JPH0380905B2 - - Google Patents

Info

Publication number
JPH0380905B2
JPH0380905B2 JP63254905A JP25490588A JPH0380905B2 JP H0380905 B2 JPH0380905 B2 JP H0380905B2 JP 63254905 A JP63254905 A JP 63254905A JP 25490588 A JP25490588 A JP 25490588A JP H0380905 B2 JPH0380905 B2 JP H0380905B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fibers
fiber
pps
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63254905A
Other languages
Japanese (ja)
Other versions
JPH01229855A (en
Inventor
Masataka Ikeda
Tsukasa Shima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63254905A priority Critical patent/JPH01229855A/en
Publication of JPH01229855A publication Critical patent/JPH01229855A/en
Publication of JPH0380905B2 publication Critical patent/JPH0380905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/16Polyalkenylalcohols; Polyalkenylethers; Polyalkenylesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/08Filter paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0457Specific fire retardant or heat resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ポリアリーレンサルフアイド不織布
に関する。より詳しくは耐熱性、耐湿熱性、耐薬
品性、難燃性に優れ、特に各種フイルター用途に
好適なポリアリーレンサルフアイド(以下PPSと
いう)極細繊維から成る不織布に関する。 〔従来の技術〕 PPS繊維はその優れた耐熱性、耐湿熱性、耐薬
品性および難燃性により各種フイルター、難燃性
電気絶縁材、バツテリセパレータ等に不織布の形
態で用いることができる。 前記PPS繊維の製造方法としてPPS樹脂を部分
的予備硬化して高分子量化させ、溶融流れを減少
させた樹脂から高いモジユラスのフイラメントを
得る方法が特公昭52−30609号公報に開示され、
一方高速巻取り法で低結晶化温度と高融点を持つ
繊維が得られることが特開昭58−31112号公報に
開示されている。 また、PPS繊維不織布としては、特開昭57−
16954号公報に、高速気流で随伴させるいわゆる
「スパンボンド法」で長繊維ウエブを得、これを
ニードルパンチで交絡された長繊維不織布が、ま
た、特開昭61−289162号公報には、耐熱性繊維と
未延伸のPPS繊維との混綿ウエブを熱融着した不
織布が開示されている。 一方、メルトブロー法については、インダスト
リアル・アンド・エンジニアリング・ケミストリ
ー(Industrial and Engineering Chemistry)
48巻、第8号(P.1342〜1346)、1956年に基本的
な装置および方法が開示されている。また、特公
昭56−33511号公報および特開昭55−142757号公
報にポリオレフイン、ポリエステル等の極細繊維
の不織布の製造法が開示されている。しかしなが
ら、PPS樹脂の極細繊維織布については全く知ら
れていない。 〔発明が解決しようとする課題〕 温度や耐薬品性等についての使用条件の厳しい
環境下で用いられる優れたフイルターを得るため
には、フイルターを構成する繊維自体が温度や薬
品に強いと共にフイルター自体の捕集効率および
圧力損失が優れていることが必要である。後者の
捕集効率および圧力損失を向上させるためには用
いられる繊維の繊度が細いことが必要であり、特
に極細繊維がランダムに配置されている不織布で
あると好ましい。 かかる観点から前者の要件を満たすことのでき
るPPS繊維をこれらの分野に用いることが考えら
れるが後者の条件を満たすための極細繊維不織布
は前述のようにPPS繊維では得られていない。 すなわちPPS樹脂は融点が高く、高結晶性でモ
ジユラスが大きいため、ポリエステルやポリアミ
ドやポリオレフインなどの汎用繊維製造用重合体
のように、従来公知の溶融紡糸技術によつて一定
の性能および品質を有する繊維とすることが著し
く困難である。とりわけ、繊維径が10μ以下の
PPS繊維からなる不織布は全く製造することが出
来なかつた。 また、このPPS繊維は剛直で脆いため、短繊維
不織布の製造において通常施されている機械捲縮
を付与することは極めて難しく、しかも本質的に
帯電性が著しいため、慣用の短繊維不織布技術に
より不織布を製造し難いという問題がある。 特開昭57−16954号公報に開示されたPPSの長
繊維不織布は、繊維形成を冷空気流により随伴す
るという「スパンボンド法」によつているため、
おのずと得られる繊維径に限界があり、繊維径が
10μ以下の繊維を得ることは全く不可能である。
しかも、この不織布を得るのに、繊維を帯電分散
させて一たんウエブを形成させ、その後ニードル
パンチで交絡させて、次いで高温で収縮処理を必
要とするため工程が長く製造上不利である。更に
は、前記した繊維径が大ききことによる最大の問
題は、この不織布をフイルター用途として用いた
場合に、高いフイルター性能を得ることが出来
ず、おのずと用途が限定されるということがあ
る。 また、特開昭61−289162号公報に開示された不
織布は、ウエブを熱融着しているため、繊維の自
由度がなく硬くペーパーライクなものとなり、特
に引裂強力の低いものとなる。また、不織布の嵩
密度も大きくなり、フイルター用途に用いた場合
は圧力損失が著しく大きくなる問題がある。しか
も、ウエブを製造するのにカード機等を使用する
必要があり、このため使用する繊維は1d(繊維径
約10μ)以上の繊維とする必要がある。この繊維
径が大きいことにより尚一層風合が硬く、フイル
ター性能を低下させる問題を大きくしている。更
には、繊維をカツトし、クリンプをかけてからウ
エブとしこれを熱融着するというように製造工程
が長く工業上不利という問題もある。 従つて、本発明は、耐熱性、耐湿熱性、耐薬品
性、難燃性に優れ、特に高性能フイルター用途に
好適な極細繊維からなるPPS不織布を提供するこ
とを目的とする。 〔課題を解決するための手段〕 本発明の目的は、平均繊維径が0.1〜8.0μmの
ポリアリーレンサルフアイド繊維からなり、目付
量が5〜500g/m2であるポリアリーレンサルフ
アイド不織布によつて達成される。 本発明のPPS繊維は、ポリアリーレンサルフア
イド樹脂を主成分とする樹脂からなる繊維であ
り、下記構造式 (−R−SOx)−o x=0〜2 (ただし、Rはフエニレン、ビフエニレン、ナフ
タレン、ビフエニレンエーテルまたはそれらの炭
素数1〜6の低級アルキル基置換誘導体である)
を示す重合体、共重合体、ポリチオエーテルケト
ン、ポリチオエーテルスルホンなどの芳香族ポリ
サルフアイド類、それらの共重合体があげられ
る。 本発明の不織布はポリアリーレンサルフアイド
繊維からなるため、特に耐熱性に優れており、一
般的な合成繊維であるポリプロピレン繊維が連続
使用温度が80℃、ポリエステル繊維が約120〜130
℃程度であるのに対し、190℃と著しく高い。ま
た、160℃のスチームにも耐えるという優れた耐
湿熱性も有している。更に、耐薬品性にも優れて
おり、耐溶剤性が極めて良好な上、酸、アルカリ
に対しても強く、例えば、10%NaOH、10%
HCl、20%H2SO4ではポリエステルやアラミド等
は溶解または変性するが、本発明のPPS繊維から
なる不織布は全く変化がないという優れた特性を
有する。また、優れた難燃性と電気絶縁性を有し
ている。 本発明においては、ポリマー玉(シヨツト)の
ない良質な極細繊維を得るうえで、ポリフエニレ
ンスルフアイドが好ましく、特にこのポリフエニ
レンスルフアイドが実質的に線状高分子体である
ことが最も好ましい。この実質的に線状であるポ
リフエニレンスルフアイドは特開昭61−7332号公
報、特開昭61−66720号公報および特開昭61−
47734号公報等に開示されている。 一般にPPS樹脂は高酸化性で部分的に架橋が起
こり易く、通常の紡糸、延伸で種々の問題をひき
おこす。たとえば、未延伸糸の経時変化は繊維を
脆化させ、延伸時に糸切れを頻発させるし、また
繊維が剛直で滑り易い性質は捲縮の付与を困難に
しており、カード性等による通常の短繊維不織布
製造が困難であつた。これに対して線状高分子体
のポリフエニレンスルフアイドは、線状高分子構
造であるので架橋型PPSに比べ流動性がよく溶融
時の熱安定性が高いため、ポリマー玉のほとんど
ない良質な極細繊維不織布が得られ、しかも強
力、伸度が高く、白度の高いより優れた極細繊維
不織布が得られる。このPPS樹脂には添加剤や異
種ポリマー等が混合してあつてもよい。 本発明のPPS繊維の平均繊維径は0.1〜8.0μm
であり、好ましくは0.5〜6.0μm、特に好ましく
は1.0〜5.0μmである。0.1μm以下の場合、柔軟で
あるが繊維強力が低くなりその結果不織布強力も
低い。また、フイルター性能を逆に低下すること
が見出だされた。これは、繊維が集束状になつて
おり、単繊維の分散性が不良なことが原因と推定
される。一方、8.0μm以上では、フイルター性
能、柔軟性が著しく低下する。 また、このメルトブロー法で得られる極細繊維
は極めて小さな繊維径を有しているため、繊維の
平均長さを推定することが難しいが、30mm以上、
多くの場合は100〜500mmと推定される。抄造法に
用いる極細繊維の繊維長としては3〜30mm、特に
5〜10mmが好適である。 本発明のPPS繊維不織布の目付量は5〜500
g/m2であり、好ましくは10〜300g/m2、より
好ましくは15〜100g/m2である。5g/m2以下
では不織布の強力並びにフイルター性能が低下す
る。一方、500g/m2以上では捕集効率は高いが
反面、圧力損失が高くなりすぎてフイルター用途
としては不適なものとなる。 また、本発明の不織布の嵩密度は0.05〜0.50
g/cm3が好ましく、特に0.08〜0.30g/cm3が好ま
しい。0.05g/cm3以下では不織布の強力が低く、
また0.50g/cm3以上では圧力損失が高くなる。不
織布の強力およびフイルター性能は、不織布の目
付量と嵩密度との両方に関連しており、目付量5
