JPH0380874B2 - - Google Patents

Info

Publication number
JPH0380874B2
JPH0380874B2 JP59028204A JP2820484A JPH0380874B2 JP H0380874 B2 JPH0380874 B2 JP H0380874B2 JP 59028204 A JP59028204 A JP 59028204A JP 2820484 A JP2820484 A JP 2820484A JP H0380874 B2 JPH0380874 B2 JP H0380874B2
Authority
JP
Japan
Prior art keywords
film
organic composite
composite silicate
resin
chromate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59028204A
Other languages
Japanese (ja)
Other versions
JPS60174879A (en
Inventor
Tomihiro Hara
Takeshi Ataya
Masaaki Yamashita
Akira Enatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP2820484A priority Critical patent/JPS60174879A/en
Priority to US06/644,765 priority patent/US4659394A/en
Priority to KR1019840005244A priority patent/KR890002953B1/en
Priority to CA000462190A priority patent/CA1256054A/en
Priority to AU32542/84A priority patent/AU563176B2/en
Priority to FR848413552A priority patent/FR2551464B1/en
Priority to DE3432118A priority patent/DE3432118A1/en
Priority to GB08422103A priority patent/GB2147826B/en
Publication of JPS60174879A publication Critical patent/JPS60174879A/en
Publication of JPH0380874B2 publication Critical patent/JPH0380874B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、下塗り塗装がカチオン電着塗装であ
る2コート以上の多層塗装用の防錆鋼板に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rust-preventing steel plate for multilayer coating with two or more coats, in which the undercoat is a cationic electrodeposition coating.

近年、自動車車体用鋼板として耐食性に優れた
鋼板の要求が高まりつつあり、このため従来より
使用されている冷延鋼板に代り耐食性の高い表面
処理鋼板を使用する傾向が強くなつている。
In recent years, there has been an increasing demand for steel sheets with excellent corrosion resistance as steel sheets for automobile bodies, and for this reason, there is a strong tendency to use surface-treated steel sheets with high corrosion resistance in place of conventionally used cold-rolled steel sheets.

このような表面処理鋼板としては、まず亜鉛メ
ツキ鋼板をあげることができるが、この種の鋼板
では耐食性を高めるために亜鉛の付着量を多くす
る必要があり、これに伴つて加工性、溶接性が劣
化するという問題がある。このような問題を改善
するためNi、Fe、Mn、Mo、Co、Al、Cr等の元
素を1種または2種以上添加した亜鉛合金メツキ
鋼板や多層メツキ鋼板が研究開発されており、こ
れらの鋼板では上記亜鉛メツキ鋼板に比較して溶
接性、加工性を劣化させることなく耐食性を向上
させることができる。しかし、鋼板が自動車車体
内板の袋構造部や曲り部(ヘミング部)に適用さ
れる場合その表面には高度な耐食性が要求される
ものであり、上記したような亜鉛合金メツキ鋼板
や多層メツキ鋼板ではその耐食性がいまひとつ十
分でないという問題がある。高度な耐食性を有す
る鋼板として、特公昭45−24230号や特公昭47−
6882号にみられるようなジンクリツチ系塗膜を施
した防錆鋼板が研究開発されており、その代表的
なものはジンクロメタルの名称で知られている。
しかし、この防錆被覆鋼板においても、プレス成
形等の加工部では皮膜の剥離を生じる場合があ
り、自動車車体用材料等の要求に応ずべき高耐食
性防錆被覆鋼板としては、未だ十分に満足できる
ものとは言い難い。
The first example of such surface-treated steel sheets is galvanized steel sheets, but with this type of steel sheet, it is necessary to increase the amount of zinc deposited in order to improve corrosion resistance, and along with this, workability and weldability There is a problem of deterioration. In order to improve these problems, zinc alloy plated steel sheets and multi-layer plated steel sheets are being researched and developed to which one or more elements such as Ni, Fe, Mn, Mo, Co, Al, Cr, etc. are added. Compared to the above-mentioned galvanized steel sheet, the steel sheet can have improved corrosion resistance without deteriorating weldability and workability. However, when a steel plate is applied to the bag structure or bent part (hemming part) of an automobile body plate, a high degree of corrosion resistance is required on the surface, and zinc alloy plated steel plates and multilayer plated steel plates as mentioned above are required. Steel plates have a problem in that their corrosion resistance is not quite sufficient. As a steel plate with a high degree of corrosion resistance, special
Research and development has been carried out on anti-corrosion steel sheets coated with zinc-rich coatings, such as the one seen in No. 6882, and the representative one is known as Zinchrome Metal.
However, even with this anti-corrosion coated steel sheet, peeling of the coating may occur in the processed parts such as press forming, and it is still not fully satisfactory as a highly corrosion-resistant and anti-rust coated steel sheet that meets the requirements for automobile body materials. It's hard to call it a thing.

