JPH0380887B2 - - Google Patents

Info

Publication number
JPH0380887B2
JPH0380887B2 JP59110951A JP11095184A JPH0380887B2 JP H0380887 B2 JPH0380887 B2 JP H0380887B2 JP 59110951 A JP59110951 A JP 59110951A JP 11095184 A JP11095184 A JP 11095184A JP H0380887 B2 JPH0380887 B2 JP H0380887B2
Authority
JP
Japan
Prior art keywords
yarn
polyester
false twisting
present
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59110951A
Other languages
Japanese (ja)
Other versions
JPS60259616A (en
Inventor
Hiroyuki Iimuro
Masakazu Fujita
Masahiro Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11095184A priority Critical patent/JPS60259616A/en
Publication of JPS60259616A publication Critical patent/JPS60259616A/en
Publication of JPH0380887B2 publication Critical patent/JPH0380887B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリエステル繊維に関し、特に延伸仮
撚加工に適したポリエステル繊維に関する。 (従来技術) ポリエステル繊維、特に延伸仮撚加工に供する
ポリエステル繊維としては、3000〜4000ヤード/
分の速度で高速紡糸された部分配向糸、所謂
POY(Partially Oriented Yarn)が最近広く用
いられている。しかし、このようなポリエステル
繊維は経時安定性が必らずしも十分ではないため
長時間の保存や輸送に耐えないだけでなく、延伸
仮撚加工工程におけるフイラメントの断面変形が
大きくこのため得られる崇高加工糸の外観風合が
劣るという欠点がある。更に特に高速の延伸仮撚
加工の際には高速下で大きな延伸変形がおこるた
めフイラメントが切れやすく毛羽や断糸が発生し
やすいという欠点があつた。かかるPOYに対し、
最近4000〜6000m/分の引取速度で高速紡糸され
たポリエステル繊維、あるいは紡出糸条を150℃
以上の加熱気体により瞬間的に熱処理した後2000
〜4500m/分の速度で引取つたポリエステル繊維
を延伸仮撚加工に供することが提案されている
(例えば、特公昭58−36086号、特公昭58−18446
号、特公昭58−17294号、特開昭58−169513号公
報)。この様なポリエステル繊維は高度の配向性
及び結晶性を有しているため、経時安定性が向上
すると共に、延伸仮撚加工時の断面扁平比が減少
するなどの改善効果が認められるものの、延伸仮
撚加工工程では延伸時に結晶の破壊と再配列を伴
なう、所謂結晶延伸が起こるために逆に毛羽が発
生しやすいという欠点があつた。 更に、得られる延伸仮撚加工糸の後工程での解
舒性及び製織性が不良となる欠点もあつた。 また、近年、収縮差を有するポリエステル繊維
を混繊せしめた潜在崇高性マルチフイラメントに
関する研究も活発になされている。その際に使用
する高収縮ポリエステル繊維として、前記POY
が多く用いられているものの、前述の如く経時安
定性が悪いためその取扱いが困難であつた。一
方、かかるPOYに代えて紡出糸条を熱処理して
から高速で引取つたものを採用すると経時安定性
は良好であるものの、得られる潜在崇高性マルチ
フイラメントのフイラメント間の収縮差を充分に
付与できなく、満足し得る崇高性を呈することが
できなかつた。 (発明の目的) 本発明の目的は、前記欠点を解消し得るポリエ
ステル繊維であつて、特に下記(1)〜(4)の要求特性
を同時に満足し得る延伸仮撚加工に適したポリエ
ステル繊維を提供することにある。 (1) 長時間の保存に耐え得る経時安定性を有す
る。 (2) 延伸仮撚加工時のフイラメントの断面変形が