〜500g/m2、嵩密度0.05〜0.50g/cm3の両方を
満たすと更に優れた効果が得られる。 本発明の不織布を構成する極細繊維の溶融流れ
量は、5〜1200g/10分、好ましくは80〜800
g/10分、特に好ましくは100〜600g/10分であ
る。1200g/10分であると不織布の強力が低く、
用途が制限されて好ましくない。一方、50g/10
分以下であるとフイルター性能が劣り好ましくな
い。溶融流れ量が50g/10分以下であると、繊維
径分布がブロード(繊維径バラツキが大)となる
ことと、ポリマー玉が発生し易いことによるもの
と考れられる。この繊維径バラツキは、溶融流れ
量が50g/10分以上のものは、繊維径の標準偏差
(δ)が1.0μm以下であるのに対し、50g/10分
以下のものはそれが1.0μm以上、多くは1.5μm以
上となる。以上の様に、極細繊維の溶融流れ量が
50〜1200g/10分の範囲がフイルター性能、不織
布強力の両方を満たすので特に好ましい。 この様な極細繊維の溶融流れ量を得るには使用
するPPS重合体の溶融流れ量を50〜1000g/10
分、好ましくは100〜600g/10分のものを選定す
るのが特によい。 本発明の不織布は、PPS繊維が単繊維状にラン
ダムに分散していることがフイルター性能を著し
く高めるので更に好ましい。また、本発明の不織
布はPPS繊維単独であるのが好ましいが、異素材
の繊維や粉体等が混合されてあつてもよい。 本発明の極細繊維不織布を得る方法としてはメ
ルトブロー法、抄造法が好ましく、特にメルトブ
ロー法が最適である。 本発明のメルトブロー法の一例を第1図及び第
2図を用いて説明する。PPS重合体を押出機1に
より溶融してダイ2に送り込み、ダイ2に一列に
並んで配置された多数の紡糸オリフイス12から
押し出す。それと同時に、パイプ3を経て供給さ
れた加熱された高圧のガスをオリフイス12の両
側に設けられたスリツト15から噴射させ、押し
出された溶融ポリマーの流れに吹き当てて、その
高速気流の作用により押し出された溶融ポリマー
を極細繊維4の形状に牽引、細化し、固化させ
る。このようにして形成された極細繊維は、気流
により撹乱されながら、1対の回転ローラー6の
間で循環しているスクリーンコレクター7上に堆
積されてランダムウエブ5を形成する。 本発明の不織布をメルトブロー法で製造する場
合において、押出機からダイ中でのPPS樹脂の熱
劣化を出来るだけ防ぎ、良質な極細繊維不織布を
得る上で低温高圧ブロー法が好適なことが見出だ
された。押出条件としては、シリンダー温度を
250〜280℃、好ましくは、270〜360℃とするのが
良い。ダイ温度は300〜380℃、好ましくは320〜
360℃である。また、ブローガス条件としては、
ガス温度を300〜410℃、好ましくは320〜390℃、
特に330〜370℃が好ましく、ガス圧としては1.5
Kg/cm2G以上、好ましくは2.0〜5.0Kg/cm2Gであ
る。ガス温度はガスヘツダー14内での温度であ
り、ガスとしては蒸気、空気が好ましい。この様
な条件下でメルトブローすると、ダイ中での樹脂
の熱劣化を最小限に留どめることが出来、広巾
(1.0m以上)の不織布を得る際、巾方向目付斑が
10%以下と著しく均一な不織布が得られる。ま
た、この低温高圧ブロー法の効果としては、ポリ
マー玉がほとんど無く、しかも強力の高い不織布
が得られる。 本明細書でいうポリマー玉とは、ウエブ構成繊
維の直径の約10〜500倍程度の直径を有する玉状
ポリマーまたは繊維の端部や中間部に生成したコ
ブ状ポリマーのことである。このポリマー玉は極
めて小さく肉眼で見出だすことができないものが
多い。顕微鏡を用いて観察するか、または、ウエ
ブをそのまま、もしくはウエブをプレス、カレン
ダー、交絡処理その他の手段によつて繊維密度を
高めることによつて検知し易くなる。このポリマ
ー玉が多く存在すると、用途が大きく制限され、
特に高性能フイルター用途としては用いられなく
なる。 本発明の不織布は適度な強力を有しているため
そのままでフイルター材等に用いることが出来る
が、プレスして高密度、強力を高めることもでき
る。また必要により、熱プレスやエンボス加工、
超音波結合樹脂加工等を行うことが出来る。ま
た、コロナ放電法などによりエレクトレツト化す
ることによりフイルター性能を高めることも可能
である。 本発明の不織布を製造する方法としては、メル
トブロー法と、直接紡糸法、又は複合紡糸法と抄
造法との組み合わせ等があるが、特にメルトブロ
ー法が、より極細化し易いこと、比較的高空〓率
(低嵩密度)な不織布が得られること、および工
程が一工程でコスト的に有利であることから好ま
しい。 本発明の極細繊維を直接紡糸法で得るには、
PPSポリマーの吐出量を小さくし、紡口直下での
急冷法を採用することにより、糸切れ発生を減少
することが出来て、未延伸の細径フイラメントが
得られる。この未延伸糸に特殊な油剤を用い、比
較的低速で延伸することにより、極細のPPSフイ
ラメントを得ることが可能である。 〔実施例〕 以下に実施例を挙げて本発明を更に具体的に説
明する。実施例及び比較例中に示される諸物性の
定義と測定方法を下記に示す。 ◎ 見かけ密度(g/cm3):130g/cm3の一定荷重
下で厚みを測定して目付量との計算により求め
た値である。 ◎ 引張り強度(Kg/cm):長さ20cm×幅1cmの
サンプルを取り、把持長1cmとしてオートグラ
フにより伸長切断し、その時の最大強力を求め
る。 ◎ 平均繊維径(μ) サンプルの任意な10箇所を電子顕微鏡で倍率
2000倍で10枚の写真撮影を行う。1枚の写真に
つき任意の10本の繊維の直径を測定し、これを
10枚の写真について行う。合計100本の繊維径
測定値を求め平均値を計算する。 ◎ 溶融流れ量(g/10分) 荷重5Kgおよび温度315℃の操作条件に変更
したASTM D−1238−82法により測定した値
である。 ◎ 目付斑(%) ランダムウエブの巾方向にわたつて連続的に
10cm×10cmのサンプルを切り取り、この重量を
量る。この値の平均値()と、最大値と最小
値の差(R)を求め、次式により計算した値で
ある。 目付斑(%)=R/x×100 ◎ 捕集効率・圧力損失 JISZ−8901試験用ダスト13種B法の0.3μm平
均のステアリン酸エアゾルのダスト捕集効率測
定及び圧力損失測定法により測定した。 ◎ 柔軟性 柔軟性は以下に記す感応評価によつた。10人
の人がサンプルを手で触り、7人以上が柔らか
いと感じたものを◎、5人以上が柔らかいと感
じたものを○、4人以下の人しか柔らかいと感
じなかつたものを×とした。 実施例 1 線状高分子タイプのポリフエニレンスルフアイ
ド樹脂(溶融流れ量274g/10分)を予備乾燥し、
押出機で溶融後、330℃のダイに送り込んだ。1
mmピツチで、1500個一列に並んだ0.3mmφのオリ
フイスから0.3g/分/オリフイスの吐出量で、
高速スチーム流中に吐出させた。前記スチーム
は、リツプヘツダー内での温度が350℃、圧力は
4.0Kg/cm2Gであつた。生成した繊維群を移動す
る捕集面上に連続的に捕集し、室温で1.2Kg/cm
でプレスし、目付量50g/m2、嵩密度0.28g/cm3
のウエブを得た。得られた極細繊維の溶融流れ量
は313g/10分であつた。 得られた極細繊維不織布は、平均繊維径1.5μ
m、引張り強力320g/cmでポリマー玉の発生は
認められず、柔軟で良質なものであつた。また、
不織布の巾1500mmにおける巾方向での目付斑は5
%と極めて良好な結果であつた。また、この不織
布は、ほぼ白色であり、また、10%NaOH、10
%HCl水溶液中に浸しても変化がなかつた。この
不織布の捕集効率は93%、圧力損失は29.5mmH2O
であり極めて高性能のフイルター性能を示した。 実施例 2 実施例1と同じポリマー、装置を用いての吐出
量、スチーム温度、圧力を第1表に示すように
種々変化させ、他の条件は実施例1と同様にし
て、平均繊維径の種々異なる不織布を得た。得ら
れた不織布の性能を第2表に示す。尚、これらの
不織材の目付量は80g/m2、嵩密度は0.25g/cm3
であつた。第2表から明らかなように、平均繊維
径が0.1〜8.0μmの本発明の不織布は、引張り強
力、フイルター性能、柔軟性、ポリマー玉発生の
いずれにも優れたものであることが判る。
[Industrial Field of Application] The present invention relates to a polyarylene sulfide nonwoven fabric. More specifically, the present invention relates to a nonwoven fabric made of ultrafine polyarylene sulfide (hereinafter referred to as PPS) fiber that has excellent heat resistance, moist heat resistance, chemical resistance, and flame retardancy, and is particularly suitable for various filter applications. [Prior Art] PPS fibers can be used in the form of nonwoven fabrics for various filters, flame-retardant electrical insulation materials, battery separators, etc. due to their excellent heat resistance, moist heat resistance, chemical resistance, and flame retardancy. As a method for manufacturing the PPS fiber, Japanese Patent Publication No. 30609/1983 discloses a method of partially pre-curing PPS resin to increase its molecular weight and obtain a high modulus filament from the resin with reduced melt flow.
On the other hand, it is disclosed in JP-A-58-31112 that a fiber having a low crystallization temperature and a high melting point can be obtained by a high-speed winding method. In addition, as a PPS fiber nonwoven fabric, JP-A-57-