このようなことから、亜鉛系メツキ鋼板を素材
とし、これにクロメート皮膜と有機複合シリケー
ト皮膜の2層皮膜を形成した複合被覆鋼板及びそ
の製造方法が特開昭57−108292号や特開昭58−
224174号等において提案されている。しかしこの
種の複合被覆鋼板は従来の表面処理鋼板に較べ優
れた耐食性と加工性とを有するものの、これを自
動車外板用として使用した場合塗装密着性が悪
く、塗装耐食性において十分満足し得るものとは
言い難い。特に、自動車用車体においてはカチオ
ン電着塗装の上にさらに上塗りを施す2コート以
上の塗装が一般的になりつつあるが、このような
2コート以上の塗装に対してはその密着性が極め
て悪いという問題がある。
For this reason, composite coated steel sheets made of zinc-plated steel sheets with a two-layer coating of a chromate film and an organic composite silicate film and a method for manufacturing the same have been published in Japanese Patent Laid-Open Nos. 57-108292 and 1983. −
It has been proposed in No. 224174, etc. However, although this type of composite coated steel sheet has superior corrosion resistance and workability compared to conventional surface-treated steel sheets, when it is used for automobile exterior panels, paint adhesion is poor, and paint corrosion resistance is not fully satisfactory. It's hard to say. In particular, for automobile bodies, it is becoming common to apply two or more coats on top of the cationic electrodeposition coating, but the adhesion of such two or more coats is extremely poor. There is a problem.

本発明はこのような問題に鑑み研究、開発され
たもので、高い耐食性、加工性とともに、2コー
ト以上の塗装に対して良好な密着性を確保し得る
防錆鋼板の製造方法を提供せんとするものであ
る。
The present invention was researched and developed in view of these problems, and aims to provide a method for manufacturing a rust-proof steel sheet that can ensure high corrosion resistance, workability, and good adhesion to two or more coats of paint. It is something to do.

このため本発明は、亜鉛系メツキ又はアルミ系
メツキが施された鋼板表面をクロメート処理した
後、エポキシ樹脂が総固形分中の35%以上であつ
て、SiO2/樹脂の割合が10/90〜60/40、好ま
しくは20/80〜50/50に調整された有機複合シリ
ケート溶液で処理を行い、その後250℃を超え300
℃以下の温度で加熱処理するようにしたことをそ
の基本的特徴とする。また上記有機複合シリケー
ト溶液に硬化剤を添加し、かかる溶液により処理
し、しかる後260℃以上、350℃以下の温度で加熱
処理するようにしたことを他の基本的特徴とす
る。
Therefore, in the present invention, after chromate treatment is applied to the surface of a steel plate coated with zinc-based plating or aluminum-based plating, the epoxy resin accounts for 35% or more of the total solid content, and the ratio of SiO 2 /resin is 10/90. Treatment is performed with an organic composite silicate solution adjusted to ~60/40, preferably 20/80 to 50/50, and then heated to 300 °C above 250 °C.
Its basic feature is that it is heat-treated at a temperature below ℃. Another basic feature is that a curing agent is added to the organic composite silicate solution, treated with the solution, and then heat-treated at a temperature of 260°C or higher and 350°C or lower.

