下、単にウェハという〉の製
造工程においては、エツチングを行うに際し、アルミニ
ウム合金(A l−Cu−5i)を塩素系ガスでエツチ
ングするドライエツチングがあるが、この方法ではウェ
ハ表面に残留する塩素によってアルミニウム配線が腐食
する。そこでエツチング完了後に、湿式洗浄を行って残
留塩素を除去する防食処理を行っている。そして、この
湿式洗浄の後、遠心乾燥法やIPA(イソプロピルアル
コール〉蒸気乾燥法を用いて乾燥処理を行っている。
For example, in the manufacturing process of semiconductor wafers (hereinafter simply referred to as wafers), when performing etching, there is dry etching in which aluminum alloy (Al-Cu-5i) is etched with chlorine gas, but this method etches the wafer surface. Aluminum wiring corrodes due to residual chlorine.Therefore, after etching is complete, wet cleaning is performed to remove residual chlorine as an anti-corrosion treatment.After this wet cleaning, centrifugal drying or IPA (isopropyl alcohol) The drying process is performed using a steam drying method.

また、ドライエツチングの他に、ウェハ表面の酸化膜を
ウェットエツチングしてパターンを形成するエツチング
方法もあり、この場合も後工程としてIPA蒸気乾燥法
などによる乾燥処理が行われる。
In addition to dry etching, there is also an etching method in which a pattern is formed by wet etching the oxide film on the wafer surface, and in this case as well, a drying process such as an IPA vapor drying method is performed as a post-process.

このようなIPA蒸気による乾燥技術は、例えば、特開
昭56−168072号公報に記載のように、処理槽底
部にIPAなどの有機溶媒からなる処理液を溜め、これ
を加熱して蒸気にし、被乾燥物であるウェハの乾燥を行
っている。
Such a drying technique using IPA vapor is, for example, as described in Japanese Patent Application Laid-Open No. 56-168072, in which a processing liquid made of an organic solvent such as IPA is stored at the bottom of a processing tank, heated to turn it into vapor, Wafers, which are objects to be dried, are being dried.

ところで、本発明者は、IPA蒸気乾燥法による染み汚
染について検討した。
By the way, the present inventor investigated stain contamination caused by the IPA steam drying method.

以下は、本発明者によって検討された技術であり、その
概要は次の通りである。
The following are the techniques studied by the present inventor, and the outline thereof is as follows.

すなわち、IPA蒸気乾燥法は、被乾燥物の下方から有
機溶媒の蒸気を供給し、ウェハの表面に付着していた水
滴などを、ウェハの表面で凝縮して形成される有機溶媒
の液滴に溶解(または分散)させて落下除去させ、ウェ
ハ表面を乾燥させるものである。なお、処理槽は、ウェ
ハが大きくなるにつれて大型のものを必要とする。
In other words, in the IPA vapor drying method, organic solvent vapor is supplied from below the object to be dried, and water droplets adhering to the wafer surface are converted into organic solvent droplets that are condensed on the wafer surface. The wafer surface is dried by dissolving (or dispersing) and removing the wafer. Note that as the size of the wafer increases, a larger processing tank is required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前記のようなIPA蒸気乾燥法においては、
ウェハの大型化につれて処理槽自体も大型化し、これと
共に必要な蒸気量を確保するのが難しくなり、ウェハ表
面にウォータマークと呼ばれる染み状の汚れが生じる。
However, in the IPA steam drying method as described above,
As the size of wafers increases, so does the processing tank itself, making it difficult to secure the necessary amount of steam, resulting in stain-like stains called watermarks on the wafer surface.

また、IPA中にナトリウム(Na)、カリウム(K)
などの不純物を含有し、あるいは水分を含んでいると、
ウェハ表面のイオン汚染や乾燥不十分による染み汚染を
生じる。このような染みが生じることによって、高集積
状態の回路素子の特性不良を招くことになる。
In addition, sodium (Na) and potassium (K) are present in IPA.
If it contains impurities such as or contains moisture,
This causes ionic contamination on the wafer surface and stain contamination due to insufficient drying. The occurrence of such stains leads to defective characteristics of highly integrated circuit elements.