No. 16954 discloses a long fiber nonwoven fabric obtained by obtaining a long fiber web using the so-called "spunbond method" in which it is accompanied by a high-speed air stream, and entangling this with a needle punch. A nonwoven fabric is disclosed in which a blended web of polyester fibers and unstretched PPS fibers is heat-sealed. On the other hand, regarding the melt blowing method, Industrial and Engineering Chemistry
48, No. 8 (P. 1342-1346), 1956, the basic apparatus and method are disclosed. Further, Japanese Patent Publication No. 56-33511 and Japanese Patent Application Laid-open No. 55-142757 disclose methods for producing nonwoven fabrics made of ultrafine fibers such as polyolefin and polyester. However, nothing is known about microfiber woven fabrics made of PPS resin. [Problem to be solved by the invention] In order to obtain an excellent filter that can be used in environments with severe usage conditions such as temperature and chemical resistance, it is necessary to make sure that the fibers that make up the filter are strong against temperature and chemicals, and that the filter itself is It is necessary for the collection efficiency and pressure drop to be excellent. In order to improve the latter collection efficiency and pressure loss, it is necessary that the fineness of the fibers used be fine, and it is particularly preferable to use a nonwoven fabric in which ultrafine fibers are randomly arranged. From this point of view, it is conceivable to use PPS fibers that can satisfy the former requirement in these fields, but as mentioned above, ultrafine fiber nonwoven fabrics that can satisfy the latter requirement have not been obtained using PPS fibers. In other words, PPS resin has a high melting point, high crystallinity, and large modulus, so it has a certain level of performance and quality when used with conventionally known melt spinning technology, like polymers for general-purpose fiber manufacturing such as polyester, polyamide, and polyolefin. It is extremely difficult to make fibers. In particular, fibers with a diameter of 10μ or less
It has not been possible to produce any nonwoven fabric made of PPS fibers. In addition, since this PPS fiber is rigid and brittle, it is extremely difficult to apply the mechanical crimp that is normally applied in the production of short fiber nonwoven fabrics.Furthermore, since it is inherently highly electrostatically charged, conventional short fiber nonwoven fabric technology cannot be applied to this PPS fiber. There is a problem in that it is difficult to manufacture nonwoven fabrics. The PPS long-fiber nonwoven fabric disclosed in JP-A-57-16954 uses the "spunbond method" in which fiber formation is accompanied by a flow of cold air.
There is a limit to the fiber diameter that can be obtained naturally, and the fiber diameter
It is simply impossible to obtain fibers smaller than 10μ.
Furthermore, in order to obtain this nonwoven fabric, the fibers are electrically charged and dispersed to form a web, which is then intertwined with a needle punch, and then subjected to a shrinking treatment at a high temperature, which is disadvantageous in production because the process is long. Furthermore, the biggest problem with the above-mentioned large fiber diameter is that when this nonwoven fabric is used as a filter, high filter performance cannot be obtained, and its uses are naturally limited. Furthermore, in the nonwoven fabric disclosed in JP-A-61-289162, since the web is heat-sealed, there is no flexibility in the fibers, and the fabric becomes hard and paper-like, and has particularly low tear strength. In addition, the bulk density of the nonwoven fabric also increases, and when used in filter applications, there is a problem in that the pressure loss becomes significantly large. Moreover, it is necessary to use a card machine or the like to manufacture the web, and therefore the fibers used need to be 1d (fiber diameter approximately 10μ) or more. The large fiber diameter makes the texture even harder, increasing the problem of deteriorating filter performance. Furthermore, there is the problem that the manufacturing process is long and disadvantageous from an industrial standpoint, as the fibers are cut, crimped, and then made into a web, which is then heat-sealed. Therefore, an object of the present invention is to provide a PPS nonwoven fabric made of ultrafine fibers that has excellent heat resistance, moist heat resistance, chemical resistance, and flame retardancy, and is particularly suitable for use in high-performance filters. [Means for Solving the Problems] The object of the present invention is to produce a polyarylene sulfide nonwoven fabric made of polyarylene sulfide fibers having an average fiber diameter of 0.1 to 8.0 μm and having a basis weight of 5 to 500 g/ m2 . will be achieved. The PPS fiber of the present invention is a fiber made of a resin whose main component is polyarylene sulfide resin, and has the following structural formula (-R-SO x ) -o x = 0 to 2 (where R is phenylene, biphenylene, naphthalene, biphenylene ether or their substituted derivatives with a lower alkyl group having 1 to 6 carbon atoms)
