JPH0381139A - Aluminum fin material for heat exchanger - Google Patents

Aluminum fin material for heat exchanger

Info

Publication number
JPH0381139A
JPH0381139A JP1218384A JP21838489A JPH0381139A JP H0381139 A JPH0381139 A JP H0381139A JP 1218384 A JP1218384 A JP 1218384A JP 21838489 A JP21838489 A JP 21838489A JP H0381139 A JPH0381139 A JP H0381139A
Authority
JP
Japan
Prior art keywords
fin material
aluminum fin
film
heat exchanger
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1218384A
Other languages
Japanese (ja)
Inventor
Eizo Isoyama
礒山 永三
Katsumi Tanaka
克美 田中
Masaaki Ito
昌明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP1218384A priority Critical patent/JPH0381139A/en
Priority to KR1019900004609A priority patent/KR940002833B1/en
Priority to CN90107057A priority patent/CN1041067C/en
Priority to MYPI90001404A priority patent/MY106447A/en
Publication of JPH0381139A publication Critical patent/JPH0381139A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To increase the corrosion resistance, hydrophilic nature of the material concerned and flexibility of its film and consequently improve its formability and mold wear resistance by a method wherein aluminum fin material is treated by hydrophilic film former after being treated by corrosion-resistant film former. CONSTITUTION:The aluminum fin material for heat exchange concerned is equipped with hydrophilic film through corrosion-resistant film. The corrosion- resistant film is produced by treating fin material by corrosion-resistant film former, which contains synthetic resin having film-forming properties and metal- containing compound forming chelate with the synthetic resin. The hydrophilic film is produced by trating fin material having the corrosion-resistant film by hydrophilic film former, which contains alkali silicate and low-molecular organic compound having carbonyl group.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱交換器用アルミニウム・フィン材に関し、
さらに詳しくは、ルーム・エア・コンディショナー カ
ー・エア・コンディショナーなどに使用せられるアルミ
ニウム・フィン材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an aluminum fin material for heat exchangers,
More specifically, it relates to aluminum fin materials used in room air conditioners, car air conditioners, etc.

この明細書において、アルミニウムとは、アルミニウム
およびアルミニウム合金を含むものとする。
In this specification, aluminum includes aluminum and aluminum alloys.

従来の技術 上記熱交換器が夏季冷房用に使用されたさい、アルミニ
ウム・フィンの表面温度が大気の露点以下になるので、
フィン表面に水滴が付着する。
Prior Art When the above heat exchanger is used for summer cooling, the surface temperature of the aluminum fins is below the dew point of the atmosphere.
Water droplets adhere to the fin surface.

フィン表面に水滴が付着すると、っぎのような3つの問
題が発生する。第1に、アルミニウム・フィンが腐食さ
れ易い状態になる。第2に、通風抵抗が増大し、風量が
減少するために、熱交換効率が低下する。第3に、フィ
ン表面の水滴がエアの吹出しにともなって室内ないし車
内に飛散る。
When water droplets adhere to the fin surface, three problems occur. First, the aluminum fins become susceptible to corrosion. Second, the ventilation resistance increases and the air volume decreases, resulting in a decrease in heat exchange efficiency. Thirdly, water droplets on the fin surface scatter into the interior of the vehicle or the vehicle as air is blown out.

フィン表面のぬれ性がよいと、フィン表面に付着した水
が球状の水滴にならず膜状となるので、上記の問題をな
くするために一般にフィン材の表面に親水性皮膜が形成
せられている。さらに防食のために、フィン材と親水性
皮膜との間に、耐食性皮膜が介在せしめられている。
If the fin surface has good wettability, the water adhering to the fin surface will form a film rather than spherical water droplets.To eliminate the above problem, a hydrophilic film is generally formed on the surface of the fin material. There is. Furthermore, for corrosion protection, a corrosion-resistant film is interposed between the fin material and the hydrophilic film.

従来、アルミニウム・フィン材に耐食性皮膜を形成する
には、無機系の処理剤を用いて、フィン材にクロメート
皮膜やベーマイト皮膜を形成したり、有機系の処理剤を
用いて、フィン材にウレタン樹脂皮膜やアクリル酸樹脂
皮膜を形成していた。
Conventionally, in order to form a corrosion-resistant film on aluminum fin materials, an inorganic treatment agent was used to form a chromate film or a boehmite film on the fin material, or an organic treatment agent was used to form a urethane film on the fin material. A resin film or acrylic acid resin film was formed.

また従来、アルミニウム・フィン材に親水性皮膜を形成
するには、フィン材の表面に水ガラス(アルカリケイ酸
塩)の皮膜を形成していた。
Conventionally, in order to form a hydrophilic film on an aluminum fin material, a water glass (alkali silicate) film was formed on the surface of the fin material.

発明が解決しようとする課題 耐食性皮膜を形成するために、無機系処理剤を使用した
場合、アルミニウム・フィン材の耐食性はよくなるが、
成形性が悪くなるという問題が生じる。有機系処理剤を
使用した場合、逆にフィン材の成形性はよくなるが、耐
食性が充分でなく、これを補なうために耐食性皮膜の膜
厚をとくに厚くする必要がある。耐食性皮膜が厚いと、
熱交換器の組立て途中におけるフィンのろう付けないし
溶接時に、耐食性皮膜が焼は焦げて黄変ないし褐変する
ため、熱交換器の外観を損ねる。
Problems to be Solved by the Invention When an inorganic treatment agent is used to form a corrosion-resistant film, the corrosion resistance of the aluminum fin material improves, but
A problem arises in that moldability deteriorates. When an organic treatment agent is used, on the contrary, the moldability of the fin material improves, but the corrosion resistance is not sufficient, and to compensate for this, it is necessary to make the corrosion-resistant film particularly thick. If the corrosion-resistant film is thick,
When the fins are brazed or welded during the assembly of the heat exchanger, the corrosion-resistant coating is burned and turns yellow or brown, which impairs the appearance of the heat exchanger.

親水性皮膜として水ガラスの皮膜を形成した場合、フィ
ンの初期の親水性は向上するが、この親水性は早期に劣
化して、持続性に劣るという欠点がある。また水ガラス
皮膜は硬質であるため、バーリング加工などのフィン成
形時にフィンの屈曲部にクラックが生じたりするばかり
でなく、金型も摩耗し易いという欠点がある。
When a water glass film is formed as a hydrophilic film, the initial hydrophilicity of the fins is improved, but this hydrophilicity quickly deteriorates and has a disadvantage of poor sustainability. In addition, since the water glass film is hard, it not only causes cracks in the bent portions of the fins during fin forming such as burring, but also has the drawback that the mold is easily worn out.

