JPH0381971A - Operating method for fuel cell - Google Patents
Operating method for fuel cellInfo
- Publication number
- JPH0381971A JPH0381971A JP2035318A JP3531890A JPH0381971A JP H0381971 A JPH0381971 A JP H0381971A JP 2035318 A JP2035318 A JP 2035318A JP 3531890 A JP3531890 A JP 3531890A JP H0381971 A JPH0381971 A JP H0381971A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- temperature
- fuel
- temp
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 129
- 238000011017 operating method Methods 0.000 title 1
- 239000007789 gas Substances 0.000 claims description 55
- 238000002407 reforming Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 239000007800 oxidant agent Substances 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 7
- 230000005611 electricity Effects 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 abstract description 17
- 238000001816 cooling Methods 0.000 abstract description 10
- 238000007599 discharging Methods 0.000 abstract 2
- 239000003607 modifier Substances 0.000 abstract 1
- 238000002485 combustion reaction Methods 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000004904 shortening Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000003411 electrode reaction Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、常温より高い温度にて運転を行う燃料電池の
運転方法に係り、特に燃料電池の起動方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for operating a fuel cell that operates at a temperature higher than room temperature, and particularly to a method for starting a fuel cell.
燃料としてメタノールまたはメタン、エタン等の天然ガ
スを改質した改質ガスを用い、酸化剤ガスとして酸素ま
たは空気を用いる燃料電池は、般に第3図に示す槽底の
セルスタックを備えている。すなわち燃料電池は、電解
質を含浸したマトリックス5と、このマトリックス5を
挟持するガス拡散および電解液浸透性を有する多孔質の
燃料電極2および酸化剤電極3と、これらの電極に接触
して集電の役割を果たすとともにそれぞれの電極へ反応
ガスを供給するためのセパレータ4とから槽底される単
電池を複数積層し、この両端面に配された端板7を介し
て締付けられたセルスタック6を備えている。A fuel cell that uses methanol or a reformed natural gas such as methane or ethane as a fuel and oxygen or air as an oxidant gas is generally equipped with a cell stack at the bottom of the tank as shown in Figure 3. . In other words, a fuel cell consists of a matrix 5 impregnated with an electrolyte, a porous fuel electrode 2 and an oxidizer electrode 3 sandwiching the matrix 5 and having gas diffusion and electrolyte permeability, and a current collector in contact with these electrodes. A cell stack 6 is constructed by stacking a plurality of single cells, which are connected to a separator 4 at the bottom of the tank and connected to a separator 4 for supplying a reaction gas to each electrode. It is equipped with
電極はガスの拡散または透過を容易にするための多孔性
薄膜であり、これに電極反応を容易に行わせるための白
金等の貴金属が担持されている。The electrode is a porous thin film to facilitate gas diffusion or permeation, and supports a noble metal such as platinum to facilitate electrode reaction.
かかる燃料電池において、燃料電極では水素が酸化され
、水素イオンを形成して電子を放出する電極反応(Hg
=2H” + 2e)が、酸化剤電極では酸素が還元さ
れ水素イオンと反応した水を生成する電極反応(AOz
+2H” +2e−■mO)が起電反応となり、全反応
として水素と酸素から水を生成して発電することとなる
。上記反応の場所は各々の電極に付加された触媒の作用
で進行し、燃料電極で生成した水素イオンはマトリック
ス内の電解質中を通って酸化剤電極に運ばれ、発生した
電子は電池につながれた負荷回路を通して酸化剤電極に
運ばれ、酸化剤電極において酸素と反応して水を生成す
る。In such fuel cells, an electrode reaction (Hg
= 2H" + 2e) is an electrode reaction (AOz
+2H" +2e-■mO) becomes an electromotive reaction, and the total reaction generates water from hydrogen and oxygen to generate electricity. The above reaction progresses at the location of the catalyst added to each electrode, The hydrogen ions generated at the fuel electrode are transported to the oxidizer electrode through the electrolyte in the matrix, and the generated electrons are transported to the oxidizer electrode through a load circuit connected to the battery, where they react with oxygen. Produce water.