小さい。 (3) 延伸仮撚加工時の毛羽の発生が少ない。 (4) 得られる仮撚加工糸の解舒性及び製繊性が良
好。 (構成) 本発明者等は、かかる目的を達成すべく、まず
要求特性(1)〜(4)の夫々の許容水準について検討し
たところ、経時安定性は安定日数が150日以上、
フイラメントの断面変形は後述する断面扁平率が
1.5以下、毛羽は10ケ/104m以下であることが必
要であり、解舒性及び製繊性の不良はあつてはな
らないことを知つた。 本発明者等は、かかる許容水準を同時に達成し
得るポリエステル繊維について鋭意検討した結
果、本発明に到達したものである。 即ち、本発明は、主たる繰り返し単位がエチレ
ンテレフタレートであるポリエステルから成り、
且つ伸度が40〜60%、複屈折率(Δn)が0.09〜
0.13であるポリエステル繊維であつて、該繊維の
熱応力のピーク温度及びピーク値が夫々75〜100
℃及び0.3〜0.5g/deであると共に、沸水収縮率
が40%以上である事を特徴とするポリエステル繊
維である。 本発明を詳述する前に、本発明で用いる各特性
値の測定方法を述べる。 伸 度 テンシロン引張試験機を用いて試料長20cmの条
件で引張り試験を行い切断時の伸長率を以て表示
する。 沸水収縮率 試料を100℃の沸水中で30分間無拘束状態で熱
処理したときの収縮量を処理前の試験長に対する
パーセントで表わす。 熱応力 カネボウエンジニアリング社製熱応力試験機
KE−型を用いて、初期緊張応力デニール/30
g、試料長10cm、加熱速度2.5℃/秒の条件下に
より測定を行つた。 経時安定性 試料パツケージを温度35℃、湿度55%RHの温
調室に保存し、所定日数の経時後取出し後述の要
領により延伸仮撚加工を行い、得られた加工糸の
メリヤス編み及び染色を行つた。染着は経時日数
の多いもの程濃染化して行くが標準糸(各水準条
件下で紡糸捲取後25℃、65%RHの室内に1日だ
け放置した後延伸仮撚加工された加工糸)との染
着差を肉眼判定を行い、その染着差の許容限界に
達した経時日数で表わした。 断面扁平率 断面扁平率は得られた延伸仮撚加工糸のフイラ
メント断面における内径(対角線)のうち最も長
いものの長さをbとし、最長径と直交する径のう
ち最も長いものをaとしたときのb/aで定義
し、20本について測定した値の平均値で表わす。
かかる扁平率が1に近いもの程真円に近いことを
意味する。 毛 羽 延伸仮撚加工の際の撚掛ユニツトより下流の箇
所に東レエンジニアニング製毛羽テスター
(HAIRINESS COUNTER MODEL DT−104)
にて毛羽の発生個数を30分間測定し、発生個数/
104m単位に換算した。 本発明を詳述する。 本発明において言う「ポリエステル」とは、ポ
リエチレンテレフタレート単独重合体、エチレン
テレフタレート単位を90モル%以上含むポリエス
テル共重合体及びこれらのポリエステルを主成分
とするブレンド物を総称する。前記のポリエステ
ルには必要に応じて少量の添加剤(例えば艶消
剤、顔料、染料、安定剤、難燃剤、表面改質剤
等)を含んでも差しつかえない。これらのポリエ
ステルのうち極限粘度(35℃のO−クロロフエノ
ール溶液で測定)は0.5以上、特に0.55〜0.95のも
のが好適である。 本発明においてまず、ポリエステル繊維の(破
断)伸度が40〜60%である事が必要である。かか
る伸度が60%を越える場合は延伸仮撚加工時の延
伸倍率が高くなるため、延伸仮撚加工時にフイラ
メントの断面扁平化が発生する。また、伸度が40
%未満の場合は、繊維の伸縮性が不足するため高
速での延伸仮撚加工の際には、発生する糸揺れ、
バルーニングを自己吸収する事ができず捲縮斑や
毛羽を誘発する。次に、複屈折(Δn)が0.09〜
0.13である事が必要である。Δnが0.09未満では、
経時安定性が不十分なため長期間にわたる輸送や
保存の際には繊維の配向が徐々に無配向方向へ変
性する事による濃染化現象が発生する。また、
Δnが0.13を越える場合には、延伸仮撚加工糸の
残留トルクが高くなるという現象が現われ、後工
程での解舒性、製繊性が悪化する。 更に、熱応力のピーク温度(Tmax)が75〜
100℃でかつピーク値(TSTmax)が0.3〜0.5
g/deである事が必要である。Tmaxが100℃を
越える場合、及びTSTmaxが0.5g/deを越える
場合は、延伸仮撚加工の際に毛羽の発生や捲縮率
の低下などの欠点が生じる。これは高いTmax値
をとるポリエステル繊維の場合は、熱に対する繊
維の柔軟性が低下するため、延伸仮撚加工時の変
形追随性が悪化する事によるものと考えられる。 一方、Tmaxが75℃未満の場合、及び