なお、ウォータマークに関しては、電子情報通信学会報
告SDM87−188.1988年3月15日付、P3
3〜P38に記載がある。簡略に説明すると、ウェハ表
面と、その表面に付着した水滴との境界面において、雰
囲気から水滴中に溶解した酸素による酸化反応が生じ、
生成したシリコン(S i)の酸化物が水和して水滴中
に溶解し、この水滴の蒸発に伴って析出したものがウォ
ータマークである。
Regarding watermarks, see IEICE Report SDM87-188, March 15, 1988, P3.
There is a description on pages 3 to 38. Briefly, an oxidation reaction occurs at the interface between the wafer surface and the water droplets attached to the surface, due to oxygen dissolved in the water droplets from the atmosphere.
The generated silicon (Si) oxide is hydrated and dissolved in water droplets, and the watermark is what is precipitated as the water droplets evaporate.

このウォータマークを生成させないために、ヒータなど
の熱源を用いて処理槽を大容量化し、必要とする蒸気量
を得ることも考えられるが、処理液であるIPAは可燃
性であり安全性の確保に困難がある。
In order to prevent the formation of this water mark, it is possible to increase the capacity of the processing tank using a heat source such as a heater to obtain the required amount of steam, but IPA, which is the processing liquid, is flammable and safety must be ensured. There are difficulties in

そこで、本発明の目的は、有機溶媒を用いることなくウ
ェハ表面に付着している水滴を瞬時に高清浄化が可能な
技術を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a technology capable of instantaneously and highly cleaning water droplets adhering to a wafer surface without using an organic solvent.

本発明の前記目的と新規な特徴は、本明細書の記述及び
添付図面から明らかになるであろう。
The above objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、以下の通りである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、赤外線が照射される高温の不活性ガス雰囲気
中に被乾燥物を配設して乾燥を行うようにしたものであ
る。
That is, the material to be dried is placed in a high-temperature inert gas atmosphere that is irradiated with infrared rays to perform drying.

〔作用〕[Effect]

上記した手段によれば、高温の不活性ガスは被乾燥物を
加熱すると共に表面に付着する水滴と被乾燥物の界面で
の酸化反応を防止し、同時に供与される赤外線は表面に
付着する水滴に吸収され、瞬時に飛散または蒸発させる
。したがって、有機溶媒を用いることなく、短時間に安
全かつ安定に乾燥処理を済ませることができる。
According to the above-described means, the high-temperature inert gas heats the material to be dried and prevents the oxidation reaction at the interface between the water droplets attached to the surface and the material to be dried, and the infrared rays provided at the same time heat the material to be dried. absorbed into the air and instantly dispersed or evaporated. Therefore, the drying process can be completed safely and stably in a short time without using an organic solvent.

〔実施例〕〔Example〕

第1図は本発明による乾燥装置の一実施例を示す正面断
面図である。
FIG. 1 is a front sectional view showing an embodiment of a drying apparatus according to the present invention.

中央部には縦長の乾燥室1が形成され、上部に不活性ガ
ス供給口が形成され、下部に被乾燥物であるウェハ人出
口が形成されている。乾燥室1の一方の側に加熱室2が
形成され、乾燥室lを挟んで反対側に加熱室3が形成さ
れている。各加熱室2.3の乾燥室1に接する面には赤
外線を透過し易い石英ガラス板などが配設されている。
A vertically long drying chamber 1 is formed in the center, an inert gas supply port is formed in the upper part, and an outlet for wafers, which are objects to be dried, is formed in the lower part. A heating chamber 2 is formed on one side of the drying chamber 1, and a heating chamber 3 is formed on the opposite side with the drying chamber 1 in between. A quartz glass plate or the like that easily transmits infrared rays is disposed on the surface of each heating chamber 2.3 that is in contact with the drying chamber 1.

加熱室2内には、乾燥室l内に不活性ガスを供給するガ
ス供給管4が蛇行配設されている。このガス供給管4に
対し、中波長赤外線ランプ5による赤外線の一部が熱源
として照射されるように構成されている。
A gas supply pipe 4 for supplying an inert gas into the drying chamber 1 is arranged in a meandering manner within the heating chamber 2 . The gas supply pipe 4 is configured to be irradiated with a portion of infrared rays from a medium wavelength infrared lamp 5 as a heat source.

