JPH0381234A - Production of 4-chloro-o-xylene - Google Patents

Production of 4-chloro-o-xylene

Info

Publication number
JPH0381234A
JPH0381234A JP1216733A JP21673389A JPH0381234A JP H0381234 A JPH0381234 A JP H0381234A JP 1216733 A JP1216733 A JP 1216733A JP 21673389 A JP21673389 A JP 21673389A JP H0381234 A JPH0381234 A JP H0381234A
Authority
JP
Japan
Prior art keywords
xylene
reaction
chloro
type zeolite
nitro group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1216733A
Other languages
Japanese (ja)
Inventor
Shotaro Matsuoka
松岡 昌太郎
Kuniyuki Tada
多田 国之
Hidekazu Minomiya
英一 蓑宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1216733A priority Critical patent/JPH0381234A/en
Publication of JPH0381234A publication Critical patent/JPH0381234A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject substance useful as a raw material for pharmaceuticals and agricultural chemicals, etc., in high selectivity by chlorinating o-xylene using L-type zeolite as a catalyst preferably in the presence of a benzene compound having nitro group. CONSTITUTION:The subject substance can be produced by chlorinating 1mol of o-xylene with 0.5-1mol of a chlorinating agent (preferably elemental chlorine) in the presence of 4-10g of L-type zeolite as a catalyst at 40-120 deg.C. The reaction is carried out usually batchwise in liquid phase by suspending powdery L-type zeolite in o-xylene. The selectivity can be further improved by adding 1.5-5g of a benzene compound having nitro group (e.g. mdinitrobenzene or 2,4- dinitrotoluene) to the reaction system based on 1g of o-xylene.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、医薬および農薬をはじめとする各種有機合成
化学物質の原料として利用され得る4−クロル−0−キ
シレンの製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing 4-chloro-0-xylene, which can be used as a raw material for various organic synthetic chemicals including pharmaceuticals and agricultural chemicals. .

〈従来の技術〉 4−クロル−0−キシレンは、0−キシレンをルイス酸
などの触媒共存下、塩素化剤と反応させることにより生
成するが、その際に必ずほぼ等量の3−クロル−O−キ
シレンが副生ずる。
<Prior art> 4-Chlor-0-xylene is produced by reacting 0-xylene with a chlorinating agent in the presence of a catalyst such as a Lewis acid. O-xylene is produced as a by-product.

よって、この方法では約半分の0−キシレンしか活用で
きず経済的な方法とはいえない、そこで、4−クロル−
0−キシレンの高選択的な合成法の開発が望まれている
。しかし、これは容易に解決できない問題であり、その
ため試みられている工夫・技術も数少ない、唯−挙げら
れる例として、ルイス酸とN置換フェノチアジンからな
る触媒を用いて0−キシレンの塩素化を行うことにより
4−クロル−0−キシレンを収率37%、3−クロル−
0−キシレンを収率17%(4−クロル−o−”rシー
ン/3−クロル−0−キシレン生成比=2.3>で得る
方法(フランス国特許第2545004号明細書)が報
告されている。
Therefore, this method can only utilize about half of 0-xylene and is not an economical method.
It is desired to develop a highly selective synthesis method for 0-xylene. However, this is a problem that cannot be easily solved, and there are only a few ideas and techniques that have been tried.One example is the chlorination of 0-xylene using a catalyst consisting of a Lewis acid and an N-substituted phenothiazine. By this, 4-chloro-0-xylene was obtained with a yield of 37% and 3-chloro-0-xylene.
A method for obtaining 0-xylene with a yield of 17% (4-chloro-o-"r scene/3-chloro-0-xylene production ratio = 2.3) has been reported (French Patent No. 2,545,004). There is.

〈発明が解決しようとする課題〉 しかし、この方法でも相当量の3−クロル−0−キシレ
ンが副生ずることやジクロル−〇−キシレンなどの高塩
素化物の副生が避けられないために、0−キシレンの転
化率を抑えなければならないなどの欠点があり、実用化
には不適当である。従って、現在では純粋な4−クロル
−0−キシレンの製造は0−キシレンの塩素化ではなく
、4−アミノ−0−キシレンからのジントマイヤー(S
andmeyer)反応によって行われる。しかしなが
ら、この方法は多くの労力を必要とするため安価で容易
な4−クロル−0−キシレンの製造方法とは決していえ
るものではない。
<Problem to be solved by the invention> However, even with this method, a considerable amount of 3-chloro-0-xylene is produced as a by-product, and highly chlorinated products such as dichloro-0-xylene are unavoidable. - It has drawbacks such as the need to suppress the conversion rate of xylene, making it unsuitable for practical use. Therefore, at present, the production of pure 4-chloro-0-xylene is not by chlorination of 0-xylene, but by Sintmeyer (S) from 4-amino-0-xylene.
andmeyer) reaction. However, since this method requires a lot of labor, it cannot be said to be an inexpensive and easy method for producing 4-chloro-0-xylene.