本発明の目的は、上記の問題点をすべて解決した熱交換
器用アルミニウム・フィン材を提供するにある。
An object of the present invention is to provide an aluminum fin material for a heat exchanger that solves all of the above problems.

課題を解決するための手段 本発明による熱交換器用フィン材は、アルミニウム・フ
ィン材が耐食性皮膜を介して親水性皮膜を備えており、
耐食性皮膜は、皮膜形成能を有する合成樹脂と、合成樹
脂とキレートを形成する金属含有化合物とを含む耐食性
皮膜形成剤を用いてフィン材を処理することにより形成
せられており、親水性皮膜は、アルカリケイ酸塩と、カ
ルボニル基を有する低分子有機化合物とを含む親水性皮
膜形成剤によって耐食性皮膜を有するフィン材を処理す
ることにより形成せられているものである。
Means for Solving the Problems The fin material for a heat exchanger according to the present invention has an aluminum fin material provided with a hydrophilic film via a corrosion-resistant film,
The corrosion-resistant film is formed by treating the fin material with a corrosion-resistant film-forming agent containing a synthetic resin with film-forming ability and a metal-containing compound that forms a chelate with the synthetic resin. It is formed by treating a fin material having a corrosion-resistant film with a hydrophilic film-forming agent containing an alkali silicate and a low-molecular organic compound having a carbonyl group.

耐食性皮膜形成剤における皮膜形成能を有する合成樹脂
は、フィン材の良好な成形性を確保するために必要な成
分であって、その代表例としては、ポリアクリル酸があ
げられる。その他ポリビニルアルコールやセルロースヒ
ドロキシエーテルなども使用可能である。
The synthetic resin having film-forming ability in the corrosion-resistant film-forming agent is a necessary component to ensure good moldability of the fin material, and a typical example thereof is polyacrylic acid. Other materials such as polyvinyl alcohol and cellulose hydroxy ether can also be used.

耐食性皮膜形成剤における合成樹脂とキレートを形成す
る金属含有化合物は、処理フィン材の良好な耐食性を確
保するために必要な成分であって、その代表例としては
、3価または6価クロム酸があげられる。その他、酸化
ジルコニウム、酸化チタンまたは酸化クロムのような金
属酸化物;クロム酸カリウム、クロム酸ナトリウム、重
クロム酸カリウムまたたは重クロム酸ナトリウムのよう
な金属酸塩;チタン酸エステルのような金属酸エステル
;硝酸クロム、硝酸ジルコニウム、フッ化ジルコニウム
、フッ化チタンまたは硫酸チタンのような酸の金属塩な
ども使用可能である。
The metal-containing compound that forms a chelate with the synthetic resin in the corrosion-resistant film forming agent is a necessary component to ensure good corrosion resistance of the treated fin material, and typical examples include trivalent or hexavalent chromic acid. can give. Other metal oxides such as zirconium oxide, titanium oxide or chromium oxide; metal salts such as potassium chromate, sodium chromate, potassium dichromate or sodium dichromate; metals such as titanate esters Acid esters; metal salts of acids such as chromium nitrate, zirconium nitrate, zirconium fluoride, titanium fluoride or titanium sulfate can also be used.

耐食性皮膜の好ましい膜厚は0.1〜1.0μmである
。膜厚0.1μm未満では親水性皮膜の下地としての性
能が充分でなく、膜厚が10μmを超えると、熱交換器
の組立て時に熱によって皮膜が焼は焦げて変色するおそ
れがある。
The preferred thickness of the corrosion-resistant film is 0.1 to 1.0 μm. If the film thickness is less than 0.1 μm, the performance as a base for the hydrophilic film is insufficient, and if the film thickness exceeds 10 μm, the film may be burnt and discolored by heat during assembly of the heat exchanger.

合成樹脂と金属含有化合物の好ましい配合比は2:8〜
9:1であり、3ニア〜7:3が一層好ましい。
The preferred blending ratio of synthetic resin and metal-containing compound is 2:8~
The ratio is 9:1, and 3-near to 7:3 is more preferred.

親水性皮膜形成剤におけるアルカリケイ酸塩は、アルミ
ニウム・フィン材に親水性を与えるための主成分であり
、S i 02 /M2O (式中Mはリチウム、ナト
リウム、カリウムなどのアルカリ金属を意味する)で表
わされる比が1以上のものを使用する必要がある。とく
に、S102 / M 2Oが2〜5のアルカリケイ酸
塩を用いるのが好ましい。S I 02 /M2Oの比
が1未満では、アルカリ成分に対して5io2が少ない
ため、アルカリ成分によるアルミニウム・フィン材の侵
食作用が大きくなる。
The alkali silicate in the hydrophilic film-forming agent is the main component for imparting hydrophilicity to the aluminum fin material, and is expressed as S i 02 /M2O (where M means an alkali metal such as lithium, sodium, or potassium). ) must have a ratio of 1 or more. In particular, it is preferable to use an alkali silicate having S102/M2O of 2 to 5. When the ratio of S I 02 /M2O is less than 1, there is less 5io2 than the alkaline component, so the corrosion effect of the alkali component on the aluminum fin material increases.

親水性皮膜形成剤における低分子有機化合物は、分子内
にカルボニル基(>C−0)を有する低分子有機化合物
であって、これはアルカリケイ酸塩による皮膜を安定化
させて、より親水性を向上させかつ皮膜に柔軟性を与え
るものである。
The low-molecular organic compound in the hydrophilic film-forming agent is a low-molecular organic compound having a carbonyl group (>C-0) in the molecule, which stabilizes the film formed by the alkali silicate and makes it more hydrophilic. It improves the properties and gives flexibility to the film.

このような低分子有機化合物の具体例とじては、アルデ
ヒド類、エステル類またはアミド類があげられる。
Specific examples of such low-molecular organic compounds include aldehydes, esters, and amides.

アルデヒド類としては、ホルムアルデヒド、アセトアル
デヒド、グリオキサール、マロンジアルデヒド、スクシ
ンジアルデヒド、グルタルジアルデヒドまたはフルフラ
ールジアルデヒドを使用する。
As the aldehyde, formaldehyde, acetaldehyde, glyoxal, malondialdehyde, succindialdehyde, glutardialdehyde or furfuraldialdehyde is used.