本発明は、亜鉛系メツキ又はアルミ系メツキ
が施された鋼板表面をクロメート処理した後、
エポキシ樹脂が総固形分中の35wt%以上で
SiO2/樹脂の割合が10/90〜60/40であり且つ
必要に応じて硬化剤が添加された有機複合シリケ
ート溶接で処理し、その後、250℃を超え300℃
以下の温度範囲、硬化剤を添加する場合は260℃
以上、350℃以下の温度範囲で加熱処理する、と
いう構成を有している。
In the present invention, after chromate treatment of the surface of a steel plate coated with zinc-based plating or aluminum-based plating,
Epoxy resin is 35wt% or more of the total solid content
Treated with organic composite silicate welding with a SiO 2 /resin ratio of 10/90 to 60/40 and a hardening agent added if necessary, and then heated to temperatures exceeding 250℃ and 300℃.
Temperature range below, 260℃ if hardener is added
As described above, the structure is such that heat treatment is performed in a temperature range of 350° C. or lower.

本発明では、素材鋼板として亜鉛系メツキ鋼板
又はアルミ系メツキ鋼板が用いられる。上記亜鉛
メツキ鋼板としては、亜鉛メツキ鋼板、亜鉛−鉄
合金メツキ鋼板、亜鉛−ニツケル合金メツキ鋼
板、亜鉛−マンガン合金メツキ鋼板、亜鉛−アル
ミ合金メツキ鋼板、亜鉛−コバルト−クロム合金
メツキ鋼板、さらにはこれら任意の鋼板のメツキ
成分に、Ni、Fe、Mn、Mo、Co、Al、Cr等の元
素を1種又は2種以上添加したものを用いること
ができ、さらに上記したようなメツキのうち同種
又は異種のものを2層以上施した複合メツキ鋼板
であつてもよい。
In the present invention, a zinc-plated steel plate or an aluminum-plated steel plate is used as the material steel plate. The above-mentioned galvanized steel sheets include zinc-plated steel sheets, zinc-iron alloy-plated steel sheets, zinc-nickel alloy-plated steel sheets, zinc-manganese alloy-plated steel sheets, zinc-aluminum alloy-plated steel sheets, zinc-cobalt-chromium alloy-plated steel sheets, and One or more elements such as Ni, Fe, Mn, Mo, Co, Al, Cr, etc. can be added to the plating components of any of these steel sheets, and the same type of plating among the above-mentioned platings can be used. Alternatively, it may be a composite plated steel plate with two or more layers of different types applied.

これら亜鉛系メツキ鋼板のメツキ方法は電解
法、溶融法、気相法等のうち実施可能ないずれの
方法を採用することもできる。ただ、本発明の対
象とするような防錆鋼板は主として自動車車体の
用途に供せられるものであり、このような用途で
はメツキされる冷延鋼板の材質を損わないように
することが重要であるため、熱の発生しない電気
メツキが有利であるということができる。
As a method for plating these zinc-based plated steel sheets, any practicable method among electrolytic method, melting method, vapor phase method, etc. can be adopted. However, the rust-proof steel sheets that are the object of the present invention are mainly used for automobile bodies, and in such applications, it is important not to damage the material of the cold-rolled steel sheets that are plated. Therefore, it can be said that electroplating, which does not generate heat, is advantageous.