く課題を解決するための手段〉 そこで、本発明者はこれらの問題を解決すべく鋭意検討
を重ねた結果、0−キシレンの塩素化反応において触媒
としてL型ゼオライトを用いることにより、驚くべきこ
とに4−クロル−0−キシレンの選択率が著しく向上す
ることを見出し本発明を完成するに至った。
Means for Solving the Problems> Therefore, as a result of intensive studies to solve these problems, the present inventors have surprisingly achieved something by using L-type zeolite as a catalyst in the chlorination reaction of 0-xylene. The present invention was completed based on the discovery that the selectivity of 4-chloro-0-xylene was significantly improved.

すなわち、本発明はO−キシレンを触媒存在下塩素化し
て4−クロル−O−キシレンを製造するにあたり、触媒
としてL型ゼオライトを用いることを特徴とする4−ク
ロル−0−キシレンの[遣方法である。
That is, the present invention provides a method for producing 4-chloro-0-xylene characterized by using L-type zeolite as a catalyst in producing 4-chloro-O-xylene by chlorinating O-xylene in the presence of a catalyst. It is.

本発明において触媒として使用するL型ゼオライトは、
チャバサイト(chabazite)群に属する合成ゼ
オライトの一種で約7.1大の最大細孔口径を有しその
典型的な組成は以下のように表され公知の方法で容易に
合成できる。
The L-type zeolite used as a catalyst in the present invention is
It is a type of synthetic zeolite belonging to the chabazite group, and has a maximum pore diameter of about 7.1, and its typical composition is expressed as follows, and it can be easily synthesized by a known method.

aM2/n−Al2O3・bSi02 (a=1.0+0.3、b=4〜8、n:陽イオンMの
原子価) L型ゼオライトは、陽イオンとして一般にカリウムイオ
ンを含有しているがこれ以外のもの例えば、ナトリウム
、カルシウム、マグネシウム、プロトンなどが含まれて
いてもかまわない。
aM2/n-Al2O3・bSi02 (a=1.0+0.3, b=4-8, n: valence of cation M) L-type zeolite generally contains potassium ions as cations, but other than this For example, it may contain sodium, calcium, magnesium, protons, etc.

これらの陽イオンは公知のイオン交換法、例えばそれら
と含む水溶液中にL型ゼオライトを含−Cゝ 浸させることにより容易に交換できる。
These cations can be easily exchanged by known ion exchange methods, for example, by immersing L-type zeolite in an aqueous solution containing -C.

本発明においてL型ゼオライトの使用量は、通常O−キ
シレン1モルに対して0.5〜30g、好ましくは4〜
Logである。
In the present invention, the amount of L-type zeolite used is usually 0.5 to 30 g, preferably 4 to 30 g, per mole of O-xylene.
Log.

本発明の塩素化において、用いられる塩素化剤は単体の
塩素、スルフリルクロリド、t−ブチルハイポクロリド
など種々用いることができるが、通常は単体の塩素を用
いる。その際、塩素はそのまま加えてもまた窒素のよう
な不活性ガスに希釈して加えてもよい、塩素化剤は、原
料1モルに対して通常0.5〜1倍モル用いる。
In the chlorination of the present invention, various chlorinating agents can be used, such as simple chlorine, sulfuryl chloride, and t-butyl hypochloride, but usually simple chlorine is used. At that time, chlorine may be added as is or diluted with an inert gas such as nitrogen. The chlorinating agent is usually used in moles of 0.5 to 1 times per mole of the raw material.

また、本発明における反応温度は、通常20〜200℃
、好ましくは40〜120℃であり、さらに、反応圧力
については常圧、加圧、減圧いずれでもよいが通常は常
圧で反応を行う、また、反応は気相で行っても液相で行
ってもかまわないが、通常は液相で行う。
Furthermore, the reaction temperature in the present invention is usually 20 to 200°C.
The temperature is preferably 40 to 120°C, and the reaction pressure may be normal pressure, increased pressure, or reduced pressure, but the reaction is usually carried out at normal pressure.Also, the reaction may be carried out in the gas phase or in the liquid phase. However, it is usually carried out in a liquid phase.