エステル類としては、ギ酸メチル、酢酸エチル、酢酸メ
チル、酢酸ブチル、酢酸アミル、プロピオン酸メチルな
どの1価アルコールの脂肪酸エステル;エチレングリコ
ールジ酢酸エステル、グリセリントリ酢酸エステル、エ
チレングリコールジプロピオン酸エステルなどの多価ア
ルコールの脂肪酸エステル;γ−ブチロラクトン、ε−
カプロラクトンなどの分子内エステル;エチレングリコ
ールモノギ酸エステル、エチレングリコールモノ酢酸エ
ステル、エチレングリコールモノプロピオン酸エステル
、グリセリンモノギ酸エステル、グリセリンモノ酢酸エ
ステル、グリセリンモノプロピオン酸エステル、グリセ
リンジギ酸エステル、グリセリンジ酢酸エステル、ソル
ビトールモノギ酸エステル、ソルビトールモノ酢酸エス
テル、グリコース酸モノ酢酸エステルなどの多価アルコ
ール部分エステル;コハク酸ジメチル、マレイン酸ジメ
チルなどの多塩基酸の1価アルコールエステル;エチレ
ンカーボネート、プロピレンカーボネート、グリセリン
カーボネートなどの環状カーボネートなどを使用する。
Examples of esters include fatty acid esters of monohydric alcohols such as methyl formate, ethyl acetate, methyl acetate, butyl acetate, amyl acetate, and methyl propionate; ethylene glycol diacetate, glycerine triacetate, ethylene glycol dipropionate, etc. fatty acid ester of polyhydric alcohol; γ-butyrolactone, ε-
Intra-molecular esters such as caprolactone; ethylene glycol monoformate, ethylene glycol monoacetate, ethylene glycol monopropionate, glycerin monoformate, glycerin monoacetate, glycerin monopropionate, glycerin diformate, glycerin diacetate Polyhydric alcohol partial esters such as esters, sorbitol monoformate, sorbitol monoacetate, and glycose acid monoacetate; monohydric alcohol esters of polybasic acids such as dimethyl succinate and dimethyl maleate; ethylene carbonate, propylene carbonate, and glycerin Cyclic carbonates such as carbonate are used.

アミド類としては、ホルムアミド、ジメチルホルムアミ
ド、アセトアミド、ジメチルアセトアミド、プロピオン
アミド、ブチルアミド、アクリルアミド、マロンジアミ
ド、ピロリドンまたはカプロラタムを使用する。
As amides, use is made of formamide, dimethylformamide, acetamide, dimethylacetamide, propionamide, butyramide, acrylamide, malondiamide, pyrrolidone or caprolatam.

低分子有機化合物のうちでは、均一な処理を行なえるう
えでアルデヒド類およびエステル類のような水溶性の化
合物を使用するのが好ましい。親水性の高い皮膜を形成
しうる点では、グリオキサールを使用するのが望ましい
Among the low-molecular-weight organic compounds, water-soluble compounds such as aldehydes and esters are preferably used in view of uniform treatment. It is desirable to use glyoxal because it can form a highly hydrophilic film.

水溶性有機高分子化合物は、アルカリケイ酸塩とカルボ
ニル基を有する低分子有機化合物とから形成された皮膜
の親水性をさらに向上させるとともに、皮膜の柔軟性を
も向上させる。
The water-soluble organic polymer compound further improves the hydrophilicity of the film formed from the alkali silicate and the low molecular weight organic compound having a carbonyl group, and also improves the flexibility of the film.

水溶性有機高分子化合物の具体例としては、多糖類系天
然高分子、水溶性蛋白系天然高分子、アニオン、非イオ
ン若しくはカチオン性付加重合系水溶性合成高分子また
は重縮合系水溶性高分子があげられる。
Specific examples of water-soluble organic polymer compounds include polysaccharide-based natural polymers, water-soluble protein-based natural polymers, anionic, nonionic or cationic addition polymerization-based water-soluble synthetic polymers, and polycondensation-based water-soluble polymers. can be given.

多糖類天然高分子としては、可溶性デンプン、カルボキ
シメチルセルロース、ヒドロキシエチルセルロース、グ
アーガム、トラガカントゴム、キサンタンガムまたはア
ルギン酸ソーダを使用する。水溶性蛋白系天然高分子と
しては、たとえばゼラチンを使用する。
As the polysaccharide natural polymer, soluble starch, carboxymethylcellulose, hydroxyethylcellulose, guar gum, gum tragacanth, xanthan gum or sodium alginate is used. For example, gelatin is used as the water-soluble protein-based natural polymer.

アニオンあるいは非イオン性付加重合系水溶性高分子と
しては、ポリアクリル酸、ポリアクリル酸ソーダ、ポリ
アクリルアミド、これの部分加水分解物、ポリビニルア
ルコール、ポリヒドロキシエチルアクリレート、ポリビ
ニルピロリドン、アクリル酸共重合体、マレイン酸共重
合体およびこれらのアルカリ金属、有機アミンまたはア
ンモニウムの塩を使用する。また上記の付加重合系水溶
性合成高分子のカルボキシメチル化あるいはスルホン化
などによる変性水溶性合成高分子も使用できる。
Examples of anionic or nonionic addition polymer water-soluble polymers include polyacrylic acid, sodium polyacrylate, polyacrylamide, partial hydrolysates thereof, polyvinyl alcohol, polyhydroxyethyl acrylate, polyvinylpyrrolidone, and acrylic acid copolymers. , maleic acid copolymers and their alkali metal, organic amine or ammonium salts. Furthermore, water-soluble synthetic polymers modified by carboxymethylation or sulfonation of the above-mentioned addition polymerized water-soluble synthetic polymers can also be used.

カチオン性付加重合系水溶性合成高分子としては、ポリ
エチレンイミン、ポリアクリルアミドのマンニッヒ変性
化合゛物、ジアクリルジメチルアルミニウムクロライド
、ポリビニルイミダシリン、ジメチルアミノエチルアク
リレート重合体などのポリアルキルアミノ(メタ)アク
リレートを使用する。
Examples of cationic addition-polymerized water-soluble synthetic polymers include polyalkylamino (meth) compounds such as polyethyleneimine, Mannich-modified compounds of polyacrylamide, diacryldimethylaluminum chloride, polyvinylimidacillin, and dimethylaminoethyl acrylate polymers. Use acrylate.

重縮合系水溶性合成高分子としては、ポリオキシエチレ
ングリコール、ポリオキシエチレンオキシプロピレング
リコールなどのポリアルキレンポリオール、エチレンジ
アミンまたはへキサメチルジアミンなどのポリアミンと
エピクロルヒドリンとの重縮合物、水溶性ポリエーテル
とポリイソシアネートの重縮合された水溶性ポリウレタ
ン樹脂、ポリヒドロキシメチル尿素樹脂またはポリヒド
ロキシメチルメラミン樹脂を使用する。
Polycondensation water-soluble synthetic polymers include polyalkylene polyols such as polyoxyethylene glycol and polyoxyethylene oxypropylene glycol, polycondensates of epichlorohydrin and polyamines such as ethylenediamine or hexamethyldiamine, and water-soluble polyethers. A water-soluble polyurethane resin, a polyhydroxymethylurea resin or a polyhydroxymethylmelamine resin which is polycondensed with a polyisocyanate is used.