本発明では以上のメツキ面に対しクロメート処
理を施しクロメート皮膜を形成せしめる。このク
ロメート皮膜は、クロム付着量(dry)として1
〜1000mg/m2、好ましくは10〜200mg/m2程度
(以上金属クロム換算)とすることが適当である。
クロム付着量が1000mg/m2を超えると加工性、溶
接性が劣化し、また1mg/m2未満では皮膜が不均
一となる可能性があり好ましくない。またクロメ
ート皮膜には6価のCrが存在したほうが好まし
い。これはCr6+の作用により次工程の有機複合シ
リケート処理による皮膜の架橋が進み、皮膜が強
化されるからである。またCr6+は補修作用があ
り、鋼板に傷がついた場合そこからの腐食を抑制
する作用をする。
In the present invention, the above plated surface is subjected to chromate treatment to form a chromate film. This chromate film has a chromium deposition amount (dry) of 1
It is appropriate to set the content to about 1000 mg/m 2 , preferably about 10 to 200 mg/m 2 (calculated as metal chromium).
If the amount of chromium deposited exceeds 1000 mg/m 2 , workability and weldability deteriorate, and if it is less than 1 mg/m 2 , the film may become non-uniform, which is not preferable. Further, it is preferable that hexavalent Cr be present in the chromate film. This is because the action of Cr 6+ promotes crosslinking of the film in the next step of organic composite silicate treatment, thereby strengthening the film. Cr 6+ also has a repairing effect, and when a steel plate is damaged, it acts to suppress corrosion from there.

このような下地皮膜のためのクロメート処理
は、反応型、塗布型等の公知のいずれの方法によ
つてもよい。
The chromate treatment for such a base film may be performed by any known method such as a reaction type or a coating type.

塗布型クロメート処理液は、部分的に還元され
たクロム酸溶液を主成分とし、必要に応じこれに
水分散性又は水溶性のアクリル樹脂等の有機樹脂
及び/又は数十〜数千Åのシリカ粒子(シリカゾ
ル、ヒユームドシリカ)を含有せしめたものであ
る。この場合Cr3+/Cr6+の割合は1/1〜1/
3、PHは1.5〜4.0(より好ましくは2〜3)が好
ましい。Cr3+/Cr6+の割合は一般の有機還元剤
(例えば糖類、アルコール類等)や無機還元剤を
使用して所定の割合に調節する。また塗布型クロ
メート処理としては、ロールコーター法、浸漬
法、スプレー法等、いずれの方法を使用してもよ
い。塗布型クロメータ処理では、クロメート処理
後水洗することなく乾燥して皮膜を得る。このよ
うに水洗することなく乾燥するのは、通常行われ
る水洗ではCr6+が除去されるため、Cr3+/Cr6+
割合をそのまま安定して維持させ、次工程での有
機複合シリケート溶液で処理してシーリングを行
わせるためである。
The coating-type chromate treatment liquid has a partially reduced chromic acid solution as its main component, and if necessary, it may also contain water-dispersible or water-soluble organic resin such as acrylic resin and/or silica with a thickness of several tens to several thousand angstroms. It contains particles (silica sol, fumed silica). In this case, the ratio of Cr 3+ /Cr 6+ is 1/1 to 1/
3. PH is preferably 1.5 to 4.0 (more preferably 2 to 3). The ratio of Cr 3+ /Cr 6+ is adjusted to a predetermined ratio using a general organic reducing agent (eg, sugar, alcohol, etc.) or an inorganic reducing agent. Further, as the coating type chromate treatment, any method such as a roll coater method, a dipping method, a spray method, etc. may be used. In the coating type chromator treatment, a film is obtained by drying without washing with water after the chromate treatment. The reason for drying without washing with water is that Cr 6+ is removed by normal washing with water, so the ratio of Cr 3+ /Cr 6+ is maintained stably and the organic composite silicate is used in the next process. This is for sealing by treatment with a solution.