本発明において反応装置は特に制限はなく、例えば、回
分式、半回分式あるいは連続式のいずれであってもかま
わないが通常は回分式で行う。
In the present invention, the reaction apparatus is not particularly limited, and may be, for example, a batch type, a semi-batch type, or a continuous type, but usually a batch type is used.

回分式で反応を行う場合、L型ゼオライトは0−キシレ
ンに懸濁させた形で使用する。その際にL型ゼオライト
の形状は粉末でも成型したものでもよいが通常は粉末の
まま使用する。
When carrying out the reaction batchwise, L-type zeolite is used in the form of suspension in 0-xylene. At this time, the L-type zeolite may be in the form of a powder or a molded product, but it is usually used as a powder.

本発明において、L型ゼオライトのみでも十分に高い4
−クロル−0−キシレン選択性が得られるが、その上に
ニトロ基含有ベンゼン化合物を反応系中に共存させて塩
素化反応を行えば選択性はより一層向上する。
In the present invention, L-type zeolite alone has a sufficiently high 4
-Chloro-0-xylene selectivity can be obtained, but if the chlorination reaction is carried out with a nitro group-containing benzene compound coexisting in the reaction system, the selectivity can be further improved.

本発明で用いられるニトロ基含有ベンゼン化合物は、ベ
ンゼン環にニトロ基<−NO2)が1個ないしは2個置
換したものであれば特に限定されないが、さらに、これ
にメチル基などのアルキル基、塩素原子などのハロゲン
原子などが適当な位置に置換されているものであっても
よい、ニトロ基含有ベンゼン化合物の具体例としては、
例えばニトロベンゼン、m−クロルニトロベンゼン、2
.3−ジクロルニトロベンゼン、2.4−ジクロルニト
ロベンゼン、2.5−ジクロルニトロベンゼン、m−ジ
ニトロベンゼン、2゜4−ジニトロトルエン、2,4−
ジニトロクロルベンゼンなどが挙げられ、その中で特に
好ましくはm−ジニトロベンゼン、2.4−ジニトロト
ルエンが挙げられる。
The nitro group-containing benzene compound used in the present invention is not particularly limited as long as the benzene ring is substituted with one or two nitro groups (<-NO2), but the benzene compound may further include an alkyl group such as a methyl group, a chlorine group, etc. Specific examples of nitro group-containing benzene compounds that may be substituted with halogen atoms such as atoms at appropriate positions include:
For example, nitrobenzene, m-chloronitrobenzene, 2
.. 3-dichloronitrobenzene, 2.4-dichloronitrobenzene, 2.5-dichloronitrobenzene, m-dinitrobenzene, 2゜4-dinitrotoluene, 2,4-
Examples include dinitrochlorobenzene, among which m-dinitrobenzene and 2,4-dinitrotoluene are particularly preferred.

本発明において、ニトロ基含有ベンゼン化合物を反応系
中に共存させる方法は任意であり、特に制限されない、
すなわち、反応系中にニトロ基含有ベンゼン化合物を原
料と触媒の懸濁液に添加してもよいしあるいは予め触媒
上に吸着ないしは担持させた後に加えてもよい。
In the present invention, the method of coexisting the nitro group-containing benzene compound in the reaction system is arbitrary and is not particularly limited.
That is, the nitro group-containing benzene compound may be added to a suspension of raw materials and catalyst in the reaction system, or may be added after being adsorbed or supported on the catalyst in advance.

また、ニトロ基含有ベンゼン化合物の共存量はL型ゼオ
ライト1gに対して0.5〜30g。
Further, the coexisting amount of the nitro group-containing benzene compound is 0.5 to 30 g per 1 g of L-type zeolite.

好ましくは1.5〜5gである*0.5g末溝の場合、
4−クロル−0−キシレン選択率向上効果は不十分であ
り、また30gより多くてもそれ以上の効果の向上はな
くかえって経済的に不利となる。
Preferably 1.5 to 5 g *In the case of a 0.5 g end groove,
The effect of improving the 4-chloro-0-xylene selectivity is insufficient, and even if the amount exceeds 30 g, the effect will not be further improved and it will be economically disadvantageous.

本発明の方法において、ニトロ基含有ベンゼン化合物を
共存させた時の反応装置、反応方法および反応条件は先
に述べたL型ゼオライトのみの場合と同様で特に制限は
ない。
In the method of the present invention, the reaction apparatus, reaction method, and reaction conditions when a nitro group-containing benzene compound is present are the same as in the case of using only L-type zeolite, and are not particularly limited.