TSTmaxが0.3g/de未満の場合は、延伸仮撚加
工の際にヒーター内で糸条が溶融断糸しやすい。 本発明のポリエステル繊維において、上述した
伸度、複屈折率(Δn)、熱応力のピーク温度及び
ピーク値が本発明で規定する範囲にあつても、沸
水収縮率が40%以上でなければ本発明の目的を達
成できない。ここで云う沸水収縮率は繊維の結晶
性を表わす特性として用いるものであり、清水ら
の繊維学会誌34T−93(1978)の論文に示されて
いるように、結晶性の増大に伴い沸水収縮率は減
少する。 かかる沸水収縮率が40%未満のポリエステル繊
維の場合には、延伸仮撚加工の際に結晶延伸が起
こり結晶の破壊及び高い延伸張力の発生のために
フイラメントの切断、即ち毛羽が多発する。この
ように、伸度が40〜60%、繊維全体の複屈折
(Δn)が0.09〜0.13、沸水収縮率が40%以上であ
り且つ熱応力のピーク温度が75〜100℃でピーク
値が0.3〜0.5g/deであるポリエステル繊維の
み、延伸仮撚加工に際し、経時安定性、フイラメ
ントの耐断面変形性、耐毛羽性、及び良好な解舒
性及び製繊性ぽ兼ねそなえることができるのであ
る。 従来のポリエステル繊維、即ち4000〜6000m/
分で高速紡糸されたもの、或いは紡出糸条を150
℃以上の加熱気体で熱処理してから2000〜4500
m/分で引取つたものでは、繊維の配向性(複屈
折率)が増大すると共に、結晶性も同時に急激に
増大して沸水収縮率は急激に低下する。このため
得られるポリエステル繊維の伸度、複屈折率、熱
応力及び沸水収縮率が本発明で規定する範囲を同
時に満足することができず、経時変化、仮撚加工
時のフイラメント断面変形および毛羽、更に解舒
性および製繊性などの許容水準を同時に満足する
ことはできないのである。以上、述べてきた本発
明のポリエステル繊維は、従来の溶融紡糸とは異
なる方法で製造する。その一例を示すと、ポリエ
ステルを口金より溶融吐出し、口金から吐出直後
の雰囲気を少くとも130mmの長さにわたり200℃以
上の高温に保ち、その直後10〜20℃の冷風を吹付
け急冷を行い、引続き70〜110℃の低温熱処理ゾ
ーンを走行せしめて熱処理したのち該糸条を4500
〜6000m/分の速度で引取ることにより製造する
のが工業的に有利である。 この際、低温熱処理ゾーンの温度及び引取速度
が大切であつて、前記範囲内の温度及び引取速度
で初めて本発明のポリエステル繊維が得られるの
である。なお、最終的に得られるポリエステル繊
維の特性が本発明で規定する範囲を満足するもの
であれば、他の方法を採用してもよいことは勿論
である。 (作用) 従来の、紡出糸条を150℃以上で熱処理後2000
〜4500m/分で引取つたポリエステル繊維は、あ
まりにも高度の配向性と結晶性とを有しているた
め、経時安定性及び延伸仮撚加工時のフイラメン
トの断面変形に対しては満足できるものの、延伸
仮撚加工の際に結晶化延伸が起きると共に、熱に
対する変形追随性も不良であるため毛羽が多発す
る。しかも、得られる加工糸の残留トルクも高い
ため解舒性及び製繊性も不良となるのである。 これに対して、本発明のポリエステル繊維は適
度な配向性、結晶性、及び熱に対する変形追随性
を有している結果、経時安定性は安定日数が150
日以上であり、延伸仮撚加工の際に、得られる加
工糸のフイラメント断面扁平率を1.5以下にでき
る延伸倍率を採用することができる。そして、か
かる延伸倍率で延伸仮撚加工を施しても、結晶化
延伸が発生せず、しかも本発明のポリエステル繊
維は熱に対する変形追随性が良好であるため、得
られる加工糸の毛羽も10ケ/104m以下であり、
更に得られる加工糸の残留トルクも低いため、か
かる加工糸の解舒性及び製繊性も良好である。 この様に、本発明のポリエステル繊維では要求
特性(1)〜(4)を同時に満足すると共に、かかるポリ
エステル繊維を高収縮フイラメントとする潜在崇
高性マルチフイラメントでは、高収縮フイラメン
トの経時安定性が良好で且つ構成フイラメント間
の収縮差を充分に大きくすることができるため、
かかるマルチフイラメントの取扱い性及び呈し得
る崇高性は共に満足し得るものである。 (発明の効果) 本発明のポリエステル繊維によれば、特に延伸
仮撚加工において、原糸の管理が容易で且つ加工
性も良好とすることができ、しかも得られる加工
糸の外観・風合、及びその織編工程での工程通過
性を共に良好とすることができる。 (実施例) 次に本発明を実施例で更に詳述する。極限粘度
0.64のポリエチレンテレフタレート(融点261℃、