Examples include polymers and copolymers exhibiting the following, aromatic polysulfides such as polythioetherketone and polythioethersulfone, and copolymers thereof. Since the nonwoven fabric of the present invention is made of polyarylene sulfide fiber, it has particularly excellent heat resistance. Polypropylene fiber, which is a common synthetic fiber, can be used continuously at a temperature of 80°C, while polyester fiber has a continuous use temperature of about 120 to 130°C.
℃, but it is extremely high at 190℃. It also has excellent heat and humidity resistance, being able to withstand steam at 160°C. Furthermore, it has excellent chemical resistance, extremely good solvent resistance, and is resistant to acids and alkalis, such as 10% NaOH, 10%
Polyester, aramid, etc. are dissolved or modified in HCl or 20% H 2 SO 4 , but the nonwoven fabric made of PPS fibers of the present invention has an excellent property of being completely unchanged. It also has excellent flame retardancy and electrical insulation properties. In the present invention, polyphenylene sulfide is preferable in order to obtain high-quality ultrafine fibers without polymer beads (shot), and in particular, it is most preferable that this polyphenylene sulfide is substantially a linear polymer. preferable. This substantially linear polyphenylene sulfide is disclosed in JP-A-61-7332, JP-A-61-66720 and JP-A-61-61-
It is disclosed in Publication No. 47734, etc. In general, PPS resins are highly oxidizable and are prone to partial crosslinking, which causes various problems during normal spinning and stretching. For example, the aging of undrawn yarn makes the fiber brittle and causes frequent yarn breakage during drawing, and the rigid and slippery nature of the fiber makes it difficult to crimp it, making it difficult to crimp the yarn due to carding. It was difficult to produce fibrous nonwoven fabric. On the other hand, polyphenylene sulfide, which is a linear polymer, has a linear polymer structure, so it has better fluidity and higher thermal stability when melted than cross-linked PPS, so it has a high quality with almost no polymer balls. Furthermore, an excellent ultrafine fiber nonwoven fabric with strong strength, high elongation, and high whiteness can be obtained. This PPS resin may be mixed with additives, different types of polymers, etc. The average fiber diameter of the PPS fiber of the present invention is 0.1 to 8.0 μm
It is preferably 0.5 to 6.0 μm, particularly preferably 1.0 to 5.0 μm. If it is 0.1 μm or less, it is flexible but the fiber strength is low and as a result, the nonwoven fabric strength is also low. It has also been found that the filter performance is adversely reduced. This is presumed to be because the fibers are bundled and the dispersibility of single fibers is poor. On the other hand, if the thickness is 8.0 μm or more, the filter performance and flexibility will be significantly reduced. In addition, since the ultrafine fibers obtained by this melt blowing method have an extremely small fiber diameter, it is difficult to estimate the average length of the fibers, but it is difficult to estimate the average length of the fibers.
In most cases, it is estimated to be 100 to 500 mm. The fiber length of the ultrafine fibers used in the papermaking method is preferably 3 to 30 mm, particularly 5 to 10 mm. The basis weight of the PPS fiber nonwoven fabric of the present invention is 5 to 500.
g/m 2 , preferably 10 to 300 g/m 2 , more preferably 15 to 100 g/m 2 . If it is less than 5 g/m 2 , the strength of the nonwoven fabric and the filter performance will decrease. On the other hand, if it exceeds 500 g/m 2 , the collection efficiency is high, but on the other hand, the pressure loss becomes too high, making it unsuitable for use as a filter. In addition, the bulk density of the nonwoven fabric of the present invention is 0.05 to 0.50.
g/cm 3 is preferred, particularly 0.08 to 0.30 g/cm 3 . Below 0.05g/ cm3 , the strength of the nonwoven fabric is low;
Moreover, if it exceeds 0.50 g/cm 3 , the pressure loss will increase. The strength and filter performance of nonwoven fabrics are related to both the basis weight and bulk density of the nonwoven fabric, and the basis weight of nonwoven fabrics is 5.
Even better effects can be obtained by satisfying both the bulk density of 0.05 to 0.50 g/cm 2 and the bulk density of 0.05 to 0.50 g/cm 3 . The melt flow rate of the ultrafine fibers constituting the nonwoven fabric of the present invention is 5 to 1200 g/10 minutes, preferably 80 to 800 g/10 minutes.
g/10 minutes, particularly preferably 100 to 600 g/10 minutes. If it is 1200g/10 minutes, the strength of the nonwoven fabric will be low;