水溶性有機高分子化合物のうちでは、カルボン酸あるい
はカルボン酸塩基を有するアニオン性付加重合系水溶性
高分子を使用するのが好ましく、とくにポリアクリル酸
、アクリル酸共重合体、マレイン酸共重合体またはこれ
らのアルカリ金属塩を使用するのがよい。アクリル酸共
重合体またはマレイン酸共重合体としては、アクリル酸
とマレイン酸同志の共重合体、アクリル酸またはマレイ
ン酸と、メタアクリル酸、メチルメタアクリエート、エ
チルメタアクリニード、ヒドロキシエチルメタアクリレ
ート、イタコン酸またはビニルスルホン酸、アクリルア
ミドとの共重合体を使用するのが好ましい。
Among water-soluble organic polymer compounds, it is preferable to use anionic addition-polymerized water-soluble polymers having carboxylic acids or carboxylic acid groups, especially polyacrylic acid, acrylic acid copolymers, and maleic acid copolymers. Alternatively, it is preferable to use these alkali metal salts. Examples of acrylic acid copolymers or maleic acid copolymers include copolymers of acrylic acid and maleic acid, acrylic acid or maleic acid, and methacrylic acid, methyl methacrylate, ethyl methacrynide, and hydroxyethyl methacrylate. , itaconic acid or vinylsulfonic acid, copolymers with acrylamide are preferably used.

アルカリケイ酸塩と、カルボニル基を有する低分子有機
化合物との配合比は、アルカリケイ酸塩1重量部に対し
、カルボニル基を有する低分子有機化合物061〜5重
量部である。
The blending ratio of the alkali silicate and the low molecular weight organic compound having a carbonyl group is 061 to 5 parts by weight of the low molecular weight organic compound having a carbonyl group to 1 part by weight of the alkali silicate.

アルカリケイ酸と、カルボニル基を有する低分子有機化
合物にさらに水溶性有機高分子化合物を加える場合、三
者の配合比は、アルカリケイ酸塩1重量部に対し、カル
ボニル基を有する低分子有機化合物0.1〜5重量部と
、水溶性有機高分子化合物0.01〜5重量部である。
When adding a water-soluble organic polymer compound to alkali silicic acid and a low-molecular-weight organic compound having a carbonyl group, the blending ratio of the three is 1 part by weight of the alkali silicate to the low-molecular-weight organic compound having a carbonyl group. 0.1 to 5 parts by weight, and 0.01 to 5 parts by weight of the water-soluble organic polymer compound.

上記において、親水性皮膜形成剤におけるアルカリケイ
酸塩の配合量が少ない場合には、アルミニウム・フィン
材の表面に充分な親水性皮膜が形成されない。逆に、多
すぎる場合には、親水性皮膜が硬くなりすぎ、成形性お
よび耐金型摩耗性が悪くなる。
In the above, if the amount of alkali silicate in the hydrophilic film forming agent is small, a sufficient hydrophilic film will not be formed on the surface of the aluminum fin material. On the other hand, if the amount is too high, the hydrophilic film becomes too hard, resulting in poor moldability and mold wear resistance.

カルボニル基を有する低分子有機化合物がアルカリケイ
酸塩1重量部に対して0.1重量部未満では、低分子有
機化合物を添加した効果が表われず、また5重量部をこ
えると、相対的にアルカリケイ酸塩が少なくなるので、
親水性が充分発揮されない。
If the low molecular weight organic compound having a carbonyl group is less than 0.1 part by weight per 1 part by weight of the alkali silicate, the effect of adding the low molecular weight organic compound will not be apparent, and if it exceeds 5 parts by weight, the relative Since there is less alkali silicate in
Hydrophilicity is not sufficiently exhibited.

水溶性有機高分子化合物がアルカリケイ酸塩1重量部に
対して0.01重量部未満では、水溶性有機高分子化合
物を添加した効果が表われず、また5重量部を超えると
、形成された皮膜が水に溶出され易くなり、したがって
親水性の持続効果が低下する。
If the water-soluble organic polymer compound is less than 0.01 parts by weight per 1 part by weight of the alkali silicate, the effect of adding the water-soluble organic polymer compound will not be apparent, and if it exceeds 5 parts by weight, no formation will occur. The resulting film becomes more easily eluted by water, and the sustained effect of hydrophilicity is therefore reduced.

アルカリケイ酸塩と、カルボニル基を有する低分子有機
化合物と、水溶性高分子化合物とは、水に希釈して使用
される。希釈割合は、皮膜の親水性、膜厚および作業性
を考慮して定められる。
The alkali silicate, the low-molecular organic compound having a carbonyl group, and the water-soluble polymer compound are used after being diluted with water. The dilution ratio is determined in consideration of the hydrophilicity, film thickness, and workability of the film.

耐食性皮膜を有するアルミニウム・フィン材の表面に対
する親水性皮膜形成剤の処理は、スプレー塗布、はけ塗
りまたは浸漬塗布による。
The surface of the aluminum fin material having a corrosion-resistant coating is treated with a hydrophilic film-forming agent by spraying, brushing or dipping.

上記の処理をした後のフィン材を50〜2O0℃、好ま
しくは150〜180℃の温度で、30秒〜30分の時
間加熱乾燥することにより、その表面に親水性皮膜が形
成される。
By heating and drying the fin material after the above treatment at a temperature of 50 to 200C, preferably 150 to 180C for a period of 30 seconds to 30 minutes, a hydrophilic film is formed on its surface.

加熱乾燥温度が50℃未満であれば、組成物の皮膜化が
充分でなく、2O0℃を超えて加熱した場合は、加熱効
果がないばかりか、フィン材の品質に悪影響を及ぼす。
If the heat drying temperature is less than 50°C, the composition will not form a film sufficiently, and if it is heated above 200°C, not only will there be no heating effect, but the quality of the fin material will be adversely affected.