一方、電解型クロメート処理では、無水クロム
酸と硫酸、リン酸、フツ化物又はハロゲン酸素酸
等のアニオンの1種又は2種以上を含有する浴で
陰極電解処理を施し、水洗・乾燥して皮膜を形成
せしめる。
On the other hand, in electrolytic chromate treatment, cathodic electrolysis treatment is performed in a bath containing chromic anhydride and one or more of anions such as sulfuric acid, phosphoric acid, fluoride, or halogen oxygen acid, and then washed with water and dried to form a film. to form.

以上の2つの処理方式によるクロメート皮膜を
比較すると、塗布型クロメートは電解型クロメー
トと比較して皮膜中に6価クロムを多く含有して
いるため耐食性が優れており、その上、後述する
ように加熱処理した場合、皮膜が緻密で且つ強固
になるため、電解型クロメートに較べより耐食性
が良好になる。一方、電解型クロメートは加熱処
理の有無に拘らず皮膜の完成度が高いという長所
があり、また、皮膜付着量コントロールが容易で
あるという利点がある。耐食性を考慮すると塗布
型クロメートが最も好ましい。また、自動車用防
錆鋼板では片面処理鋼板とする場合が多く、この
観点からすると塗布型、電解型が望ましい。
Comparing the chromate films produced by the above two treatment methods, the coated chromate film contains more hexavalent chromium in the film than the electrolytic chromate film, so it has superior corrosion resistance. When heat treated, the film becomes dense and strong, resulting in better corrosion resistance than electrolytic chromate. On the other hand, electrolytic chromate has the advantage that the film has a high degree of completion regardless of the presence or absence of heat treatment, and also has the advantage that the amount of film deposited can be easily controlled. In consideration of corrosion resistance, coated chromate is most preferred. Further, rust-preventing steel sheets for automobiles are often single-sided treated steel sheets, and from this point of view, coating type and electrolytic type are preferable.

クロメート処理後、本発明においては水洗する
ことなく乾燥してクロメート皮膜を得る。以上の
クロメート処理に続き、有機複合シリケート溶液
による処理が行われ、クロメート皮膜上に有機複
合シリケート皮膜が形成せしめられる。そして本
発明では、カチオン電着塗料を含む2コート以上
の塗料との密着性を確保するため、有機複合シリ
ケート溶液を、SiO2/樹脂の割合が重量比で
10/90〜60/40、好ましくは20/80〜50/50であ
り、且つエポキシ樹脂を必須成分としてこれを総
固形分中の35wt%以上含むよう調整し、これに
より処理するものである。
After the chromate treatment, in the present invention, a chromate film is obtained by drying without washing with water. Following the above chromate treatment, treatment with an organic composite silicate solution is performed to form an organic composite silicate film on the chromate film. In the present invention, in order to ensure adhesion with two or more coats of paint, including cationic electrodeposition paint, the organic composite silicate solution has a SiO 2 /resin ratio by weight.
The ratio is 10/90 to 60/40, preferably 20/80 to 50/50, and the epoxy resin is an essential component and is adjusted to contain 35 wt% or more of the total solid content, and the treatment is performed using this.

本発明の採用するような系の被覆鋼板、即ちメ
ツキ原板+クロメート皮膜+有機複合シリケート
皮膜からなを系の鋼板では、カチオン電着塗料及
び上塗り塗料の密着性は最上層の有機複合シリケ
ート皮膜の性質によつて決まるものであり、この
点において上述したような従来のこの種の鋼板で
は十分な密着性を期待できなかつたものである。
そして、かかる問題に関し、有機複合シリケート
の性質と塗料密着性との関係を検討した結果、有
機複合シリケート溶液のSiO2/樹脂の割合を所
定の範囲に設定するとともに樹脂中のエポキシ樹
脂分を所定の割合以上とし、しかも溶液処理後の
加熱温度を高めに設定することにより、高い耐食
性とともに多層塗装に対しても極めて優れた密着
性を有する皮膜が得られることを見い出したもの
である。
In the coated steel sheet adopted in the present invention, that is, the steel sheet consisting of a plating original plate + chromate film + organic composite silicate film, the adhesion of the cationic electrodeposition paint and the top coat is the same as that of the top layer of the organic composite silicate film. This is determined by the properties, and in this respect, sufficient adhesion could not be expected with conventional steel plates of this kind as mentioned above.
Regarding this problem, as a result of examining the relationship between the properties of organic composite silicate and paint adhesion, we determined that the ratio of SiO 2 /resin in the organic composite silicate solution was set within a predetermined range, and the epoxy resin content in the resin was set within a predetermined range. It has been discovered that by setting the ratio at least as high as 100% and setting the heating temperature after solution treatment at a high value, a film having high corrosion resistance and extremely excellent adhesion to multilayer coatings can be obtained.