ガラス転移点68℃)のチツプを300℃で孔径0.3
mm、孔数36の紡糸口金から溶融吐出し紡糸口金直
下を150mmにわたり円筒加熱スリーブにより加熱
し、引続きその下方1.3mの圧間において紡糸出
に対し冷却風を横方向から吹きつけて該糸系を冷
却した後続いて該糸条を長さ1.0mの加熱ゾーン
中に通し、しかる後オイリングローラーにより仕
上げ剤を付与し一対のゴデツトローラーで引取つ
てワインダーにて巻取つた。それぞれの条件で得
られた繊維の物性は第1表の通りである。 次に上記未延伸糸をフリクシヨンデイスク加工
方式のスクラツグ社製SDS−8型延伸仮撚加工機
に供給し、デイスク表面速度と糸速度の比D/Y
が1.708、ヒーター温度210℃、捲取速度800m/
分で且つデイスク前の糸張力が各々35gとなるよ
う延伸倍率を選定した条件下で延伸と同時に仮撚
加工を行い75デニール、36フイラメントの加工糸
を得た。この時得られた加工糸の特性も併せて第
1表に示した。第1表の中で実験No.1〜12は引取
速度5000m/分でその他の製造条件を変更したも
のであり、実験No.13〜14は引取速度を変更したも
の、また実験No.15〜18は糸条空冷後の加熱を行わ
ない通常の方式にて引取速度を変更した事例であ
る。本発明による実施例は実験No.1、2、7、8
でありその他は比較例である。 第1表から明白である様に、本発明で規定する
範囲内にあるポリエステル繊維のみが、要求特性
(1)〜(4)の許容水準内にある。 【表】
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to polyester fibers, and particularly to polyester fibers suitable for drawing and false twisting. (Prior art) Polyester fibers, especially polyester fibers subjected to stretching and false twisting, are
Partially oriented yarn spun at a speed of 1 minute, the so-called
POY (Partially Oriented Yarn) has been widely used recently. However, such polyester fibers do not necessarily have sufficient stability over time, so they not only cannot withstand long-term storage or transportation, but also the cross-sectional deformation of the filaments during the drawing and false-twisting process is large. The disadvantage is that the appearance and texture of the sublime processed yarn is inferior. Furthermore, especially during high-speed drawing false twisting, large drawing deformations occur at high speeds, which causes the filament to easily break, resulting in fluff and yarn breakage. For such POY,
Polyester fibers recently spun at high speeds of 4,000 to 6,000 m/min or spun yarns at 150℃
After instantaneous heat treatment with heated gas over 2000
It has been proposed to subject polyester fibers drawn at a speed of ~4500 m/min to stretching and false twisting (for example, Japanese Patent Publication No. 58-36086, Japanese Patent Publication No. 58-18446).