更に、加熱室2内には、ガス供給管4に隣接させて乾燥
室1寄りに、複数の中波長赤外線ランプ5が一定間隔に
かつ垂直方向に配設されている。
Furthermore, inside the heating chamber 2, adjacent to the gas supply pipe 4 and closer to the drying chamber 1, a plurality of medium wavelength infrared lamps 5 are vertically arranged at regular intervals.

一方、加熱室3内には、複数の短波長赤外線ランプ6が
一定間隔にして、垂直方向に配設されている。
On the other hand, inside the heating chamber 3, a plurality of short wavelength infrared lamps 6 are vertically arranged at regular intervals.

中波長赤外線ランプ5は、波長2.5μm近傍の赤外線
(以下、中波長赤外線という〉を放射する特性を有し、
短波長赤外線ランプ6は波長1.2μm近傍の赤外線(
以下、短波長赤外線という)を放射する特性を有してい
る。
The mid-wavelength infrared lamp 5 has a characteristic of emitting infrared rays with a wavelength of around 2.5 μm (hereinafter referred to as mid-wavelength infrared rays).
The short wavelength infrared lamp 6 emits infrared light with a wavelength of around 1.2 μm (
It has the characteristic of emitting short-wavelength infrared radiation (hereinafter referred to as short-wavelength infrared rays).

乾燥室1には搬送アーム7が、室内外に挿入、引き抜き
自在に配設され、その先端に被乾燥物であるウェハ8が
取付けられる。
A transport arm 7 is disposed in the drying chamber 1 so as to be freely inserted into and withdrawn from the inside and outside of the room, and a wafer 8, which is an object to be dried, is attached to the tip of the arm 7.

以上の構成において、ウェハ8の乾燥を行うには、まず
、中波長赤外線ランプ5を点灯し、ついで不活性ガスと
しての窒素ガスをガス供給管4に導入する。ガス供給管
4は、中波長赤外線ランプ5の発光熱を受けて加熱(例
えば400℃〉され、乾燥室1の上部に送りこまれ、乾
燥室l内を流下する。
In the above configuration, in order to dry the wafer 8, first, the medium wavelength infrared lamp 5 is turned on, and then nitrogen gas as an inert gas is introduced into the gas supply pipe 4. The gas supply pipe 4 is heated (for example, 400° C.) by the heat emitted from the medium-wavelength infrared lamp 5, is fed into the upper part of the drying chamber 1, and flows down inside the drying chamber 1.

ついで、中波長赤外線ランプ5を点灯したまま短波長赤
外線ランプ6を点灯し、ウェハ8を装着した搬送アーム
7をウェハ8の表面を短波長赤外線ランプ6側に向けた
まま乾燥室1内に挿入し、定位置で静止させる。中波長
赤外線ランプ5及び短、波長赤外線ランプ6による赤外
線によって、ウェハ8の表面は急速に加熱され、ウェハ
8の表面に付着した水分が蒸発する。
Next, the short wavelength infrared lamp 6 is turned on while the medium wavelength infrared lamp 5 is turned on, and the transfer arm 7 with the wafer 8 attached is inserted into the drying chamber 1 with the surface of the wafer 8 facing the short wavelength infrared lamp 6 side. and hold it in place. The surface of the wafer 8 is rapidly heated by the infrared rays from the medium wavelength infrared lamp 5 and the short wavelength infrared lamp 6, and the moisture attached to the surface of the wafer 8 is evaporated.

ウェハ8を乾燥室1内に一定時間静止後、搬送アーム7
を乾燥室1外へ引き出し、搬送アーム7からウェハ8を
取り外して別のウェハ8に取替えて乾燥室1に挿入し、
上記したように乾燥処理を行う。
After the wafer 8 remains in the drying chamber 1 for a certain period of time, the transfer arm 7
out of the drying chamber 1, remove the wafer 8 from the transfer arm 7, replace it with another wafer 8, and insert it into the drying chamber 1.
A drying process is performed as described above.