これを詳述すると、まず有機複合シリケートの
成分中SiO2分は耐食性に、また樹脂分は塗装密
着性に有効であり、したがつて本発明が目的とす
る耐食性及び密着性の双方を満足させるためには
両者の割合を規制することが必要となる。SiO2
が樹脂に対し重量比で60/40の割合を超えると、
耐食性は増すが塗装密着性が十分でなくなり、ま
た逆に10/90を下回ると耐食性が劣化してしま
う。したがつて、SiO2/樹脂の割合は重量比で
10/90〜60/40、好ましくは20/80〜50/50に調
整される。
To explain this in detail, firstly, the SiO 2 part in the organic composite silicate component is effective for corrosion resistance, and the resin part is effective for paint adhesion, so that both the corrosion resistance and adhesion that are the objectives of the present invention are satisfied. In order to achieve this, it is necessary to regulate the ratio of both. SiO2
When the weight ratio of resin to resin exceeds 60/40,
Corrosion resistance increases, but paint adhesion becomes insufficient, and conversely, if it is less than 10/90, corrosion resistance deteriorates. Therefore, the ratio of SiO 2 /resin is
It is adjusted to 10/90 to 60/40, preferably 20/80 to 50/50.

さらに本発明では有機複合シリケート中のエポ
キシ樹脂の総固形分に対する割合を所定量
(35wt%)以上とするとともに、加熱温度を高め
に設定し、これによつて塗装密着性の向上を図
る。有機複合シリケート中のエポキシ樹脂が総固
形分中の35wt%を下回ると本発明が目的とする
多層塗装に対する十分な密着性が得られない。
Furthermore, in the present invention, the proportion of the epoxy resin in the organic composite silicate to the total solid content is set to a predetermined amount (35 wt%) or more, and the heating temperature is set to be high, thereby improving paint adhesion. If the epoxy resin in the organic composite silicate is less than 35 wt% of the total solid content, sufficient adhesion for multilayer coating, which is the object of the present invention, cannot be obtained.