加熱乾燥時間が30秒未満であれば、組成物の皮膜化が
充分でなく、30分を超えると、生産性が低下する。加
熱乾燥温度が1,60〜2O0℃のように高い場合には
、乾燥時間は30秒〜1分と短くてもよいが、温度が1
60℃より低い場合には、乾燥時間を長くする必要があ
る。加熱乾燥が不充分であると、組成物の皮膜化が充分
でない。
If the heat drying time is less than 30 seconds, the composition will not form a film sufficiently, and if it exceeds 30 minutes, productivity will decrease. If the heating drying temperature is high, such as 1,60 to 200°C, the drying time may be as short as 30 seconds to 1 minute, but if the temperature is
If the temperature is lower than 60°C, it is necessary to increase the drying time. If heat drying is insufficient, the composition will not form a film sufficiently.

親水性皮膜の膜厚は、0.1〜10g/l12好ましく
は0.5〜3g/I2である。皮膜が0.1g/i2以
上であれば初期の親水性は良好であるが、良好な親水性
を維持させるには、0.5g/m2以上の皮膜を形成す
るのが好ましい。皮膜が10g/112を超えると、乾
燥に長時間を要するとともに、成形性に悪影響を与える
The thickness of the hydrophilic film is 0.1 to 10 g/l12, preferably 0.5 to 3 g/l2. If the thickness of the film is 0.1 g/i2 or more, the initial hydrophilicity is good, but in order to maintain good hydrophilicity, it is preferable to form a film of 0.5 g/m2 or more. If the film exceeds 10 g/112, it will take a long time to dry and will have an adverse effect on moldability.

親水性皮膜形成剤には、従来より公知の添加剤、たとえ
ば亜硝酸ナトリウム、ポリリン酸ナトリウム、メタホウ
酸ナトリウムなどの無機系防錆剤、安息香酸およびその
塩、バラニトロ安息香酸およびその塩、シクロヘキシル
アミン炭酸塩、ベンゾトリアゾールなどの有機系防錆剤
を配合してもよい。
Hydrophilic film-forming agents include conventionally known additives, such as inorganic rust inhibitors such as sodium nitrite, sodium polyphosphate, and sodium metaborate, benzoic acid and its salts, varanitrobenzoic acid and its salts, and cyclohexylamine. Organic rust preventive agents such as carbonates and benzotriazole may be added.

親水性皮膜の表面に、さらにワックス、あるいはワック
スとポリビニルアルコール等の水溶性高分子化合物より
なる被覆層を形成することにより、フィン材を所定のフ
ィン形状に成形するさいの金型の摩耗をより一層少なく
することができる。
By further forming a coating layer made of wax or a water-soluble polymer compound such as wax and polyvinyl alcohol on the surface of the hydrophilic film, wear of the mold when molding the fin material into a predetermined fin shape is reduced. It can be further reduced.

作     用 本発明の熱交換器用アルミニウム・フィン材によれば、
アルミニウム・フィン材が耐食性皮膜を介して親水性皮
膜を備えており、耐食性皮膜は、皮膜形成能を有する合
成樹脂と、合成樹脂とキレートを形成する金属含有化合
物とを含む耐食性皮膜形成剤を用いてフィン材を処理す
ることにより形成せられているものであるから、耐食性
皮膜の膜厚をとくに厚くしなくても充分耐食性を有して
おり、したがって熱交換器の組立て途中におけるフィン
のろう付けないし溶接時に、耐食性皮膜が焼は焦げて黄
変ないし褐変することがなく、しかも成形性は優れてい
る。
Function: According to the aluminum fin material for heat exchangers of the present invention,
The aluminum fin material is provided with a hydrophilic film via a corrosion-resistant film, and the corrosion-resistant film is made using a corrosion-resistant film-forming agent containing a synthetic resin with film-forming ability and a metal-containing compound that forms a chelate with the synthetic resin. Since it is formed by treating the fin material with a heat exchanger, it has sufficient corrosion resistance without having to make the corrosion-resistant film particularly thick. During welding, the corrosion-resistant coating does not burn, turn yellow or brown, and has excellent formability.

また親水性皮膜は、アルカリケイ酸塩と、カルボニル基
を有する低分子有機化合物とを含む親水性皮膜形成剤に
よって耐食性皮膜を有するフィン材を処理することによ
り形成せられるものであるから、フィン材を加熱乾燥す
ることにより、アルカリケイ酸塩と、カルボニル基を有
する低分子有機化合物とが反応して、三次元化された不
溶性のケイ酸塩皮膜が形成される。このとき、低分子有
機化合物は有機カルボン酸塩もしくは有機ヒドロキシカ
ルボン酸塩となってケイ酸塩の三次元網状ポリマー内に
取り込まれるため、安定したケイ酸塩皮膜が形成され、
親水性が良好となるとともに、皮膜の柔軟性が増大する
ため、いわゆる延性が良好となり、フィンの成形のさい
にクラックが生じたりすることなく、しかも成形時にお
ける金型の摩耗が非常に少ない。
In addition, the hydrophilic film is formed by treating a fin material with a corrosion-resistant film with a hydrophilic film-forming agent containing an alkali silicate and a low-molecular-weight organic compound having a carbonyl group. By heating and drying, the alkali silicate and the low molecular weight organic compound having a carbonyl group react to form a three-dimensional insoluble silicate film. At this time, the low-molecular organic compound becomes an organic carboxylate or an organic hydroxycarboxylate and is incorporated into the three-dimensional network polymer of the silicate, forming a stable silicate film.
In addition to improving hydrophilicity, the flexibility of the film increases, so it has good ductility, so no cracks occur during fin molding, and there is very little wear on the mold during molding.

親水性皮膜形成剤にさらに水溶性有機高分子化合物を添
加したものは、水溶性有機高分子化合物がさらにケイ酸
塩の三次元ポリマー内に取り込まれ、親水性および皮膜
の柔軟性がより増大して、成形性および耐金型摩耗性が
一層向上する。
When a water-soluble organic polymer compound is further added to the hydrophilic film-forming agent, the water-soluble organic polymer compound is further incorporated into the three-dimensional silicate polymer, further increasing the hydrophilicity and flexibility of the film. As a result, moldability and mold wear resistance are further improved.

実  施  例 本発明の実施例を比較例とともに以下に述べる。Example Examples of the present invention will be described below along with comparative examples.

アルミニウム・フィン材として、厚さ1■、幅50n+
mおよび長さ1100nのJIS  A1100−H2
4を用いた。
As aluminum fin material, thickness 1cm, width 50n+
JIS A1100-H2 with m and length 1100n
4 was used.