(Japanese Patent Publication No. 58-17294, Japanese Patent Publication No. 58-169513). Since such polyester fibers have a high degree of orientation and crystallinity, they have improved stability over time and have been shown to have improvement effects such as a reduction in the cross-sectional aspect ratio during drawing and false twisting. In the false twisting process, so-called crystal stretching, which involves destruction and rearrangement of crystals during stretching, occurs, which has the disadvantage that fuzz tends to occur. Furthermore, there was also a drawback that the resulting drawn and false twisted yarn had poor unwinding and weaving properties in subsequent steps. Furthermore, in recent years, research has been actively conducted on latent sublime multifilaments made by blending polyester fibers with differential shrinkage. The above-mentioned POY
Although it is widely used, it is difficult to handle it because of its poor stability over time as described above. On the other hand, if the spun yarn is heat-treated and then taken off at high speed instead of POY, the stability over time is good, but the difference in shrinkage between the filaments of the obtained latent sublime multifilament is not sufficiently provided. He was unable to achieve a satisfying level of sublimity. (Object of the Invention) The object of the present invention is to provide a polyester fiber that can eliminate the above-mentioned drawbacks, and in particular, a polyester fiber that can simultaneously satisfy the following required properties (1) to (4) and is suitable for stretching and false twisting. It is about providing. (1) It has stability over time that can withstand long-term storage. (2) The cross-sectional deformation of the filament during stretch false twisting is small. (3) Less fuzz occurs during stretch false twisting. (4) The resulting false-twisted yarn has good unwinding and fibre-making properties. (Configuration) In order to achieve this objective, the present inventors first studied the allowable levels of each of the required characteristics (1) to (4), and found that the stability over time is 150 days or more,
The cross-sectional deformation of the filament is determined by the cross-sectional flatness, which will be explained later.
I learned that it is necessary to have a fuzz of 1.5 or less, a fuzz of 10 strands/10 4 m or less, and that there should be no defects in unwinding or fibre-making properties. The present inventors have arrived at the present invention as a result of extensive studies on polyester fibers that can simultaneously achieve such acceptable levels. That is, the present invention consists of a polyester whose main repeating unit is ethylene terephthalate,
And elongation is 40-60%, birefringence (Δn) is 0.09-
0.13, the peak temperature and peak value of thermal stress of the fiber are 75 to 100, respectively.
℃ and 0.3 to 0.5 g/de, and a boiling water shrinkage rate of 40% or more. Before describing the present invention in detail, a method for measuring each characteristic value used in the present invention will be described. Elongation A tensile test is performed using a Tensilon tensile tester with a sample length of 20 cm, and the elongation rate at cutting is indicated. Boiling water shrinkage rate The amount of shrinkage when a sample is heat treated in boiling water at 100°C for 30 minutes without restraint, expressed as a percentage of the test length before treatment. Thermal stress Thermal stress tester manufactured by Kanebo Engineering Co., Ltd.
Using KE-type, initial tension stress denier/30
Measurement was carried out under the following conditions: g, sample length 10 cm, and heating rate 2.5°C/sec. Stability over time The sample package was stored in a temperature-controlled room with a temperature of 35℃ and humidity of 55% RH, and after a predetermined number of days, it was taken out and subjected to stretching and false twisting as described below, and the resulting processed yarn was stockinette knitted and dyed. I went. The dyeing becomes darker as the number of days passes, but standard yarn (processed yarn that is stretched and false-twisted after being left in a room at 25℃ and 65% RH for just one day after winding under various standard conditions) ) was visually judged and expressed as the number of days in which the dyeing difference reached an acceptable limit. Cross-sectional flatness The cross-sectional flatness is when the length of the longest inner diameter (diagonal line) in the filament cross section of the obtained drawn and false-twisted yarn is b, and the longest diameter perpendicular to the longest diameter is a. It is defined as b/a of , and is expressed as the average value of the values measured for 20 pieces.
The closer the oblateness is to 1, the closer to a perfect circle it is. Fluff Toray Engineering's fluff tester (HAIRINESS COUNTER MODEL DT-104) is installed downstream of the twisting unit during stretch false twisting.
The number of fuzz generated was measured for 30 minutes, and the number of fuzz generated /
Converted to 10 4 m units. The present invention will now be described in detail. The term "polyester" used in the present invention generally refers to polyethylene terephthalate homopolymers, polyester copolymers containing 90 mol% or more of ethylene terephthalate units, and blends containing these polyesters as main components. The polyester may contain small amounts of additives (for example, matting agents, pigments, dyes, stabilizers, flame retardants, surface modifiers, etc.) as necessary. Among these polyesters, those having an intrinsic viscosity (measured with an O-chlorophenol solution at 35° C.) of 0.5 or more, particularly 0.55 to 0.95 are preferable. In the present invention, first, it is necessary that the elongation (at break) of the polyester fiber is 40 to 60%. If the degree of elongation exceeds 60%, the stretching ratio during stretch false-twisting becomes high, resulting in flattening of the cross-section of the filament during stretch false-twisting. Also, the elongation is 40
If it is less than %, the elasticity of the fibers will be insufficient, and yarn shaking will occur during high-speed drawing and false twisting.