このような塗料密着性の向上は次のような理由
によるものである。第1に、カチオン電着塗料中
にはエポキシ樹脂が含まれ、したがつて有機複合
シリケート中にエポキシ樹脂分を一定量以上含ま
せることによりカチオン電着塗料中のエポキシ樹
脂との間での強い相互作用が得られ、カチオン電
着塗料と有機複合シリケートの界面での高い密着
性が得られる。第2に有機複合シリケート中のエ
ポキシ樹脂分を高めると樹脂の分解限界温度が高
温側に移行することによつて高温側での加熱処理
が可能となり、この高温加熱処理により有機複合
シリケートの架橋反応が促進され、この結果密着
性が向上する。これを詳述すると、カチオン電着
塗装ではその塗装界面がアルカリ環境となるとい
う特質があるが、一般に有機複合シリケート皮膜
はアルカリ環境に弱く、カチオン電着塗装による
界面のアルカリ化によつて軟化膨潤する傾向があ
り、これが塗装密着性を妨害する大きな原因とな
つている。また、上述したようなカチオン電着塗
料の上にさらに上塗りするような2コート以上の
多層塗装の場合、鋼板上の被覆膜厚が大きくなる
ことから、その内部応力が大きくなり、密着性が
悪化する大きな原因となる。そして、このような
密着性の問題に対し、本発明では、上記したよう
に、架橋を促進して架橋密度を高め、これにより
アルカリ環境下における軟化膨潤や内部応力に起
因した塗装密着性の低下を抑えるようにしたもの
である。
This improvement in paint adhesion is due to the following reasons. First, cationic electrodeposition paints contain epoxy resins, so by including a certain amount or more of epoxy resin in the organic composite silicate, a strong bond between the epoxy resin and the cationic electrodeposition paints can be created. Interaction is obtained, and high adhesion is obtained at the interface between the cationic electrodeposition paint and the organic composite silicate. Second, when the epoxy resin content in the organic composite silicate is increased, the decomposition limit temperature of the resin shifts to a higher temperature side, making it possible to perform heat treatment at a higher temperature.This high temperature heat treatment accelerates the crosslinking reaction of the organic composite silicate. is promoted, resulting in improved adhesion. To explain this in detail, cationic electrodeposition coating has the characteristic that the coating interface becomes an alkaline environment, but organic composite silicate films are generally weak in an alkaline environment and soften and swell due to the alkalization of the interface by cationic electrodeposition coating. This is a major cause of impeding paint adhesion. In addition, in the case of multilayer coating with two or more coats, such as applying a topcoat on top of the cationic electrodeposition paint as described above, the thickness of the coating on the steel sheet increases, which increases the internal stress and reduces the adhesion. This is a major cause of deterioration. In response to such adhesion problems, the present invention promotes crosslinking to increase the crosslinking density as described above, thereby reducing the decrease in paint adhesion caused by softening and swelling in an alkaline environment and internal stress. It was designed to suppress the

また本発明では上述したような有機複合シリケ
ート溶液中にメラミン等の硬化剤を添加すること
ができる。このような硬化剤の添加により加熱に
よる有機複合シリケート皮膜の分解限界温度がさ
らに高温側に移行し、このためより高温域での加
熱処理が可能となる。そしてこのようにより高温
での加熱が行われることによつて上述した理由に
より密着性がさらに向上する。この結果、例えば
硬化剤無添加の場合に較べ、より多層の塗装(例
えば3コート以上)に対してもより優れた塗装密
着性が得られる。
Further, in the present invention, a curing agent such as melamine can be added to the organic composite silicate solution as described above. By adding such a curing agent, the decomposition limit temperature of the organic composite silicate film by heating shifts to a higher temperature side, thus making it possible to perform heat treatment in a higher temperature range. By performing heating at a higher temperature in this manner, the adhesion is further improved for the reasons mentioned above. As a result, better paint adhesion can be obtained even with more multilayer coatings (for example, 3 coats or more) than in the case where no curing agent is added.

添加する硬化剤としては、ブロツク・イソ・シ
アネート、尿素、メラミン、フエノール等があ
り、またその他にもポリアミド、アミノ樹脂、ア
ミン、有機酸、無機酸、アルコール、メルカプタ
ン、酸無水物等がある。この硬化剤の添加割合
は、有機複合シリケート中のエポキシ樹脂分を
100部としたときに0.1〜100部、好ましくは0.3〜
50部とする。硬化剤の添加割合が大き過ぎると、
エポキシ樹脂と反応しない遊離した硬化剤が密着
性を阻害することとなり、このため硬化剤はエポ
キシ樹脂100部に対して100部を限度として添加す
ることが好ましい。
Examples of the curing agent to be added include blocked isocyanate, urea, melamine, phenol, and others such as polyamide, amino resin, amine, organic acid, inorganic acid, alcohol, mercaptan, acid anhydride, and the like. The addition ratio of this curing agent is based on the epoxy resin content in the organic composite silicate.
0.1 to 100 parts, preferably 0.3 to 100 parts
50 copies. If the addition ratio of hardening agent is too large,
Free curing agent that does not react with the epoxy resin impairs adhesion, and therefore it is preferable to add the curing agent at a maximum of 100 parts per 100 parts of the epoxy resin.