It is undesirable because its uses are limited. On the other hand, 50g/10
If it is less than 1 minute, the filter performance will be poor and undesirable. This is considered to be because when the melt flow rate is 50 g/10 minutes or less, the fiber diameter distribution becomes broad (large variation in fiber diameter) and polymer beads are likely to occur. This variation in fiber diameter is explained by the standard deviation (δ) of fiber diameter being 1.0 μm or less for fibers with a melt flow rate of 50 g/10 minutes or more, whereas it is 1.0 μm or more for fibers with a melt flow rate of 50 g/10 minutes or less. , most of them are 1.5 μm or more. As mentioned above, the melt flow rate of ultrafine fibers is
A range of 50 to 1200 g/10 minutes is particularly preferred since it satisfies both filter performance and nonwoven fabric strength. To obtain such a melt flow rate of ultrafine fibers, the melt flow rate of the PPS polymer used should be 50 to 1000 g/10
It is especially good to select the amount per 10 minutes, preferably 100 to 600 g/10 minutes. In the nonwoven fabric of the present invention, it is more preferable that the PPS fibers are randomly dispersed in the form of single fibers, since this significantly improves the filter performance. Further, although it is preferable that the nonwoven fabric of the present invention is made of PPS fiber alone, it may be a mixture of fibers of different materials, powder, etc. The method for obtaining the ultrafine fiber nonwoven fabric of the present invention is preferably a melt blowing method or a papermaking method, with the melt blowing method being particularly optimal. An example of the melt blowing method of the present invention will be explained using FIGS. 1 and 2. A PPS polymer is melted by an extruder 1, fed into a die 2, and extruded from a large number of spinning orifices 12 arranged in a line in the die 2. At the same time, the heated high-pressure gas supplied through the pipe 3 is injected from the slits 15 provided on both sides of the orifice 12, and is blown against the flow of the extruded molten polymer, causing it to be extruded by the action of the high-speed air flow. The molten polymer is drawn into the shape of ultrafine fibers 4, thinned, and solidified. The ultrafine fibers thus formed are deposited on a screen collector 7 circulating between a pair of rotating rollers 6 while being agitated by airflow to form a random web 5. When manufacturing the nonwoven fabric of the present invention by the melt blowing method, it has been found that the low temperature and high pressure blowing method is suitable for preventing thermal deterioration of the PPS resin from the extruder to the die as much as possible and obtaining a high quality ultrafine fiber nonwoven fabric. It was issued. The extrusion conditions include cylinder temperature.
The temperature is preferably 250 to 280°C, preferably 270 to 360°C. Die temperature is 300~380℃, preferably 320~
It is 360℃. In addition, the blow gas conditions are as follows:
Gas temperature 300~410℃, preferably 320~390℃,
Particularly preferred is 330 to 370℃, and the gas pressure is 1.5
Kg/cm 2 G or more, preferably 2.0 to 5.0 Kg/cm 2 G. The gas temperature is the temperature within the gas header 14, and the gas is preferably steam or air. Melt blowing under these conditions can minimize the thermal deterioration of the resin in the die, and when obtaining a wide width (1.0 m or more) nonwoven fabric, unevenness in width direction can be avoided.
A highly uniform nonwoven fabric with a density of 10% or less can be obtained. Furthermore, as an effect of this low-temperature, high-pressure blowing method, a nonwoven fabric with almost no polymer beads and high strength can be obtained. The term "polymer beads" as used herein refers to a bead-shaped polymer having a diameter of approximately 10 to 500 times the diameter of the fibers constituting the web, or a knob-shaped polymer formed at the ends or intermediate portions of the fibers. Many of these polymer beads are extremely small and cannot be seen with the naked eye. Detection is facilitated by observation using a microscope, or by increasing the fiber density of the web as it is or by pressing, calendering, entangling or other means. If a large number of these polymer beads exist, the applications will be greatly limited,
In particular, it is no longer used as a high-performance filter. Since the nonwoven fabric of the present invention has appropriate strength, it can be used as it is for filter materials, etc., but it can also be pressed to increase its density and strength. In addition, if necessary, heat pressing or embossing,