Ballooning cannot be absorbed by itself and causes crimp spots and fuzz. Next, the birefringence (Δn) is 0.09~
It needs to be 0.13. When Δn is less than 0.09,
Due to insufficient stability over time, during long-term transportation or storage, the fiber orientation gradually changes to a non-oriented direction, resulting in a dark dyeing phenomenon. Also,
When Δn exceeds 0.13, a phenomenon occurs in which the residual torque of the drawn and false-twisted yarn increases, resulting in poor unwinding properties and fiber-making properties in subsequent steps. Furthermore, the peak temperature of thermal stress (Tmax) is 75~
At 100℃ and peak value (TSTmax) is 0.3 to 0.5
It is necessary to be g/de. When Tmax exceeds 100° C. and when TSTmax exceeds 0.5 g/de, disadvantages such as generation of fuzz and decrease in crimp rate occur during stretch false twisting. This is thought to be due to the fact that in the case of polyester fibers with a high Tmax value, the flexibility of the fibers against heat decreases, which deteriorates the ability to follow deformation during stretching and false twisting. On the other hand, if Tmax is less than 75℃ and
If TSTmax is less than 0.3 g/de, the yarn is likely to melt and break in the heater during drawing and false twisting. In the polyester fiber of the present invention, even if the above-mentioned elongation, birefringence (Δn), peak temperature and peak value of thermal stress are within the range specified by the present invention, if the boiling water shrinkage rate is 40% or more, the The purpose of the invention cannot be achieved. The boiling water shrinkage rate referred to here is used as a characteristic that expresses the crystallinity of fibers, and as shown in the paper by Shimizu et al. in the Journal of the Japanese Society of Textile Technology 34 T-93 (1978), as crystallinity increases, boiling water shrinkage Shrinkage rate decreases. In the case of polyester fibers having a boiling water shrinkage rate of less than 40%, crystal stretching occurs during stretching and false twisting, resulting in crystal destruction and generation of high stretching tension, resulting in frequent filament breakage, that is, fluffing. In this way, the elongation is 40 to 60%, the birefringence (Δn) of the entire fiber is 0.09 to 0.13, the boiling water shrinkage rate is 40% or more, and the peak temperature of thermal stress is 75 to 100℃, and the peak value is 0.3. Only polyester fibers with ~0.5 g/de can provide stability over time, cross-sectional deformation resistance of the filament, fluff resistance, and good unwinding and fiber-making properties during drawing and false twisting. . Conventional polyester fiber, i.e. 4000~6000m/
High-speed spinning in minutes or spun yarn in 150 minutes
2000~4500 after heat treatment with heated gas above ℃
When the fibers are drawn at m/min, the fiber orientation (birefringence) increases, the crystallinity also increases rapidly, and the boiling water shrinkage rate decreases rapidly. For this reason, the elongation, birefringence, thermal stress, and boiling water shrinkage rate of the obtained polyester fibers cannot simultaneously satisfy the ranges specified in the present invention, resulting in changes over time, filament cross-sectional deformation during false twisting, fuzz, etc. Furthermore, it is impossible to simultaneously satisfy acceptable levels of unwinding properties and fibre-making properties. The polyester fiber of the present invention described above is produced by a method different from conventional melt spinning. For example, polyester is melted and discharged from a nozzle, the atmosphere immediately after being discharged from the nozzle is maintained at a high temperature of 200℃ or higher over a length of at least 130 mm, and immediately after that, cold air of 10 to 20℃ is blown to rapidly cool the polyester. Then, after being heat treated by running through a low temperature heat treatment zone of 70 to 110℃, the yarn was heated to 4500℃.