上記の起電反応を与える水素としては、改質原料を燃料
改質器にて水素に冨むガスに改質した改質ガス中の水素
が、また酸素としては空気に含まれる酸素が使用され、
これらの改質ガスと空気とを反応ガスとしてセルスタッ
クに供給して発電を行わせている。したがって燃料電池
から電力を取出す場合、通常燃料改質器と燃料電池とを
組合わせて燃料電池発電装置を構成し、燃料改質器で生
成された改質ガスを燃料電池に供給し、同時に供給され
る空気とにより燃料電池にて発電を行わせている。The hydrogen that causes the above electrogenic reaction is hydrogen in the reformed gas obtained by reforming the reformed raw material into a hydrogen-rich gas in a fuel reformer, and the oxygen contained in the air is used. ,
These reformed gases and air are supplied to the cell stack as reaction gases to generate electricity. Therefore, when extracting electricity from a fuel cell, a fuel cell power generation device is usually constructed by combining a fuel reformer and a fuel cell, and the reformed gas generated by the fuel reformer is supplied to the fuel cell, and the reformed gas is supplied at the same time. The generated air is used to generate electricity in a fuel cell.
ところで燃料電池は一般に触媒反応の効率化。By the way, fuel cells generally improve the efficiency of catalytic reactions.
構成部材の耐熱性等から適当な定格運転温度が定められ
、その温度は常温より高く、例えばリン酸型燃料電池で
はおよそ190℃である。したがって起動から定格運転
温度までに燃料電池を昇温するための昇温時間を要し、
これを起動時間と称している。起動時間はプラントとし
ての燃料電池の使い勝手の面から短い方ガ好ましく、従
来その時間を短縮するために、起動直後、セルスタック
内に配設された昇温ヒータによりセルスタックを加熱す
る等の方法が採用されている。例えば第4図に示すよう
にセルスタック6内の単電池間に冷却流路9を有する冷
却板10を介挿し、この冷却流路9と、伝熱管11を備
えた起動用バーナ12と、冷却流路9に液体状の熱媒体
(以下循環液という)を送液するポンプ13とを接続し
た循環系14を備えた昇温装置を設け、この昇温装置に
より循環液を循環系14に循環ポンプ13により循環さ
せて起動用バーナ12のバーナでの燃焼により伝熱管1
1を介して加熱し、この高温の循環液により冷却板10
を介してセルスタック6を昇温しである温度(リン酸型
燃料電池では130℃)に達した後、燃料改質器からの
改質ガスと空気とを燃料電池に供給して放電させ、これ
に伴う内部発熱によって燃料電池の昇温を促進し、起動
時間を短縮している。An appropriate rated operating temperature is determined based on the heat resistance of the constituent members, and this temperature is higher than normal temperature, for example, approximately 190° C. for a phosphoric acid fuel cell. Therefore, it takes time to heat up the fuel cell from startup to rated operating temperature.
This is called startup time. From the viewpoint of the usability of the fuel cell as a plant, it is preferable for the startup time to be short. Conventionally, in order to shorten this time, methods such as heating the cell stack immediately after startup using a heating heater installed in the cell stack have been used. has been adopted. For example, as shown in FIG. 4, a cooling plate 10 having a cooling passage 9 is inserted between the cells in the cell stack 6, and this cooling passage 9, a starting burner 12 having a heat transfer tube 11, and a cooling plate 10 are inserted between the cells in the cell stack 6. A temperature raising device including a circulation system 14 connected to a pump 13 for feeding a liquid heat medium (hereinafter referred to as circulating fluid) is provided in the flow path 9, and the circulating fluid is circulated to the circulation system 14 by this temperature raising device. The heat exchanger tube 1 is circulated by the pump 13 and burned by the starting burner 12.
1, and this high temperature circulating fluid cools the cooling plate 10.
After the cell stack 6 is heated to a certain temperature (130°C in the case of a phosphoric acid fuel cell), the reformed gas and air from the fuel reformer are supplied to the fuel cell to discharge it. The resulting internal heat generation accelerates the temperature rise of the fuel cell, shortening startup time.