Ultrasonic bonding resin processing, etc. can be performed. Furthermore, it is also possible to improve the filter performance by converting it into an electret using a corona discharge method or the like. Methods for producing the nonwoven fabric of the present invention include a combination of a melt blowing method, a direct spinning method, or a composite spinning method and a papermaking method, but the melt blowing method in particular has the advantage of being easier to obtain finer particles and having a relatively high porosity. This method is preferable because a nonwoven fabric having a low bulk density can be obtained and the process is performed in one step, which is advantageous in terms of cost. To obtain the ultrafine fiber of the present invention by direct spinning method,
By reducing the discharge amount of PPS polymer and adopting a rapid cooling method directly below the spinneret, it is possible to reduce the occurrence of yarn breakage and obtain undrawn small diameter filaments. By using a special oil agent and drawing this undrawn yarn at a relatively low speed, it is possible to obtain ultra-fine PPS filaments. [Example] The present invention will be described in more detail with reference to Examples below. The definitions and measurement methods of various physical properties shown in Examples and Comparative Examples are shown below. ◎ Apparent density (g/cm 3 ): This is the value obtained by measuring the thickness under a constant load of 130 g/cm 3 and calculating it with the basis weight. ◎ Tensile strength (Kg/cm): Take a sample with a length of 20 cm x width of 1 cm, cut it by stretching using an autograph with a grip length of 1 cm, and find the maximum strength at that time. ◎ Average fiber diameter (μ) Magnification of 10 arbitrary points on the sample using an electron microscope
Take 10 photos at 2000x magnification. Measure the diameter of any 10 fibers per photo and calculate this
Do this for 10 photos. Obtain the fiber diameter measurements for a total of 100 fibers and calculate the average value. ◎ Melt flow rate (g/10 minutes) This is a value measured according to the ASTM D-1238-82 method under modified operating conditions of a load of 5 kg and a temperature of 315°C. ◎ Spotting (%) Continuously across the width of the random web
Cut out a 10cm x 10cm sample and weigh it. The average value ( ) of these values and the difference (R) between the maximum value and the minimum value are determined, and the value is calculated using the following formula. Spot size (%) = R/x x 100 ◎ Collection efficiency/pressure loss Measured by dust collection efficiency measurement and pressure loss measurement method of 0.3μm average stearic acid aerosol according to JISZ-8901 test dust 13 type B method . ◎ Flexibility Flexibility was determined by the sensitivity evaluation described below. 10 people touched the sample with their hands, and 7 or more people felt it was soft, ◎, 5 or more people felt it was soft, ○, and only 4 or less people felt it was soft, ×. did. Example 1 A linear polymer type polyphenylene sulfide resin (melt flow rate 274 g/10 minutes) was pre-dried,
After melting in an extruder, it was fed into a die at 330°C. 1
With a discharge rate of 0.3g/min/orifice from 1,500 0.3mmφ orifices lined up in a row with a mm pitch,
It was discharged into a high-speed steam stream. The temperature of the steam in the lip header is 350℃, and the pressure is
It was 4.0Kg/cm 2 G. The generated fiber group is continuously collected on a moving collection surface, and the yield is 1.2Kg/cm at room temperature.
The area weight is 50g/m 2 and the bulk density is 0.28g/cm 3.
I got the web. The melt flow rate of the obtained ultrafine fibers was 313 g/10 minutes. The obtained microfiber nonwoven fabric has an average fiber diameter of 1.5μ
m, tensile strength was 320 g/cm, no polymer beads were observed, and the material was flexible and of good quality. Also,
The weight unevenness in the width direction for a nonwoven fabric with a width of 1500mm is 5.
%, which was an extremely good result. Moreover, this non-woven fabric is almost white in color and also contains 10% NaOH, 10
There was no change even when immersed in a %HCl aqueous solution. The collection efficiency of this non-woven fabric is 93% and the pressure drop is 29.5mmH2O
This showed extremely high performance filter performance. Example 2 Using the same polymer and equipment as in Example 1, the discharge amount, steam temperature, and pressure were variously changed as shown in Table 1, and the other conditions were the same as in Example 1, and the average fiber diameter was Various different nonwoven fabrics were obtained. Table 2 shows the performance of the obtained nonwoven fabric. The basis weight of these non-woven materials is 80g/m 2 and the bulk density is 0.25g/cm 3
It was hot. As is clear from Table 2, the nonwoven fabric of the present invention having an average fiber diameter of 0.1 to 8.0 μm is excellent in tensile strength, filter performance, flexibility, and polymer bead generation.