反応終了後、反応混合物中から目的物の4−クロル−0
−キシレンを単離する方法は任意であり、蒸留、晶析な
と常法によって単離取得することができる。
After the reaction is complete, the target product 4-chloro-0 is extracted from the reaction mixture.
- Xylene can be isolated by any method, and can be isolated and obtained by conventional methods such as distillation and crystallization.

〈実施例〉 次に、実施例を用いて本発明をさらに詳細に説明する。<Example> Next, the present invention will be explained in more detail using Examples.

実方龜例1 還流冷却管、温度計、攪拌機、ガス吹込管を備えた20
0m1反応フラスコに0−キシレン130g(1,2モ
ル)、粉末状に−L型ゼオライト6.1gを入れ窒素気
流下50℃で攪拌しながら塩素を5.44!/hrで5
時間吹込み反応を行った0反応終了後、得られた反応液
をガスクロマトグラフィーで分析した結果、0−キシレ
ン反応率89.5%、クロル−0−キシレン生成率81
.8%、4−クロル−0−キシレン/3−クロル−0−
キシレン生成比(以下、4−クロル体/3−クロル体生
成比と略す)2.35であった。
Practical camera example 1 20 equipped with a reflux condenser, thermometer, stirrer, and gas blowing pipe
130 g (1.2 mol) of 0-xylene and 6.1 g of -L-type zeolite in powder form were placed in a 0 ml reaction flask, and while stirring at 50°C under a nitrogen stream, 5.44 g of chlorine was added. /hr 5
After the time-injection reaction was completed, the resulting reaction solution was analyzed by gas chromatography, and the results showed that the 0-xylene reaction rate was 89.5%, and the chloro-0-xylene production rate was 81%.
.. 8%, 4-chloro-0-xylene/3-chloro-0-
The xylene production ratio (hereinafter abbreviated as 4-chlor/3-chloride production ratio) was 2.35.

実施例2 反応温度を第1表のように変えた以外は実施例1と同様
に反応を行った。得られた結果は第1表のとおりである
Example 2 The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was changed as shown in Table 1. The results obtained are shown in Table 1.

第  1  表 比較例1 ゼオライトの種類を第2表のように変えた以外は実施例
1と同様に反応を行った。得られた結果は第2表のとお
りである。
Table 1 Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that the type of zeolite was changed as shown in Table 2. The results obtained are shown in Table 2.

第 表 実施例3 0−キシレンを仕込む際に、ニトロ基含有ベンゼン化合
物としてm−ジニトロベンゼンを10g−緒に加え、反
応温度100℃とした以外は実施例1と同様に反応を行
った。その結果、0−キシレンの反応率92.0%、ク
ロル−0キシレンの生成率85.1%、4−クロル体/
3−クロル体生成比3.87であった。
Table 1 Example 3 The reaction was carried out in the same manner as in Example 1 except that when charging 0-xylene, 10 g of m-dinitrobenzene was added as a nitro group-containing benzene compound and the reaction temperature was 100°C. As a result, the reaction rate of 0-xylene was 92.0%, the production rate of chloro-0-xylene was 85.1%, and the 4-chlor body/
The 3-chlor form production ratio was 3.87.

実施例4 添加量および反応温度を第3表のように変えた以外は実
施例3と同様に反応を行った。得られた結果は第3表の
とおりである。
Example 4 The reaction was carried out in the same manner as in Example 3 except that the amount added and the reaction temperature were changed as shown in Table 3. The results obtained are shown in Table 3.

第 表 実施例5 ニトロ基含有ベンゼン化合物を2.4−ジニトロトルエ
ンに変えた以外は実施例3と同様に反応を行った。その
結果、0−キシレン反応率89.2%、クロル−0−キ
シレン生成率82.1%、4−クロル体/3−クロル体
生成比3.80であった。
Table 1 Example 5 The reaction was carried out in the same manner as in Example 3 except that the nitro group-containing benzene compound was changed to 2,4-dinitrotoluene. As a result, the 0-xylene reaction rate was 89.2%, the chloro-0-xylene production rate was 82.1%, and the 4-chloride/3-chloride production ratio was 3.80.

実施例6 二トロ基含有ベンゼン化合物の種類を第4表のように変
えて、反応温度を50℃とした以外は実施例3と同様に
反応を行った。得られた結果は第4表のとおりである。
Example 6 The reaction was carried out in the same manner as in Example 3 except that the type of ditro group-containing benzene compound was changed as shown in Table 4 and the reaction temperature was 50°C. The results obtained are shown in Table 4.