アルミニウムフィン材の表面に、表1に示されているよ
うに、各種の耐食性皮膜形成剤を用いて耐食性皮膜を形
成し、これらにさらに各種の親水性皮膜形成剤を塗布し
、160℃で10分間、加熱乾燥して、耐食性皮膜を有
するフィン材の表面に親水性皮膜を形成した。なお、親
水性皮膜形成剤の成分においてアルカリケイ酸塩として
は、5i02/Na2O比が3のものを用いた。
As shown in Table 1, a corrosion-resistant film was formed on the surface of the aluminum fin material using various corrosion-resistant film-forming agents, and various hydrophilic film-forming agents were further applied thereto, and the coating was heated at 160°C for 10 minutes. A hydrophilic film was formed on the surface of the fin material having a corrosion-resistant film by heating and drying for 1 minute. In addition, as the alkali silicate in the components of the hydrophilic film-forming agent, one having a 5i02/Na2O ratio of 3 was used.

上記各種フィン材の性能を評価するために、耐食性、耐
熱変色性、親水性、成形性および耐金型摩耗性をGl定
し、得られた結果を表1に示した。
In order to evaluate the performance of the above-mentioned various fin materials, corrosion resistance, heat discoloration resistance, hydrophilicity, moldability, and mold wear resistance were determined by Gl, and the obtained results are shown in Table 1.

耐食性については、フィン材に塩水を300時間噴霧し
た結果、異常がない場合に◎印を付し、はんのわずかに
腐食を生じた場合にO印を付すことによって、耐食性の
評価を表わした。
Regarding corrosion resistance, the fin material was sprayed with salt water for 300 hours, and if there were no abnormalities, a mark of ◎ was given, and if there was slight corrosion of the solder, a mark of O was given to indicate the corrosion resistance evaluation. .

耐熱変色性については、フィン材を400℃で1分間加
熱したときに、外観に変化がない場合に◎印を付し、表
面がかなり黄変色した場合にΔ印を付し、著しく黄変し
た場合に×印を付すことによって、耐熱変色性の評価を
表わした。
Regarding heat discoloration resistance, when the fin material is heated at 400°C for 1 minute, if there is no change in appearance, a ◎ mark is given, and if the surface becomes significantly yellowed, a Δ mark is given. The heat discoloration resistance was evaluated by marking the cases with an x mark.

親水性は、初期の段階、およびオレイン酸汚染テスト(
14時間)と流水浸漬テスト(8時間)を交互に3回ず
つ繰り返したサイクルテスト後の段階において、それぞ
れフィン材の水の接触角を図ることにより測定した。
Hydrophilicity is determined in the early stages and in the oleic acid contamination test (
The contact angle of water on the fin material was measured at the stage after a cycle test in which a test (14 hours) and a running water immersion test (8 hours) were alternately repeated three times.

なお、親水性の評価は、接触角15°以下を◎、16°
〜30″を0131°〜50″を△、51°以上を×と
表示した。
In addition, for hydrophilic evaluation, contact angle of 15° or less is ◎, 16°
- 30'' was indicated as 0131° - 50'' was indicated as △, and 51° or more was indicated as ×.

成形性は、親水性皮膜を有するアルミニウム・フィン材
にバーリング加工を施し、その屈曲部にクラックが生じ
るか否かで測定した。
Formability was measured by performing a burring process on an aluminum fin material having a hydrophilic film and determining whether or not cracks were formed at the bent portions.

耐金型摩耗性は、耐食性皮膜および親水性皮膜を有する
フィン材を金型を用いて一定のフィン形状に成形したと
きの金型の摩耗状態を測定した。
The mold wear resistance was measured by measuring the state of wear of the mold when a fin material having a corrosion-resistant film and a hydrophilic film was molded into a fixed fin shape using a mold.

成形性と耐金型摩耗性の試験の評価は、っぎのとおりと
した。
The moldability and mold wear resistance tests were evaluated as shown below.

◎:非常に良好、O:良好、△:やや不良、×:不良。◎: Very good, O: Good, △: Slightly poor, ×: Poor.

(以下余白) 上記表1から明らかなように、実施例のフィン材は、比
較例のものに比べて、優れた耐食性、耐熱変色性、親水
性、成形性および耐金型摩耗性を有しており、しかも親
水性の経時劣化が少ない。
(The following is a blank space) As is clear from Table 1 above, the fin materials of Examples have superior corrosion resistance, heat discoloration resistance, hydrophilicity, moldability, and mold wear resistance compared to those of Comparative Examples. Moreover, there is little deterioration of hydrophilicity over time.

発明の効果 本発明の熱交換器用アルミニウム・フィン材によれば、
ろう付けや溶接のさいに耐食性皮膜が変色しない程度の
膜厚で充分な耐食性が得られるので、熱交換器の外観を
損なうことがなく、また親水性皮膜の親水性も長期間維
持できるとともに、耐食金型摩耗性に優れ、さらに両虎
膜ともに成形性がよいので、成形加工が行ないにくかっ
たりクラックが生じたりするおそれがない。
Effects of the Invention According to the aluminum fin material for heat exchangers of the present invention,
Sufficient corrosion resistance can be obtained with a thickness that does not discolor the corrosion-resistant coating during brazing or welding, so the appearance of the heat exchanger is not impaired, and the hydrophilic properties of the hydrophilic coating can be maintained for a long period of time. It has excellent corrosion resistance and mold abrasion resistance, and both films have good moldability, so there is no fear that molding will be difficult or that cracks will occur.

以  上that's all

Claims (13)