上記のような従来の方法では起動時間は長く、昇温ヒー
タや起動用バーナの能力アップには限界があった0例え
ば昇温ヒータによる方法では、ヒータは積層されたセル
スタックの一定間隔毎に挿入されるため、単にヒータ容
量を増すというだけではセルスタック積層方向の温度分
布の不均一を生じ、また挿入するヒータの数を増すのは
セルスタックの寸法1重量の増大となり好ましくなかっ
た。一方、起動用バーナによる循環液の加熱による方法
ではセルスタック内の循環液流路の寸法的制約のために
加熱された循環液流量を増すのに限界があると同時に循
環ポンプの容量が増大するという欠点がある。また起動
用バーナの燃焼量を増すのは伝熱管内での循環液の部分
沸騰という危険性があり、ヒータと同様に単なる能力ア
ップは積層方向の温度分布の不均一を増大する等という
欠点がある。また、セルスタックに反応ガスを供給して
放電させ、内部発熱により昇温させてもセルスタックが
所定温度(リン酸型燃料電池では約130℃)に達する
まで放電を行わせないため、起動時間短縮という目的に
対しても十分な効果が得られていない。Conventional methods such as those described above require a long start-up time, and there is a limit to the ability of the temperature-raising heater and starting burner to be increased. Therefore, simply increasing the heater capacity would result in uneven temperature distribution in the cell stack stacking direction, and increasing the number of inserted heaters would increase the size and weight of the cell stack, which was undesirable. On the other hand, in the method of heating the circulating fluid with a startup burner, there is a limit to increasing the flow rate of the heated circulating fluid due to dimensional constraints of the circulating fluid flow path in the cell stack, and at the same time, the capacity of the circulating pump increases. There is a drawback. In addition, increasing the combustion rate of the startup burner has the risk of partial boiling of the circulating fluid in the heat transfer tubes, and as with heaters, simply increasing the capacity has the disadvantage of increasing unevenness in temperature distribution in the stacking direction. be. In addition, even if a reactive gas is supplied to the cell stack and the temperature is raised due to internal heat generation, the cell stack does not discharge until it reaches a predetermined temperature (approximately 130°C for phosphoric acid fuel cells), so the startup time is reduced. A sufficient effect has not been obtained for the purpose of shortening the length.
本発明の目的は、燃料改質器と燃料電池とが組合わされ
る燃料電池発電装置の燃料電極において、燃料改質器か
らの改質ガスを使用することにより、起動時の燃料電池
の昇温時間を短縮できる燃料電池の運転方法を提供する
ことにある。An object of the present invention is to increase the temperature of the fuel cell at startup by using reformed gas from the fuel reformer in the fuel electrode of a fuel cell power generation device in which a fuel reformer and a fuel cell are combined. An object of the present invention is to provide a method of operating a fuel cell that can reduce time.
上記課題を解決するために、本発明によれば改質原料を
水素に冨むガスに改質して改質ガスを生成する燃料改質
器と、この改質器からの改質ガスと酸化剤ガスとにより
発電するセルスタックとを備える燃料電池の運転方法に
おいて、昇温装置により燃料電池の温度が改質ガスの露
点以上になった後改質ガスを燃料電池に供給して燃料電
池を起動するものとする。In order to solve the above problems, the present invention provides a fuel reformer that generates reformed gas by reforming a reformed raw material into hydrogen-rich gas, and a fuel reformer that generates reformed gas from the reformer and oxidizes the reformed gas from the reformer. In a method of operating a fuel cell equipped with a cell stack that generates electricity using an agent gas, after the temperature of the fuel cell reaches or exceeds the dew point of the reformed gas using a heating device, the reformed gas is supplied to the fuel cell to activate the fuel cell. shall be started.
燃料改質器にて生成される改質ガスを、昇温装置による
昇温により燃料電池の温度がどの改質ガスの露点以上に
なった後、燃料電池に供給することにより、高温の改質
ガスが露点という比較的低温状態から燃料電池を加熱す
るので、燃料電池内で結露が生ぜずに速やかに燃料電池
を昇温できる。After the temperature of the reformed gas generated in the fuel reformer is raised by the temperature raising device and the temperature of the fuel cell exceeds the dew point of the reformed gas, the reformed gas is supplied to the fuel cell to achieve high-temperature reforming. Since the fuel cell is heated from a relatively low temperature state called the dew point of the gas, the temperature of the fuel cell can be raised quickly without dew condensation occurring within the fuel cell.