上記の実施例によれば、乾燥室1内のウェハ8は、予熱
された窒素ガス及び中波長赤外線ランプ5、短波長赤外
線ランプ6の各々によって加温される。このとき、ウェ
ハ8裏面は、対向配設された短波長赤外線ランプ6の発
光波長が1.2μml;1下と短いため、放射された赤
外線はウェハ8の表面で反射し、ウェハ8の表層部のみ
を昇温させる。
According to the above embodiment, the wafer 8 in the drying chamber 1 is heated by preheated nitrogen gas, the medium wavelength infrared lamp 5, and the short wavelength infrared lamp 6, respectively. At this time, since the emission wavelength of the short wavelength infrared lamp 6 disposed opposite to the back surface of the wafer 8 is as short as 1.2 μml; Only raise the temperature.

第2図はシリコンウェハを赤外線ランプによって加熱し
た際の昇温特性を示している。
FIG. 2 shows the temperature rise characteristics when a silicon wafer is heated with an infrared lamp.

図中、特性aはウェハ8を短波長赤外線ランプ6によっ
て赤外線を照射した場合、図中、特性すはウェハ8を中
波長赤外線ランプ5によって赤外線を照射した場合であ
る。本発明者の4分間の乾燥処理による結果では、中波
長赤外線ランプ5に比べ短波長赤外線ランプ6による照
射の方が、ウェハ表面温度をおよそ2倍以上の昇温効果
を得ることができた。また、ウェハ8と短波長赤外線ラ
ンプ6の間隔を縮めることにより、さらにウェハ8の表
面温度を短時間に昇温できることが確認された。
In the figure, characteristic a is when the wafer 8 is irradiated with infrared rays by a short wavelength infrared lamp 6, and characteristic a is when the wafer 8 is irradiated with infrared rays by a middle wavelength infrared lamp 5. According to the results of a drying process performed by the present inventors for 4 minutes, irradiation with the short wavelength infrared lamp 6 was able to increase the wafer surface temperature by about twice as much as the medium wavelength infrared lamp 5. Furthermore, it has been confirmed that by shortening the distance between the wafer 8 and the short wavelength infrared lamp 6, the surface temperature of the wafer 8 can be further increased in a short time.

一方、ウェハ8の表面に付着した水滴は、窒素ガスによ
る加熱のほか、ウェハ8からの熱伝達、及び短波長赤外
線ランプ6による表面への赤外線照射と、中波長赤外線
ランプ5によって加熱され、ウェハ8の裏面を透過して
きた中波長赤外線とを水分子が吸収することにより、効
果的に蒸発が行われる。
On the other hand, the water droplets attached to the surface of the wafer 8 are heated by nitrogen gas, heat transfer from the wafer 8, infrared irradiation to the surface by the short wavelength infrared lamp 6, and medium wavelength infrared lamp 5, and the wafer Water molecules absorb the mid-wavelength infrared rays that have passed through the back surface of 8, resulting in effective evaporation.

第3図は加熱方法を変えて赤外線ランプによりシリコン
ウェハを加熱した場合の昇温特性を示している。すなわ
ち、特性Cは300℃に加熱した窒素ガス雰囲気下での
ウェハ温度特性、特性dは短波長赤外線ランプ6の照射
時におけるウェハ温中波長赤外線ランプ5を照射させた
場合のウェハ温度特性を示している。
FIG. 3 shows the temperature rise characteristics when the silicon wafer is heated by an infrared lamp by changing the heating method. That is, characteristic C indicates the wafer temperature characteristic under a nitrogen gas atmosphere heated to 300° C., and characteristic d indicates the wafer temperature characteristic when the wafer warms when the wafer is irradiated with the short wavelength infrared lamp 6 and the medium wavelength infrared lamp 5 is irradiated. ing.

300℃の窒素ガス雰囲気下で短波長赤外線ランプ6を
照射することにより、ウェハ8と水滴の温度差を瞬時に
大きくすることができ、ウェハ8の表面から殆どの水滴
を飛散除去することができる。さらに、ウェハ8の表面
上の段差部などに残留した水分も、中波長の赤外線によ
って短時間に蒸発する。
By irradiating the short wavelength infrared lamp 6 in a nitrogen gas atmosphere at 300° C., the temperature difference between the wafer 8 and the water droplets can be instantly increased, and most of the water droplets can be scattered and removed from the surface of the wafer 8. . Furthermore, moisture remaining on the surface of the wafer 8, such as at the step portion, is also evaporated in a short time by medium wavelength infrared rays.