【表】【table】

【表】 実施例 3 実施例1で捕集面の移動速度を種々変化させて
目付量が種々異なる不織布を得た。また、不織布
の室温プレス圧力を種々変えて、不織布の嵩密度
が種々異なる不織布を得た。他の条件は実施例1
と同様にした。この結果を第3表に示す。尚これ
らの不織布の平均繊維径は1.5μmであつた。 第3表から明らかな様に、目付量が5〜500
g/m2の範囲の不織布が引張り強力、フイルター
性能、柔軟性いずれも優れたものであることが判
る。
[Table] Example 3 In Example 1, the moving speed of the collection surface was varied to obtain nonwoven fabrics with various basis weights. In addition, the room temperature pressing pressure of the nonwoven fabric was varied to obtain nonwoven fabrics with various bulk densities. Other conditions are Example 1
I did the same thing. The results are shown in Table 3. The average fiber diameter of these nonwoven fabrics was 1.5 μm. As is clear from Table 3, the basis weight is 5 to 500.
It can be seen that the nonwoven fabric in the range of g/m 2 has excellent tensile strength, filter performance, and flexibility.

〔発明の効果〕〔Effect of the invention〕

本発明の不織布はPPS極細繊維からなるため、
耐熱性、耐湿熱性、耐薬品性(耐酸、耐アルカリ
を含め)、難燃性、電気絶縁性に優れ、しかも優
れたフイルター特性を有する。また、柔軟で従来
ない高強力で、白度が高く、ポリマー玉がなく巾
方向目付分布が均一な良質な不織布が、一工程で
製造出来、工業的利点が大きいものである。また
本発明の不織布はノーバインダータイプの不織布
であるので、フイルター性能を高めることができ
る。この効果は、PPS樹脂として線状高分子体の
ポリフエニレンスルフアイドを用いた場合に特に
顕著となる。 本発明のPPS極細繊維不織布は、特に工業用の
高性能フイルター(エアフイルター、液体フイル
ター)に好適であるが、バツテリセパレーターや
断熱材、防炎材、建材、土木材など種々の用途に
適したものである。 さらに下記に示す用途に用いることができる。 テープ類、シーツ類、ライナー、カバー材、電
気絶縁材、電線被覆材、隔膜、ガスケツト、レザ
ー用基布、プラスチツクの補強材、緩衝材、屋根
の下地材、壁材、吸音材、裏地、包装材、通気性
防水布、油水分離フイルター、弁のパツキング、
中綿材等。 本発明の不織布は、平面的なシート構造物の他
に、型または一連の成形ロールの中で加熱成型す
るなどにより、立体成型品を含めた多様な製品を
作ることが出来る。
Since the nonwoven fabric of the present invention is made of PPS ultrafine fibers,
It has excellent heat resistance, heat and humidity resistance, chemical resistance (including acid and alkali resistance), flame retardancy, and electrical insulation, as well as excellent filter properties. In addition, a high-quality nonwoven fabric that is flexible, has unprecedented strength, has high whiteness, has no polymer beads, and has a uniform fabric weight distribution in the width direction can be produced in a single process, which has great industrial advantages. Furthermore, since the nonwoven fabric of the present invention is a binder-free nonwoven fabric, the filter performance can be improved. This effect becomes particularly remarkable when polyphenylene sulfide, a linear polymer, is used as the PPS resin. The PPS ultrafine fiber nonwoven fabric of the present invention is particularly suitable for industrial high-performance filters (air filters, liquid filters), but is also suitable for various uses such as battery separators, heat insulation materials, flame retardant materials, building materials, and civil engineering materials. It is something. Furthermore, it can be used for the purposes shown below. Tapes, sheets, liners, covering materials, electrical insulation materials, wire sheathing materials, diaphragms, gaskets, leather base fabrics, plastic reinforcement materials, cushioning materials, roofing materials, wall materials, sound absorbing materials, linings, packaging material, breathable waterproof fabric, oil/water separation filter, valve packing,
Filling material etc. In addition to flat sheet structures, the nonwoven fabric of the present invention can be made into various products including three-dimensional molded products by heat molding in a mold or a series of molding rolls.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はメルトブロープロセスの一例を示す斜
視図である。第2図はメルトブロープロセスに用
いるダイの一例を示す断面図である。 1……押出機、2……メルトブローダイ、3…
…ガス用パイプ、4……極細繊維群、5……ラン
ダムウエブ、6……駆動ローラー、7……スクリ
ーン、8……カレンダーロール、9……ダイ紡
口、10……リツプ、11……溶融ポリマー流
路、12……紡糸オリフイス、13……ガス導入
口、14……リツプガスヘツダー、15……ガス
スリツト。
FIG. 1 is a perspective view showing an example of a melt blowing process. FIG. 2 is a sectional view showing an example of a die used in the melt blowing process. 1... Extruder, 2... Melt blow die, 3...
...Gas pipe, 4...Superfine fiber group, 5...Random web, 6...Drive roller, 7...Screen, 8...Calendar roll, 9...Die spinneret, 10...Rip, 11... Molten polymer channel, 12...Spinning orifice, 13...Gas inlet, 14...Rip gas header, 15...Gas slit.