It is industrially advantageous to produce by taking off at a speed of ~6000 m/min. At this time, the temperature and take-off speed of the low-temperature heat treatment zone are important, and the polyester fiber of the present invention can only be obtained when the temperature and take-off speed are within the above ranges. It goes without saying that other methods may be employed as long as the properties of the polyester fibers finally obtained satisfy the range defined by the present invention. (Function) Conventionally, after heat treatment of spun yarn at 150℃ or higher, 2000℃
The polyester fiber drawn at ~4500 m/min has extremely high degree of orientation and crystallinity, so although its stability over time and cross-sectional deformation of the filament during stretching and false twisting are satisfactory, Crystallization and stretching occur during stretching and false twisting, and the deformation followability to heat is also poor, resulting in frequent fluffing. Moreover, the resulting processed yarn has a high residual torque, resulting in poor unwinding and fiber-making properties. On the other hand, the polyester fiber of the present invention has appropriate orientation, crystallinity, and ability to follow deformation due to heat, and as a result, its stability over time is limited to 150 days.
In the drawing/false twisting process, it is possible to adopt a drawing ratio that allows the filament cross-sectional flatness of the resulting processed yarn to be 1.5 or less. Furthermore, even when stretch-false-twisting is performed at such a stretching ratio, no crystallization stretching occurs, and the polyester fiber of the present invention has good deformation resistance to heat, so the fluff of the resulting processed yarn is 10 times less. /10 4 m or less,
Furthermore, since the residual torque of the processed yarn obtained is low, the unwinding and fiber-spinning properties of the processed yarn are also good. As described above, the polyester fiber of the present invention simultaneously satisfies required properties (1) to (4), and the latent sublime multifilament using such polyester fiber as a high shrinkage filament has good stability over time of the high shrinkage filament. and the shrinkage difference between the constituent filaments can be made sufficiently large.
Both the ease of handling and the sublime quality of such a multifilament are satisfactory. (Effects of the Invention) According to the polyester fiber of the present invention, it is possible to easily manage the raw yarn and have good processability, especially in the drawing and false twisting process, and the appearance and texture of the resulting processed yarn are And the process passability in the weaving and knitting process can both be improved. (Example) Next, the present invention will be further described in detail with reference to Examples. intrinsic viscosity
0.64 polyethylene terephthalate (melting point 261℃,
A chip with a glass transition point of 68°C) is heated to 300°C with a pore size of 0.3.
The yarn is melted and discharged from a spinneret with 36 holes and heated by a cylindrical heating sleeve over a 150mm area directly below the spinneret, and subsequently cooling air is blown from the side on the spinning yarn in a pressure gap 1.3m below. After cooling, the yarn was passed through a heating zone with a length of 1.0 m, and then a finishing agent was applied with an oiling roller, taken up with a pair of godet rollers, and wound up with a winder. The physical properties of the fibers obtained under each condition are shown in Table 1. Next, the above-mentioned undrawn yarn is fed to a friction disk processing type SDS-8 drawn and false twisted processing machine made by Scratsug Co., Ltd., and the ratio of the disk surface speed to the yarn speed is D/Y.
is 1.708, heater temperature 210℃, winding speed 800m/
A 75 denier, 36 filament textured yarn was obtained by false twisting at the same time as stretching under conditions where the stretching ratio was selected so that the yarn tension before the disc was 35 g. The properties of the processed yarn obtained at this time are also shown in Table 1. In Table 1, Experiments Nos. 1 to 12 were conducted at a withdrawal speed of 5000 m/min with other manufacturing conditions changed, Experiments No. 13 to 14 were conducted at a different withdrawal speed, and Experiments Nos. 15 to 14 were conducted at different manufacturing conditions. 18 is an example in which the take-up speed was changed using the normal method in which heating is not performed after the yarn is air-cooled. Examples according to the present invention are Experiment Nos. 1, 2, 7, and 8.
The others are comparative examples. As is clear from Table 1, only polyester fibers within the range specified by the present invention have the required properties.
It is within the acceptable level of (1) to (4). 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 主たる繰り返し単位がエチレンテレフタレー
トであるポリエステルから成り、且つ伸度が40〜
60%、複屈折率(Δn)が0.09〜0.13であるポリエ
ステル繊維であつて、該繊維の熱応力のピーク温
度及びピーク値が夫々75〜100℃及び0.3〜0.5
g/deであると共に、沸水収縮率が40%以上で
ある事を特徴とする延伸仮撚加工用ポリエステル
繊維。
1 Made of polyester whose main repeating unit is ethylene terephthalate, and has an elongation of 40~
60%, and a birefringence index (Δn) of 0.09 to 0.13, the peak temperature and peak value of thermal stress of the fiber are 75 to 100°C and 0.3 to 0.5, respectively.
g/de and a boiling water shrinkage rate of 40% or more.