燃料電池発電装置は燃料改質器と燃料電池とが組合わさ
れて構成され、第1図に示す系統からなっている。図に
おいて1は燃料電池であり、模式的に示されているが、
マトリックス5と、この両側に配される燃料電極2と酸
化剤電極3とこれらの両側に配される燃料ガスが還流す
る燃料室16と酸化剤ガスが通流する酸化剤室17と、
冷却媒体や熱媒体が通流する冷却板10(第4図参照)
を備える冷却室18とから構成されている。A fuel cell power generation device is constructed by combining a fuel reformer and a fuel cell, and has a system shown in FIG. In the figure, 1 is a fuel cell, which is shown schematically.
A matrix 5, a fuel electrode 2 and an oxidizer electrode 3 disposed on both sides of the matrix 5, a fuel chamber 16 disposed on both sides of the matrix 5 through which fuel gas circulates, and an oxidizer chamber 17 through which oxidizer gas flows;
Cooling plate 10 through which a cooling medium and a heat medium flow (see Fig. 4)
It is composed of a cooling chamber 18 equipped with.
20は燃料改質器であり、バーナ21と、改質原料の加
熱管22と、これに接続され、改質触媒が充填された改
質管23とを備えている。24は改質管23から送出さ
れる改質ガスを燃料室16に供給する改質ガス供給系、
25は燃料室16から残存水素を含むオフガスをバーナ
21に導くオフガス排出系、26は酸化剤室17に空気
を供給する空気供給系である。なお冷却室1日には第4
図に示す起動用バーナ12とポンプ13とを有する循環
系14が接続されている。27は改質原料である燃料の
燃料タンク27aと燃料ポンプ27bと・電磁弁27c
とを備えた改質原料供給装置であり、この供給装置!!
27と燃料改質器20の加熱!22とを接続して改質原
料供給系28が設けられている。29は燃焼用の補助燃
料の補助燃料タンク29aと補助燃料ポンプ29bと電
磁弁29cとを備える補助燃料供給装置であり、この供
給装置29とバーナ21とを接続して補助燃料供給系3
0が設けられている。31は燃焼空気をバーナ19に供
給する燃焼空気供給系である。なお32は負荷等に接続
される電気回路である。A fuel reformer 20 includes a burner 21, a heating tube 22 for a reforming raw material, and a reforming tube 23 connected thereto and filled with a reforming catalyst. 24 is a reformed gas supply system that supplies the reformed gas sent out from the reforming pipe 23 to the fuel chamber 16;
25 is an off-gas exhaust system that guides off-gas containing residual hydrogen from the fuel chamber 16 to the burner 21, and 26 is an air supply system that supplies air to the oxidizer chamber 17. In addition, in the cooling room on the 1st, the 4th
A circulation system 14 having a starting burner 12 and a pump 13 shown in the figure is connected. 27 is a fuel tank 27a for fuel that is a reforming raw material, a fuel pump 27b, and a solenoid valve 27c.
It is a reforming raw material supply device equipped with this, and this supply device! !
27 and heating of the fuel reformer 20! A reforming material supply system 28 is provided in connection with the reforming material supply system 22. Reference numeral 29 denotes an auxiliary fuel supply device including an auxiliary fuel tank 29a for auxiliary fuel for combustion, an auxiliary fuel pump 29b, and a solenoid valve 29c.
0 is set. A combustion air supply system 31 supplies combustion air to the burner 19. Note that 32 is an electric circuit connected to a load and the like.