第  4  表 〈発明の効果〉 本発明方法によれば、3−クロル−0−キシレンなどの
副生成物の生成を抑えて4−クロル−〇−キシレンを高
選択率で得ることができる。
Table 4 <Effects of the Invention> According to the method of the present invention, 4-chloro-0-xylene can be obtained with high selectivity while suppressing the production of by-products such as 3-chloro-0-xylene.

特にニトロ基含有ベンゼン化合物を共存させる時にはそ
の選択性は著しく高いものとなる。
In particular, when a nitro group-containing benzene compound is present, the selectivity becomes extremely high.

また、本発明の方法によれば反応およびその後に行う操
作が簡単であり、工業的に好適に実施可能である。
Further, according to the method of the present invention, the reaction and subsequent operations are simple and can be carried out industrially.

特許出願大東し株式会社Patent application Daitoshi Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)o−キシレンを触媒存在下塩素化することにより
、4−クロル−o−キシレンを製造する方法において、
触媒としてL型ゼオライトを用いることを特徴とする4
−クロル−o−キシレンの製造方法。
(1) A method for producing 4-chloro-o-xylene by chlorinating o-xylene in the presence of a catalyst,
4 characterized by using L-type zeolite as a catalyst
- Method for producing chloro-o-xylene.
(2)塩素化の際、ニトロ基含有ベンゼン化合物を共存
させることを特徴とする請求項1記載の4−クロル−o
−キシレンの製造方法。
(2) 4-chloro-o according to claim 1, characterized in that a nitro group-containing benzene compound is allowed to coexist during chlorination.
- A method for producing xylene.
JP1216733A 1989-08-22 1989-08-22 Production of 4-chloro-o-xylene Pending JPH0381234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216733A JPH0381234A (en) 1989-08-22 1989-08-22 Production of 4-chloro-o-xylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216733A JPH0381234A (en) 1989-08-22 1989-08-22 Production of 4-chloro-o-xylene

Publications (1)

Publication Number Publication Date
JPH0381234A true JPH0381234A (en) 1991-04-05

Family

ID=16693079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216733A Pending JPH0381234A (en) 1989-08-22 1989-08-22 Production of 4-chloro-o-xylene

Country Status (1)

Country Link
JP (1) JPH0381234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172339A (en) * 2004-12-20 2006-06-29 Comsec:Kk Intrusion detection sensor and intrusion detection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172339A (en) * 2004-12-20 2006-06-29 Comsec:Kk Intrusion detection sensor and intrusion detection system

Similar Documents

Publication Publication Date Title
EP0118851B1 (en) Process for producing a chlorohalobenzene
JPH0381234A (en) Production of 4-chloro-o-xylene
EP0097357B1 (en) Process for preparing trifluoromethylbenzene derivatives
JP2598581B2 (en) Method for producing aromatic halide
JP3882855B2 (en) Method for producing alkylbenzoyl chloride
US6307113B1 (en) Selective bromination of aromatic compounds
JP2737289B2 (en) Process for producing P-halogenated monosubstituted benzene derivatives
JP2742275B2 (en) Method for producing p-chlorohalogenobenzene
JP4053685B2 (en) Method for producing tertiary carbon chlorinated hydrocarbon
JPH0723330B2 (en) Method for producing dichlorobenzene
JPS6334132B2 (en)
JPS61218533A (en) Production of p-benzylbiphenyl
JPS60237051A (en) Preparation of 2-fluoronitrobenzene derivative
JP2620637B2 (en) Method for producing 2,4-dichloro-3-methylphenol
SU566818A1 (en) Method of producing monochloro derivatives of diphenyl ether
JP2003104950A (en) Method for producing perfluoroalkylsulfonyl halide
JPH0344383A (en) Production of 5-trifluoromethyl-2-halomethylbenzothiazoles
JP2018070601A (en) Method for producing halogen compound
JPH0327334A (en) Production of 2,5-dihalogenated benzotrichlorides
JPH0559902B2 (en)
WO1999050206A1 (en) Selective bromination of aromatic compounds
JPH04327554A (en) Production of iodopropargyl aryloxymethyl ether
JP2004059447A (en) Method for chlorinating disubstituted benzene derivative
JPH0776567A (en) Production of alkyl(3-chlorophenyl)sulfone
JP2000038357A (en) Production of para-substituted halogenated benzene derivative