Claims (1)

【特許請求の範囲】[Claims] 1 平均繊維径が0.1〜8.0μmのポリアリーレン
サルフアイド繊維からなり、目付量が5〜500
g/m2であるポリアリーレンサルフアイド不織
布。
1 Made of polyarylene sulfide fibers with an average fiber diameter of 0.1 to 8.0 μm, and a basis weight of 5 to 500
g/m 2 polyarylene sulfide nonwoven fabric.
JP63254905A 1987-11-12 1988-10-12 Nonwoven fabric of polyarylene sulfide Granted JPH01229855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63254905A JPH01229855A (en) 1987-11-12 1988-10-12 Nonwoven fabric of polyarylene sulfide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28434687 1987-11-12
JP62-284346 1987-11-12
JP63254905A JPH01229855A (en) 1987-11-12 1988-10-12 Nonwoven fabric of polyarylene sulfide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8013108A Division JP2859193B2 (en) 1987-11-12 1996-01-29 Polyphenylene sulfide nonwoven fabric, method for producing the same, and filter using the same

Publications (2)

Publication Number Publication Date
JPH01229855A JPH01229855A (en) 1989-09-13
JPH0380905B2 true JPH0380905B2 (en) 1991-12-26

Family

ID=26541906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63254905A Granted JPH01229855A (en) 1987-11-12 1988-10-12 Nonwoven fabric of polyarylene sulfide

Country Status (1)

Country Link
JP (1) JPH01229855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035775A1 (en) 2006-09-21 2008-03-27 Asahi Kasei Fibers Corporation Heat-resistant non-woven fabric

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206040B2 (en) * 2012-09-27 2017-10-04 東レ株式会社 Polyphenylene sulfide fiber for nonwoven fabric
JPWO2021172529A1 (en) * 2020-02-28 2021-09-02

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454189A (en) * 1980-06-27 1984-06-12 Toray Industries, Inc. Sheet of polyphenylene sulfide filaments and process for producing the same
JPS61289162A (en) * 1985-06-11 1986-12-19 日本バイリーン株式会社 Production of heat resistant nonwoven fabric
JPS63182413A (en) * 1986-09-29 1988-07-27 Toray Ind Inc Polyphenylene sulfone fiber and production thereof
JPS63219653A (en) * 1987-03-06 1988-09-13 東レ株式会社 Extremely fine multifilament nonwoven fabric and its production
JPS63315655A (en) * 1987-06-16 1988-12-23 東レ株式会社 Polyphenylene sulfide melt blow nonwoven fabric and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454189A (en) * 1980-06-27 1984-06-12 Toray Industries, Inc. Sheet of polyphenylene sulfide filaments and process for producing the same
JPS61289162A (en) * 1985-06-11 1986-12-19 日本バイリーン株式会社 Production of heat resistant nonwoven fabric
JPS63182413A (en) * 1986-09-29 1988-07-27 Toray Ind Inc Polyphenylene sulfone fiber and production thereof
JPS63219653A (en) * 1987-03-06 1988-09-13 東レ株式会社 Extremely fine multifilament nonwoven fabric and its production
JPS63315655A (en) * 1987-06-16 1988-12-23 東レ株式会社 Polyphenylene sulfide melt blow nonwoven fabric and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035775A1 (en) 2006-09-21 2008-03-27 Asahi Kasei Fibers Corporation Heat-resistant non-woven fabric

Also Published As

Publication number Publication date
JPH01229855A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
KR910005016B1 (en) Polyarylene sulfide nonwovens
JP2825514B2 (en) Oriented melt-sprayed fiber, method for producing the same and web thereof
US4454189A (en) Sheet of polyphenylene sulfide filaments and process for producing the same
US5407739A (en) Ignition resistant meltbrown or spunbonded insulation material
JP5021740B2 (en) Foldable mask with single component filtration / reinforcement single layer
US5141699A (en) Process for making oriented melt-blown microfibers
JP7268594B2 (en) Polyphenylene sulfide short fibers, fiber structures, filter felts and bag filters
US20140187115A1 (en) Polyphenylene sulfide fiber and nonwoven fabric
JP2859193B2 (en) Polyphenylene sulfide nonwoven fabric, method for producing the same, and filter using the same
JP2019199668A (en) Mask filter and face mask
JPH0380905B2 (en)
JP3063074B2 (en) Mixed fiber nonwoven
JP3101414B2 (en) Stretchable polyester-based elastic nonwoven fabric and method for producing the same
JP3074338B2 (en) Method for producing nonwoven fabric made of ultrafine fibers
JP3147633B2 (en) Non-woven and civil engineering materials
JPH01201567A (en) Production of bulky spun-bond nonwoven fabric
JPH06264354A (en) Flame-retardant filament nonwoven fabric and its production
EP0581909A1 (en) Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers.
JP3468542B2 (en) Flame-retardant long-fiber nonwoven fabric and method for producing the same
JPH06330446A (en) Melt-blown non-woven fabric, production thereof and non-woven fabric composite material
JPH08291458A (en) Production of pigment-containing filament nonwoven fabric
JP2791159B2 (en) Extra-fine long-fiber non-woven fabric
KR100557271B1 (en) Divisible hollow copolyester fibers, and divided copolyester fibers, woven or knitted fabric, artificial leather and nonwoven fabric comprising same
JPH01292161A (en) Nonwoven fabric of high dimensional stability
JP2024078778A (en) Spunbond nonwoven fabrics, filter media, and air filters

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 17

EXPY Cancellation because of completion of term