第4図は表面にパターンの形成されたウェハ8の乾燥処
理時の昇温特性を示している。
FIG. 4 shows the temperature rise characteristics during the drying process of the wafer 8 having a pattern formed on its surface.

図中、特性fは短波長赤外線ランプ6によって赤外線を
照射したときのウェハ温度特性、特性gは400℃の窒
素ガス雰囲気下において、ウェハ8の表面側から短波長
赤外線ランプ6を照射し裏面側から中波長赤外線ランプ
5を照射した場合、その処理時間に対するウェハ温度特
性を示している。
In the figure, the characteristic f is the wafer temperature characteristic when infrared rays are irradiated by the short wavelength infrared lamp 6, and the characteristic g is the wafer temperature characteristic when the short wavelength infrared lamp 6 is irradiated from the front side of the wafer 8 under a nitrogen gas atmosphere at 400°C. The graph shows the wafer temperature characteristics with respect to processing time when irradiated with a medium wavelength infrared lamp 5.

パターンが形成されたウェハであっても、高温の窒素ガ
ス雰囲気中で赤外線を照射することにより、水分の蒸発
による潜熱のためにウェハ8の表面温度が100℃の一
定値になる時間を短くし、短時間にウェハ8の表面の水
分を完全に蒸発させることができる。この結果、ウェハ
8の乾燥不良を防止し、均一で高清浄な乾燥を行うこと
ができる。
Even if the wafer is patterned, by irradiating it with infrared rays in a high-temperature nitrogen gas atmosphere, the time for the surface temperature of the wafer 8 to reach a constant value of 100°C due to latent heat due to evaporation of moisture can be shortened. , moisture on the surface of the wafer 8 can be completely evaporated in a short time. As a result, defective drying of the wafer 8 can be prevented and uniform and highly clean drying can be performed.

なお、乾燥室1は下部に開口を有するために、乾燥時に
ウェハ8が空気に触れて酸化を生じることが懸念される
が、搬送アーム7を十分に乾燥室1の奥部に挿入するこ
とによって、乾燥時におけるウェハ8表面と水滴との界
面での酸化反応を抑制することができる。
Since the drying chamber 1 has an opening at the bottom, there is a concern that the wafer 8 may come in contact with air during drying and oxidize. However, by inserting the transfer arm 7 sufficiently deep into the drying chamber 1 , it is possible to suppress the oxidation reaction at the interface between the surface of the wafer 8 and the water droplets during drying.

以上、本発明者によってなされた発明を実施例に基づき
具体的に説明したが、本発明は前記実施例に限定される
ものでは無く、その要旨を逸脱しない範囲で種々変更可
能であることは言うまでもない。
Above, the invention made by the present inventor has been specifically explained based on Examples, but it goes without saying that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. stomach.

例えば、不活性ガスとして窒素ガスを用いる例を示した
が、窒素ガス以外のもの、例えば、アルゴンなどでもよ
い。また、窒素ガスを400℃に予熱する例を示したが
、ウェハ8の表面状態に応じて変更することができる。
For example, although an example is shown in which nitrogen gas is used as the inert gas, other gases other than nitrogen gas, such as argon, may also be used. Further, although an example has been shown in which nitrogen gas is preheated to 400° C., this can be changed depending on the surface condition of the wafer 8.

さらに、赤外線ランプの駆動は、常時点灯してもよいし
、ウェハ8を乾燥室lに挿入する直前に点灯させるもの
としてもよい。
Furthermore, the infrared lamp may be turned on all the time, or may be turned on immediately before inserting the wafer 8 into the drying chamber 1.

以上の説明では、主として本発明者によって成された発
明を、その利用分野であるウェハの乾燥に適用した場合
について説明したが、これに限定されるものではなく、
例えば、アルミ材による磁気ディスク、ガラス基板のマ
スクなどにも適用可能である。
In the above description, the invention made by the present inventor was mainly applied to the application field of wafer drying, but the invention is not limited to this.
For example, it is applicable to magnetic disks made of aluminum, masks made of glass substrates, and the like.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば、下記の通りであ
る。
Among the inventions disclosed in this application, the effects obtained by typical ones are as follows.