このような構成による燃料電池発電装置において、改質
原料供給装置27から改質原料の燃料を改質原料供給系
28を経て燃料改質器20に供給して加熱管22.改質
管23に通流する。一方、バーナ21にて補助燃料供給
装置29から補助燃料供給系30を経て供給される補助
燃料を燃焼空気供給系31を経て供給される空気により
燃焼する。この燃焼により生じる火炎や燃焼ガスにより
加熱管22.改質管23を加熱して加熱管22.改質管
23に通流する改質原料を水素に冨むガスに改質して改
質ガスを生成する。この場合、燃料改質器内部の温度は
バーナ21での燃焼により500℃以上に昇温されてお
り、改質ガスも250℃以上の温度を有している。In the fuel cell power generation device having such a configuration, the fuel of the reforming material is supplied from the reforming material supply device 27 to the fuel reformer 20 via the reforming material supply system 28, and the heating tube 22. It flows into the reforming pipe 23. On the other hand, in the burner 21, the auxiliary fuel supplied from the auxiliary fuel supply device 29 through the auxiliary fuel supply system 30 is combusted by the air supplied through the combustion air supply system 31. The flame and combustion gas generated by this combustion cause the heating tube 22. The reforming tube 23 is heated and the heating tube 22. The reformed raw material flowing through the reforming pipe 23 is reformed into a hydrogen-rich gas to generate reformed gas. In this case, the temperature inside the fuel reformer is raised to 500°C or higher due to combustion in the burner 21, and the reformed gas also has a temperature of 250°C or higher.
本発明による燃料電池の起動方法は、改質ガスの熱エネ
ルギーを燃料電池の低温状態から燃料電池に供給して燃
料電池を昇温し、昇温時間を短くするものである。すな
わち起動用バーナ12により昇温された循環液を循環系
14に循環させて冷却室17を介して燃料電池を昇温す
る。そして燃料改質器20で生成された高温の改質ガス
を、前記起動用バーナ12により昇温されて燃料電池1
の温度が露点以上になった後改質ガス供給系24を経て
燃料電池1に供給して燃料電池を昇温する。そして燃料
電池の温度が所定温度(リン酸型燃料電池では約130
℃)になったら、酸化剤室17に供給される空気とによ
り放電させ、これに伴う内部発熱によりさらに昇温させ
、燃料電池の運転温度まで昇温する。なお、燃料電池か
ら排出されるオフガスはオフガス排出系25を経てバー
ナ21に送気され、燃焼用燃料として利用される。A method for starting a fuel cell according to the present invention is to supply thermal energy of reformed gas to the fuel cell from a low temperature state of the fuel cell to raise the temperature of the fuel cell, thereby shortening the heating time. That is, the circulating fluid whose temperature has been raised by the starting burner 12 is circulated through the circulation system 14 to raise the temperature of the fuel cell via the cooling chamber 17. The high-temperature reformed gas generated in the fuel reformer 20 is heated by the starting burner 12 and then heated to the fuel cell 1.
After the temperature of the reformed gas reaches the dew point or higher, the reformed gas is supplied to the fuel cell 1 via the reformed gas supply system 24 to raise the temperature of the fuel cell. Then, the temperature of the fuel cell is set to a predetermined temperature (approximately 130°C for phosphoric acid fuel cells).
℃), the fuel cell is discharged by the air supplied to the oxidizer chamber 17, and the temperature is further raised due to internal heat generation caused by this, and the temperature is raised to the operating temperature of the fuel cell. Note that the off-gas discharged from the fuel cell is sent to the burner 21 via the off-gas exhaust system 25 and is used as combustion fuel.
第2図は、起動用バーナと上記の改質ガスとによる燃料
電池の昇温時の燃料改質器と燃料電池のセルスタックと
の温度上昇の経過を示すグラフである0図において35
は燃料改質器の起動から運転温度になるまでの燃料改質
器の昇温経過を示し、36は本発明による燃料電池の起
動から運転温度になるまでのセル、スタックの昇温経過
を示し、−点鎖線の37は従来の起動方法によるセルス
タックの昇温経過を示している。なお、Tllは燃料改
質器の改質開始温度、Toは燃料改質器の運転温度、T
CIは燃料電池のセルスタックに改質ガスを供給する改
質ガス供給開始温度、Toはセルスタック(燃料電池)
の運転温度である。FIG. 2 is a graph showing the progress of the temperature rise of the fuel reformer and the cell stack of the fuel cell when the temperature of the fuel cell is increased by the startup burner and the above-mentioned reformed gas.
36 shows the temperature increase process of the fuel reformer from startup to the operating temperature, and 36 shows the temperature increase process of the cell and stack from startup to the operating temperature of the fuel cell according to the present invention. , - The dashed line 37 shows the temperature increase process of the cell stack by the conventional startup method. Note that Tll is the reforming start temperature of the fuel reformer, To is the operating temperature of the fuel reformer, and T
CI is the reformed gas supply start temperature for supplying reformed gas to the cell stack of the fuel cell, and To is the cell stack (fuel cell)
operating temperature.