【特許請求の範囲】[Claims] (1)アルミニウム・フィン材が耐食性皮膜を介して親
水性皮膜を備えており、耐食性皮膜は、皮膜形成能を有
する合成樹脂と、合成樹脂とキレートを形成する金属含
有化合物とを含む耐食性皮膜形成剤を用いてフィン材を
処理することにより形成せられており、親水性皮膜は、
アルカリケイ酸塩と、カルボニル基を有する低分子有機
化合物とを含む親水性皮膜形成剤によって耐食性皮膜を
有するフィン材を処理することにより形成せられている
熱交換器用アルミニウム・フィン材。
(1) The aluminum fin material is provided with a hydrophilic film via a corrosion-resistant film, and the corrosion-resistant film contains a synthetic resin with film-forming ability and a metal-containing compound that forms a chelate with the synthetic resin. The hydrophilic film is formed by treating the fin material with a
An aluminum fin material for a heat exchanger, which is formed by treating a fin material with a corrosion-resistant film with a hydrophilic film-forming agent containing an alkali silicate and a low-molecular-weight organic compound having a carbonyl group.
(2)耐食性皮膜の膜厚が0.1〜1.0μmである請
求項1記載の熱交換器用アルミニウム・フィン材。
(2) The aluminum fin material for a heat exchanger according to claim 1, wherein the corrosion-resistant film has a thickness of 0.1 to 1.0 μm.
(3)合成樹脂と金属含有化合物の配合比が2:8〜9
:1である請求項1記載の熱交換器用アルミニウム・フ
ィン材。
(3) The blending ratio of synthetic resin and metal-containing compound is 2:8 to 9
The aluminum fin material for a heat exchanger according to claim 1, wherein the aluminum fin material is: 1.
(4)合成樹脂が、ポリアクリル酸、ポリビニルアルコ
ールまたはセルロースヒドロキシエチルエーテルである
請求項1記載の熱交換器用アルミニウム・フィン材。
(4) The aluminum fin material for a heat exchanger according to claim 1, wherein the synthetic resin is polyacrylic acid, polyvinyl alcohol, or cellulose hydroxyethyl ether.
(5)親水性皮膜形成剤が、アルカリケイ酸塩1重量部
に対して、カルボニル基を有する低分子有機化合物を0
.1〜5重量部の割合で配合したものである請求項1記
載の熱交換器用アルミニウム・フィン材。
(5) The hydrophilic film-forming agent contains 0 low molecular weight organic compound having a carbonyl group per 1 part by weight of the alkali silicate.
.. The aluminum fin material for a heat exchanger according to claim 1, wherein the aluminum fin material is blended in a proportion of 1 to 5 parts by weight.
(6)親水性皮膜形成剤が、さらに水溶性有機高分子化
合物を含む請求項1記載の熱交換器用アルミニウム・フ
ィン材。
(6) The aluminum fin material for a heat exchanger according to claim 1, wherein the hydrophilic film-forming agent further contains a water-soluble organic polymer compound.
(7)親水性皮膜形成剤が、アルカリケイ酸塩1重量部
に対して、カルボニル基を有する低分子有機化合物を0
.1〜5重量部および水溶性有機高分子化合物を0.0
1〜5重量部の割合で配合したものである請求項1記載
の熱交換器用アルミニウム・フィン材。
(7) The hydrophilic film-forming agent contains 0 low-molecular organic compound having a carbonyl group per 1 part by weight of the alkali silicate.
.. 1 to 5 parts by weight and 0.0 parts by weight of a water-soluble organic polymer compound
The aluminum fin material for a heat exchanger according to claim 1, wherein the aluminum fin material is blended in a proportion of 1 to 5 parts by weight.
(8)アルカリケイ酸塩が、SiO_2/M_2O(式
中Mはリチウム、ナトリウム、カリウム等のアルカリ金
属を意味する)で表わされる比が1以上のものである請
求項1、5、6または7記載の熱交換器用アルミニウム
・フィン材。
(8) Claim 1, 5, 6 or 7, wherein the alkali silicate has a ratio of SiO_2/M_2O (in the formula, M means an alkali metal such as lithium, sodium, potassium, etc.) of 1 or more. Aluminum fin material for heat exchangers as described.
(9)金属含有化合物が、金属酸化物、金属酸ないしそ
の塩、金属酸エステルおよび酸の金属塩よりなる群から
選ばれた少なくとも1つのものである請求項1記載の熱
交換器用アルミニウム・フィン材。
(9) The aluminum fin for a heat exchanger according to claim 1, wherein the metal-containing compound is at least one selected from the group consisting of metal oxides, metal acids or salts thereof, metal acid esters, and metal salts of acids. Material.
(10)金属酸化物が、酸化ジルコニウム、酸化チタン
または酸化クロムである請求項9記載の熱交換器用アル
ミニウム・フィン材。
(10) The aluminum fin material for a heat exchanger according to claim 9, wherein the metal oxide is zirconium oxide, titanium oxide, or chromium oxide.
(11)金属酸ないしその塩が、3価または6価クロム
のクロム酸、クロム酸カリウム、クロム酸ナトリウム、
重クロム酸カリウムまたは重クロム酸ナトリウムである
請求項9記載の熱交換器用アルミニウム・フィン材。
(11) The metal acid or its salt is trivalent or hexavalent chromic acid, potassium chromate, sodium chromate,
The aluminum fin material for a heat exchanger according to claim 9, which is potassium dichromate or sodium dichromate.
(12)金属酸エステルが、チタン酸エステルである請
求項9記載の熱交換器用アルミニウム・フィン材。
(12) The aluminum fin material for a heat exchanger according to claim 9, wherein the metal acid ester is a titanate ester.
(13)酸の金属塩が、硝酸クロム、硝酸ジルコニウム
、フッ化ジルコニウム、フッ化チタンまたは硫酸チタン
である請求項9記載の熱交換器用アルミニウム・フィン
材。
(13) The aluminum fin material for a heat exchanger according to claim 9, wherein the acid metal salt is chromium nitrate, zirconium nitrate, zirconium fluoride, titanium fluoride, or titanium sulfate.
JP1218384A 1989-08-24 1989-08-24 Aluminum fin material for heat exchanger Pending JPH0381139A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1218384A JPH0381139A (en) 1989-08-24 1989-08-24 Aluminum fin material for heat exchanger
KR1019900004609A KR940002833B1 (en) 1989-08-24 1990-04-04 Aluminum fin material for heat exchanger
CN90107057A CN1041067C (en) 1989-08-24 1990-08-20 Aluminum heat dissipation material for heat exchanger
MYPI90001404A MY106447A (en) 1989-08-24 1990-08-21 Aluminum fin material for heat exchangers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218384A JPH0381139A (en) 1989-08-24 1989-08-24 Aluminum fin material for heat exchanger

Publications (1)

Publication Number Publication Date
JPH0381139A true JPH0381139A (en) 1991-04-05

Family

ID=16719060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218384A Pending JPH0381139A (en) 1989-08-24 1989-08-24 Aluminum fin material for heat exchanger

Country Status (4)

Country Link
JP (1) JPH0381139A (en)
KR (1) KR940002833B1 (en)
CN (1) CN1041067C (en)
MY (1) MY106447A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338876B1 (en) * 1999-02-26 2002-01-15 Nippon Light Metal Company, Ltd Process for hydrophilic treatment of aluminum materials and primers therefor and hydrophilic coatings
WO2011024378A1 (en) * 2009-08-27 2011-03-03 丸善薬品産業株式会社 Hydrophilic coating agent and method for using same
JP2011189705A (en) * 2010-03-16 2011-09-29 Kobe Steel Ltd Pre-coated aluminum sheet
JP2013208916A (en) * 2013-07-01 2013-10-10 Kobe Steel Ltd Precoated aluminum plate
JP2014199152A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Aluminum fin material
JP2017062102A (en) * 2016-10-19 2017-03-30 三菱アルミニウム株式会社 Method for manufacturing heat exchanger using pre-coat fin material and heat exchanger