すなわち、赤外線が照射される高温の不活性ガス雰囲気
中に被乾燥物を配設して乾燥を行うようにしたので、酸
化反応の発生を防止し、ウォータマークを生成させるこ
となく、短時間に高清浄な乾燥を行うことが可能になる
In other words, since the material to be dried is placed in a high-temperature inert gas atmosphere that is irradiated with infrared rays, drying is performed in a short period of time without oxidation reactions occurring and without creating water marks. It becomes possible to perform highly clean drying.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による乾燥装置の一実施例を示す正面断
面図、 第2図はシリコンウェハを赤外線ランプによって加熱し
た際の昇温特性図、 第3図は加熱方法を変えて赤外線ランプによりシリコン
ウェハを加熱した場合の昇温特性図、第4図は表面にパ
ターンの形成されたウェハ8の乾燥処理時の昇温特性図
である。 1・・・乾燥室、2.3・・・加熱室、4・・・ガス供
給管、5・・・中波長赤外線ランプ、6・・・短波長赤
外線ランプ、7・・・搬送アーム、8・・・ウェハ。 第 1 図 1:乾燥室 7:搬送アーム 5 中波長赤外線ランプ 6 短波長赤外線ランプ 第 図 1/(つ・バーランプ間距離) (crn−”)経 過 時 間 (分) 一ラド 0 0 0 0 処 理 時 間 (秒) −うト
Fig. 1 is a front sectional view showing an embodiment of the drying apparatus according to the present invention, Fig. 2 is a temperature rise characteristic diagram when a silicon wafer is heated with an infrared lamp, and Fig. 3 is a diagram showing temperature rise characteristics when a silicon wafer is heated with an infrared lamp. FIG. 4 is a temperature rise characteristic diagram when a silicon wafer is heated. FIG. 4 is a temperature rise characteristic diagram when a wafer 8 having a pattern formed on its surface is subjected to a drying process. DESCRIPTION OF SYMBOLS 1... Drying chamber, 2.3... Heating chamber, 4... Gas supply pipe, 5... Medium wavelength infrared lamp, 6... Short wavelength infrared lamp, 7... Transfer arm, 8 ...Wafer. 1st Figure 1: Drying chamber 7: Transfer arm 5 Medium wavelength infrared lamp 6 Short wavelength infrared lamp Figure 1/(distance between bar lamps) (crn-”) Elapsed time (minutes) 1 Rad 0 0 0 0 Processing Time (seconds) -Uto

Claims (1)

【特許請求の範囲】 1、赤外線が照射される高温の不活性ガス雰囲気中に被
乾燥物を配設して乾燥を行うことを特徴とする乾燥方法
。 2、前記赤外線は、前記被乾燥物の表層部に熱を伝達す
る波長域と、前記被乾燥物の少なくとも深層部に熱を伝
達する波長域とを有することを特徴とする請求項1記載
の乾燥方法。 3、前記被乾燥物は、シリコン半導体ウェハであること
を特徴とする請求項1記載の乾燥方法。 4、前記不活性ガスは、窒素ガスであることを特徴とす
る請求項1記載の乾燥方法。 5、前記表層部に熱を伝達する波長域は、波長1.2μ
mの近傍であることを特徴とする請求項2記載の乾燥方
法。 6、前記深層部に熱を伝達する波長域は、波長2.5μ
mの近傍であることを特徴とする請求項2記載の乾燥方
法。 7、挿入された被乾燥物を囲撓するように形成された乾
燥室と、該乾燥室に前記被乾燥物を垂直方向に搬入出さ
せる搬送手段と、前記乾燥室に隣接して配設されて前記
被乾燥物に赤外線を照射する赤外線生成手段と、前記乾
燥室に供給する不活性ガスを予め加熱する予熱手段とを
具備することを特徴とする乾燥装置。 8、前記赤外線生成手段は、前記被乾燥物に対し表層部
に赤外線を集中させる第1の赤外線ランプと、該第1の
赤外線ランプの反対側から該赤外線ランプより長い波長
の赤外線を照射させる第2の赤外線ランプとよりなるこ
とを特徴とする請求項7記載の乾燥装置。
[Scope of Claims] 1. A drying method characterized by drying an object to be dried by placing it in a high-temperature inert gas atmosphere that is irradiated with infrared rays. 2. The infrared rays have a wavelength range that transmits heat to a surface layer of the object to be dried, and a wavelength range that transmits heat to at least a deep layer of the object to be dried. Drying method. 3. The drying method according to claim 1, wherein the object to be dried is a silicon semiconductor wafer. 4. The drying method according to claim 1, wherein the inert gas is nitrogen gas. 5. The wavelength range for transmitting heat to the surface layer is a wavelength of 1.2μ.
3. The drying method according to claim 2, wherein the drying method is in the vicinity of m. 6. The wavelength range that transmits heat to the deep layer is a wavelength of 2.5μ.
3. The drying method according to claim 2, wherein the drying method is in the vicinity of m. 7. A drying chamber formed to surround the inserted object to be dried; a conveyance means for carrying the object to be dried into and out of the drying chamber in a vertical direction; A drying apparatus comprising: an infrared generating means for irradiating the object to be dried with infrared rays; and a preheating means for preheating an inert gas supplied to the drying chamber. 8. The infrared ray generating means includes a first infrared lamp that concentrates infrared rays on the surface layer of the object to be dried, and a second infrared lamp that irradiates infrared rays with a longer wavelength than the infrared lamp from the opposite side of the first infrared lamp. 8. The drying apparatus according to claim 7, comprising: two infrared lamps.
JP21734989A 1989-08-25 1989-08-25 Drying method and apparatus Expired - Lifetime JP2804106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21734989A JP2804106B2 (en) 1989-08-25 1989-08-25 Drying method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21734989A JP2804106B2 (en) 1989-08-25 1989-08-25 Drying method and apparatus