燃料改質器はバーナでの燃焼により直接加熱昇温される
ので、35の昇温曲線で示すように燃料改質器は起動用
バーナによるセルスタックの昇温より早い時期に改質開
始温度T□に到達し、この時点から改質した改質ガスを
燃料電池を昇温のために燃料電池に供給できる。The fuel reformer is directly heated and heated by combustion in the burner, so as shown in the temperature rise curve 35, the fuel reformer reaches the reforming start temperature T earlier than the temperature rise of the cell stack by the startup burner. □ is reached, and from this point the reformed gas can be supplied to the fuel cell to raise its temperature.
一方、燃料電池は起動用バーナで昇温され、36で示す
昇温曲線のA点(改質器温度がT□になる時点)から前
記改質ガスが供給されて燃料電池は昇温する。なおA点
の温度は改質ガスの露点以上の温度である。そして燃料
電池の温度が改質ガスによる昇温か加わって上昇し、B
点のTCI温度になれば供給される改質ガスと空気とに
より放電を行わせ、燃料電池の温度は放電による内部発
熱が加わってさらに上昇し、t8時間で運転温度T’c
tに到達する。On the other hand, the temperature of the fuel cell is raised by the startup burner, and the reformed gas is supplied from point A of the temperature rise curve shown at 36 (the point at which the reformer temperature reaches T□), and the temperature of the fuel cell is raised. Note that the temperature at point A is higher than the dew point of the reformed gas. Then, the temperature of the fuel cell increases due to the increase in temperature caused by the reformed gas, and B
When the TCI temperature reaches the TCI point, discharge is caused by the supplied reformed gas and air, and the temperature of the fuel cell further rises due to the addition of internal heat generation due to the discharge, and at t8 hours, the operating temperature T'c is reached.
Reach t.
なお、従来の起動方法は一点鎖線の37の昇温曲線で示
されるように起動用バーナで燃料電池を昇温し、燃料電
池が0点のT’c+温度になった時点で改質ガスが燃料
電池に供給されて放電が行われ、この0点から放電によ
る内部発熱が加わって燃料電池の温度がさらに上昇して
t8時間で運転温度T0に到達する。In addition, in the conventional startup method, the temperature of the fuel cell is raised by the startup burner as shown by the temperature increase curve 37 indicated by the dashed line, and when the temperature of the fuel cell reaches the 0 point T'c+, the reformed gas starts flowing. The fuel is supplied to the fuel cell and discharged, and from this zero point, internal heat generation due to the discharge is added, and the temperature of the fuel cell further rises, reaching the operating temperature T0 at time t8.
したがって本発明による起動方法は従来の起動方法のも
のより (tx t+)時間だけ燃料電池の起動時
間が短くなる。Therefore, the start-up method according to the present invention shortens the start-up time of the fuel cell by (tx t+) time than the conventional start-up method.
以上の説明から明らかなように、本発明によれば燃料電
池の起動時、従来の燃料電池の昇温方法に加えて燃料改
質器からの改質ガスを、燃料電池の温度が改質ガスの露
点以上になった後燃料電池に供給して燃料電池を昇温す
るようにしたことにより、燃料電池は高温の改質ガスに
より低温状態から結露せずに速やかに燃料電池の運転温
度まで昇温できるので、起動時間が短くなるという効果
がある。As is clear from the above description, according to the present invention, when starting up a fuel cell, in addition to the conventional method of raising the temperature of a fuel cell, the reformed gas from the fuel reformer is heated so that the temperature of the fuel cell reaches the temperature of the reformed gas. By supplying fuel to the fuel cell to raise the temperature of the fuel cell after reaching the dew point of This has the effect of shortening the startup time since it can be heated.