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030000376A (en) * 2001-06-23 2003-01-06 위성점 Condenser Cooling Pipe for air conditioner
KR20030093065A (en) * 2002-05-31 2003-12-06 주식회사 유니온금속 Heat Exchanger using Fin Plate having plural burring tubes and Method for manufacturing the same
KR20040051033A (en) * 2002-12-11 2004-06-18 엘지전자 주식회사 Apparatus for preventing corrosion of condenser in air conditioner
JP4164049B2 (en) * 2004-06-01 2008-10-08 株式会社神戸製鋼所 Hydrophilic surface treatment fin material for heat exchanger
KR101133031B1 (en) * 2005-05-13 2012-04-04 한라공조주식회사 Heat exchanger
EP2256452B1 (en) * 2008-03-24 2015-04-22 Mitsubishi Electric Corporation Heat exchanger and refrigerating cycle device provided with same
CN101900508B (en) * 2008-12-10 2012-08-22 松下电器产业株式会社 Connection structure of aluminum tube, connection method therefor, and heat exchanger
KR101970964B1 (en) * 2012-08-16 2019-04-26 주식회사 두원공조 Condenser for air conditioning apparatus of vehicle and manufacturing method of the same
CN109127330B (en) * 2018-09-06 2021-10-01 中山大学 Preparation method of metal surface super-hydrophobic coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225044A (en) * 1985-03-29 1986-10-06 住友軽金属工業株式会社 Aluminum fin material for heat exchanger
JPS61246059A (en) * 1985-04-25 1986-11-01 昭和アルミニウム株式会社 Fin material for heat exchanger
JPS62105629A (en) * 1985-11-01 1987-05-16 スカイアルミニウム株式会社 Heat-exchanger fin material
JPH01174438A (en) * 1987-12-29 1989-07-11 Kobe Steel Ltd Aluminum fin material for heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE457115B (en) * 1983-03-25 1988-11-28 Diab Barracuda Ab Thermal and optical camouflage
GB2164899B (en) * 1984-09-28 1988-01-27 Toyo Kohan Co Ltd Method for production of metal sheet covered with polyester resin film
CN85103496A (en) * 1985-03-21 1986-11-19 晋华水力磨蚀技术开发研究中心 The powder adhesive of Polyurethane and metal and construction technology thereof
JPS6236895A (en) * 1985-08-09 1987-02-17 ブラザー工業株式会社 Manufacture of flexible circuit board
JPS62209185A (en) * 1986-03-11 1987-09-14 Nippon Foil Mfg Co Ltd Fin material for heat exchanger
GB8724243D0 (en) * 1987-10-15 1987-11-18 Metal Box Plc Laminates of polyolefin-based film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225044A (en) * 1985-03-29 1986-10-06 住友軽金属工業株式会社 Aluminum fin material for heat exchanger
JPS61246059A (en) * 1985-04-25 1986-11-01 昭和アルミニウム株式会社 Fin material for heat exchanger
JPS62105629A (en) * 1985-11-01 1987-05-16 スカイアルミニウム株式会社 Heat-exchanger fin material
JPH01174438A (en) * 1987-12-29 1989-07-11 Kobe Steel Ltd Aluminum fin material for heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338876B1 (en) * 1999-02-26 2002-01-15 Nippon Light Metal Company, Ltd Process for hydrophilic treatment of aluminum materials and primers therefor and hydrophilic coatings
WO2011024378A1 (en) * 2009-08-27 2011-03-03 丸善薬品産業株式会社 Hydrophilic coating agent and method for using same
JP2011068857A (en) * 2009-08-27 2011-04-07 Maruzen Chemicals Co Ltd Hydrophilic coating agent and method for use thereof
JP2011189705A (en) * 2010-03-16 2011-09-29 Kobe Steel Ltd Pre-coated aluminum sheet
JP2014199152A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Aluminum fin material
JP2013208916A (en) * 2013-07-01 2013-10-10 Kobe Steel Ltd Precoated aluminum plate
JP2017062102A (en) * 2016-10-19 2017-03-30 三菱アルミニウム株式会社 Method for manufacturing heat exchanger using pre-coat fin material and heat exchanger

Also Published As

Publication number Publication date
MY106447A (en) 1995-05-30
CN1041067C (en) 1998-12-09
KR910018761A (en) 1991-11-30
KR940002833B1 (en) 1994-04-04
CN1049715A (en) 1991-03-06

Similar Documents

Publication Publication Date Title
JPH0242389B2 (en)
JPH0381139A (en) Aluminum fin material for heat exchanger
JP3802559B2 (en) Non-abrasive, corrosion-resistant hydrophilic coating on aluminum surface, coating method and coating
JP4008620B2 (en) Aluminum alloy heat exchanger
CA1297613C (en) Composition for forming hydrophilic film on aluminum
JPWO2014147782A1 (en) Hydrophilic surface treatment agent for aluminum-containing metal heat exchanger with excellent drainage
JP3373802B2 (en) Method for hydrophilic treatment of aluminum material, base treating agent and hydrophilic paint
CN102892927A (en) Anti-corrosion treatment method for aluminium heat exchanger
JP2014214368A (en) Metal material treated by surface hydrophilization, and heat exchanger
JP2005097703A (en) Aluminum material for heat exchanger excellent in corrosion resistance, and heat exchanger using the aluminum material
JP3836742B2 (en) Hydrophilization method and heat exchanger subjected to hydrophilic treatment
CN102443329B (en) Coating composition and aluminum heat radiation sheet utilizing the same
JP2787253B2 (en) Aluminum heat exchanger or hydrophilic film forming agent for its fin material
JPS61246059A (en) Fin material for heat exchanger
JPH0531463B2 (en)
JP5319952B2 (en) Resin-coated aluminum fin material
JP2683812B2 (en) Heat exchanger with aluminum fins
JP3890908B2 (en) Organic hydrophilic coating composition and aluminum material for heat exchanger having hydrophilic film
JP4357059B2 (en) Aluminum-containing metal heat exchanger with excellent long-term corrosion resistance and manufacturing method
JPH07323500A (en) Aluminum-containing metal composite material and manufacture thereof
JPH04126774A (en) Hydrophilic film-forming agent for heat exchanger made of aluminum or fin material thereof
JPS63268642A (en) Production of planographic plate material
JPS62273843A (en) Manufacture of fin for heat exchanger having hydrophilic property and corrosion resistance
JPH0818004B2 (en) Method for hydrophilic treatment of aluminum surface
JPH0630728B2 (en) Method for manufacturing fin for heat exchanger having undercoating excellent in waterproof adhesion