Publications (2)

Publication Number Publication Date
JPH0382123A true JPH0382123A (en) 1991-04-08
JP2804106B2 JP2804106B2 (en) 1998-09-24

Family

ID=16702781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21734989A Expired - Lifetime JP2804106B2 (en) 1989-08-25 1989-08-25 Drying method and apparatus

Country Status (1)

Country Link
JP (1) JP2804106B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059017A1 (en) * 1999-03-31 2000-10-05 Super Silicon Crystal Research Institute Corp. Apparatus for manufacturing semiconductor wafer
KR101682676B1 (en) * 2015-05-28 2016-12-06 주식회사 씨앤지옵틱 Diffusion Lens having Scaterring Function for LED lighting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059017A1 (en) * 1999-03-31 2000-10-05 Super Silicon Crystal Research Institute Corp. Apparatus for manufacturing semiconductor wafer
US6578589B1 (en) 1999-03-31 2003-06-17 Super Silicon Crystal Research Institute Corp. Apparatus for manufacturing semiconductor wafer
KR101682676B1 (en) * 2015-05-28 2016-12-06 주식회사 씨앤지옵틱 Diffusion Lens having Scaterring Function for LED lighting

Also Published As

Publication number Publication date
JP2804106B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
US20060207633A1 (en) Device and method for cleaning photomask
US6627846B1 (en) Laser-driven cleaning using reactive gases
KR19980032452A (en) Substrate drying method and apparatus
JPS62290134A (en) Apparatus for removing photoresist
JP3150509B2 (en) Organic matter removal method and apparatus for using the method
JPH0382123A (en) Drying process and device therefor
TW201921478A (en) Substrate processing method
JP7096693B2 (en) Board processing method and board processing equipment
EP1142007A1 (en) System and method for surface passivation
JPS6345821A (en) Vapor treatment apparatus
US7377984B2 (en) Method for cleaning a photomask
JP7504850B2 (en) Substrate drying apparatus, substrate processing apparatus, and substrate drying method
JP2005090860A (en) Drying treatment method, and drying treatment device
JP3910182B2 (en) Steam dryer
JPH10209132A (en) Eliminating method of organic matter
JP3170058B2 (en) Semiconductor device manufacturing method and vapor drying apparatus used therein
JPS59121821A (en) Set-up means for heater
JP2555086B2 (en) Surface treatment equipment
JP2004200330A (en) Foreign matter removing method and its apparatus
JPH0572096B2 (en)
JPS62115725A (en) Treater
JPS6251225A (en) Photochemical reaction method
JP2002502109A (en) Substrate drying method and drying equipment
JP4059216B2 (en) Surface treatment method and apparatus
JPS63202918A (en) Ozone decomposing apparatus