JP11095184A 1984-06-01 1984-06-01 Polyester fiber Granted JPS60259616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11095184A JPS60259616A (en) 1984-06-01 1984-06-01 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11095184A JPS60259616A (en) 1984-06-01 1984-06-01 Polyester fiber

Publications (2)

Publication Number Publication Date
JPS60259616A JPS60259616A (en) 1985-12-21
JPH0380887B2 true JPH0380887B2 (en) 1991-12-26

Family

ID=14548672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11095184A Granted JPS60259616A (en) 1984-06-01 1984-06-01 Polyester fiber

Country Status (1)

Country Link
JP (1) JPS60259616A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207489A3 (en) * 1985-07-02 1988-01-13 Teijin Limited Highly-shrinkable polyester fiber, process for preparation thereof, blended polyester yarn and process for preparation thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167422A (en) * 1974-12-06 1976-06-11 Teijin Ltd Horiesuterusenino seizoho
JPS5184923A (en) * 1975-01-17 1976-07-24 Teijin Ltd HORIESUTERUBUBUNHAIKOSENINOSEIZOHO
JPS53143728A (en) * 1977-05-16 1978-12-14 Teijin Ltd Production of polyester filament yarns
JPS5430924A (en) * 1977-08-08 1979-03-07 Teijin Ltd Production of exetremely fine fibers of polyester
JPS58109615A (en) * 1981-12-18 1983-06-30 Teijin Ltd Yarn to be fed to simultaneous draw-false twisting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167422A (en) * 1974-12-06 1976-06-11 Teijin Ltd Horiesuterusenino seizoho
JPS5184923A (en) * 1975-01-17 1976-07-24 Teijin Ltd HORIESUTERUBUBUNHAIKOSENINOSEIZOHO
JPS53143728A (en) * 1977-05-16 1978-12-14 Teijin Ltd Production of polyester filament yarns
JPS5430924A (en) * 1977-08-08 1979-03-07 Teijin Ltd Production of exetremely fine fibers of polyester
JPS58109615A (en) * 1981-12-18 1983-06-30 Teijin Ltd Yarn to be fed to simultaneous draw-false twisting

Also Published As

Publication number Publication date
JPS60259616A (en) 1985-12-21

Similar Documents

Publication Publication Date Title
US5925727A (en) Thick and thin polyamide based fibers, and a production process thereof
CA2352267C (en) Polypropylene terephthalate textured yarn and its method of production
CA2478286C (en) Process for producing polyester fine multifilament yarn and polyester fine false-twist textured yarn, polyester fine multifilament yarn and polyester fine false-twist textured yarn
US7163742B2 (en) Pre-oriented yarn package
US6572967B1 (en) Poly(trimethylene terephthalate) multifilament yarn
JPWO2001068498A1 (en) Drawn yarn pan
JPH0380887B2 (en)
JPS5839925B2 (en) Method for manufacturing yarn for temporary twisting
JP3910038B2 (en) Pre-oriented yarn package and manufacturing method thereof
JPS5818445B2 (en) Polyester fiber manufacturing method
JP4059800B2 (en) Method for producing polytrimethylene terephthalate composite fiber
JP2005154962A (en) False twist polyester yarn and method for producing the same
JP4056288B2 (en) Method for producing polyester ultrafine multifilament yarn
JP4059681B2 (en) Process for producing pre-oriented yarn of polytrimethylene terephthalate
JPS6242057B2 (en)
JPH1136138A (en) Production of combined polyester filament yarn having different shrinkage
JP2004156159A (en) Method for producing ultrafine polyester false-twisted yarn
JPS5818455B2 (en) Manufacturing method of textured yarn
KR20040083533A (en) A process for making stable polytrimethylene terephthalate packages
JPS589164B2 (en) Method for producing partially oriented polyester fibers
JP2001098434A (en) Polyester false twist yarn having high shrinkage/high shrinkage stress, method for producing the same and combined filament yarn
TW202331037A (en) Polytrimethylene terephthalate fiber and method for producing same
JPS5857522B2 (en) Nylon 6 Senino Seizouhou
JP2005264345A (en) Polyester false twist-processed yarn and method for producing the same
JPS5819768B2 (en) Manufacturing method of polyester texture yarn