第1図は本発明の実施例による燃料電池の起動方法を適
用する場合の燃料電池発電装置の系統図、第2図は本発
明の実施例による燃料電池の起動方法による燃料電池の
昇温経過と、従来の燃料電池の起動方法による燃料電池
の昇温経過を示す図、第3図は燃料電池のセルスタック
の断面図、第4図は従来の燃料電池を昇温する系統図で
ある。
1:燃料電池、■2:起動用バーナ、20:燃料数′:
$1
邑
第2閉Fig. 1 is a system diagram of a fuel cell power generation device when applying the fuel cell starting method according to the embodiment of the present invention, and Fig. 2 shows the progress of temperature rise of the fuel cell according to the fuel cell starting method according to the embodiment of the present invention. FIG. 3 is a sectional view of a cell stack of a fuel cell, and FIG. 4 is a system diagram for heating a conventional fuel cell. 1: Fuel cell, ■2: Starting burner, 20: Number of fuel':
$1 Eup 2nd Close
Claims (1)
成する燃料改質器と、この改質器からの改質ガスと酸化
剤ガスが供給されて発電するセルスタックとを備える燃
料電池の運転方法において、昇温装置により燃料電池の
温度が改質ガスの露点以上になった後改質ガスを燃料電
池に供給して燃料電池を起動することを特徴とする燃料
電池の運転方法。1) A fuel reformer that generates reformed gas by reforming the reformed raw material into hydrogen-rich gas, and a cell stack that generates electricity by being supplied with the reformed gas and oxidizer gas from this reformer. A method of operating a fuel cell comprising: supplying reformed gas to the fuel cell to start the fuel cell after the temperature of the fuel cell becomes equal to or higher than the dew point of the reformed gas by a temperature raising device. how to drive.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-109741 | 1989-04-28 | ||
JP10974189 | 1989-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0381971A true JPH0381971A (en) | 1991-04-08 |
Family
ID=14518071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2035318A Pending JPH0381971A (en) | 1989-04-28 | 1990-02-16 | Operating method for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0381971A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6520273B1 (en) | 1998-05-14 | 2003-02-18 | Toyota Jidosha Kabushiki Kaisha | Fuel cells system and electric car mounting it and starting control method for fuel cell system |
-
1990
- 1990-02-16 JP JP2035318A patent/JPH0381971A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6520273B1 (en) | 1998-05-14 | 2003-02-18 | Toyota Jidosha Kabushiki Kaisha | Fuel cells system and electric car mounting it and starting control method for fuel cell system |
KR100385193B1 (en) * | 1998-05-14 | 2003-05-27 | 도요다 지도샤 가부시끼가이샤 | Fuel cell system and electric car mounting it and starting control method for fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6044771B2 (en) | Solid oxide fuel cell | |
US8927162B2 (en) | Solid oxide fuel cell system performing different restart operations depending on operation temperature | |
JP4926529B2 (en) | Fuel cell | |
US9331351B2 (en) | Solid oxide fuel cell device | |
JP6108073B2 (en) | Solid oxide fuel cell | |
US20130183600A1 (en) | Fuel cell device | |
KR101009453B1 (en) | A thermally self-controllable solid oxide fuel cell system | |
US20120021307A1 (en) | Solid oxide fuel cell device | |
JP4934950B2 (en) | Fuel cell power generator and operation control method | |
JP4736309B2 (en) | Preheating method at the start of operation of solid oxide fuel cell | |
JP5000867B2 (en) | Fuel cell power generation system | |
JP2013218861A (en) | Solid oxide fuel cell | |
KR20220054835A (en) | Fuel cell system and operation method | |
EP2424020B1 (en) | Fuel cell device | |
KR102227617B1 (en) | Preheating system for polymer electrolyte membrane fuel cell stack and Preheating method for the same | |
JP2004281330A (en) | Solid oxide fuel cell system | |
JP2003132903A (en) | Combined system of industrial furnace and solid oxide fuel cell | |
JP5197581B2 (en) | Fuel cell system and operation method thereof | |
JPH0381971A (en) | Operating method for fuel cell | |
JP2003331892A (en) | Fuel cell system, and starting method of fuel cell system | |
JP6080090B2 (en) | Solid oxide fuel cell | |
JP2003331891A (en) | Fuel cell system, and starting method of fuel cell system | |
JP2004119298A (en) | Fuel cell power generation system | |
JPS6266578A (en) | Air cooling type fuel cell power generating system | |
JPH0750614B2 (en) | Fuel cell |