以上のような有機複合シリケートの皮膜付着量
(dry)は0.5g/m2〜4.0g/m2の範囲で、より好
ましくは1.0g/m2〜3.0g/m2の範囲が適当であ
る。付着量が0.5g/m2以下では十分な耐食性が
得られず、また4.0g/m2以上ではスポツト溶接
性が劣化するため好ましくない。
The coating weight (dry) of the organic composite silicate as described above is in the range of 0.5g/m 2 to 4.0g/m 2 , more preferably in the range of 1.0g/m 2 to 3.0g/m 2 . . If the amount of adhesion is less than 0.5 g/m 2 , sufficient corrosion resistance cannot be obtained, and if it is more than 4.0 g/m 2 , spot weldability deteriorates, which is not preferable.

有機複合シリケートは、水分散性シリカを必須
成分とし、これに水溶性又は水分散性の有機高分
子樹脂をシラン化合物の存在下で混合して10℃以
上、沸点以下、好ましくは50〜90℃の温度範囲で
反応させることによつて得られる。水分散性シリ
カとは所謂シリカゾル又はコロイダルシリカと呼
ばれている粒子径数十〜数千Åのものである。前
記シラン化合物はシリカと有機樹脂との複合化の
際に反応促進剤として使用する。このシラン化合
物としては市販のシランカツプリング剤で良く、
例えばビニルトリエトキシシラン、ビニルトリス
(β−メトキシエトキシ)シラン、γ−グリシド
オキシプロピルトリメトキシシラン、γ−メタク
リルオキシプロピルトリメトキシシラン、N=β
(アミノエチル)−γ−アミノプロピルトリメトキ
シシラン、γ−アミノプロピルトリエトキシシラ
ン等のトリアルコキシシラン化合物等をあげるこ
とができる。
The organic composite silicate has water-dispersible silica as an essential component, and a water-soluble or water-dispersible organic polymer resin is mixed therein in the presence of a silane compound to produce a product at a temperature of 10°C or higher and below the boiling point, preferably 50 to 90°C. It can be obtained by reacting at a temperature range of . The water-dispersible silica is so-called silica sol or colloidal silica and has a particle diameter of several tens to several thousand angstroms. The silane compound is used as a reaction accelerator when silica and organic resin are combined. As this silane compound, a commercially available silane coupling agent may be used.
For example, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N=β
Examples include trialkoxysilane compounds such as (aminoethyl)-γ-aminopropyltrimethoxysilane and γ-aminopropyltriethoxysilane.

水溶性又は水分散性の有機高分子樹脂として
は、ポリビニルアルコール、ヒドロキシエチルセ
ルロース、ポリエステル、アルキツド、エポキ
シ、アクリル共重合体等があげられるが、本発明
では上述したようにエポキシ樹脂が必須のものと
なる。エポキシ樹脂としては脂肪酸変性エポキシ
樹脂、多塩基性酸変性エポキシ樹脂、アクリル樹
脂変性エポキシ樹脂、アルキド樹脂変性エポキシ
樹脂、フエノール樹脂変性エポキシ樹脂、ポリブ
タジエン樹脂変性エポキシ樹脂、アミン変性エポ
キシ樹脂等がある。以上の有機樹脂を水溶化ない
し水分散化するためにはアミン化合物やアンモニ
アを添加すればよい。
Examples of water-soluble or water-dispersible organic polymer resins include polyvinyl alcohol, hydroxyethyl cellulose, polyester, alkyd, epoxy, and acrylic copolymers, but as described above, epoxy resins are essential in the present invention. Become. Examples of epoxy resins include fatty acid-modified epoxy resins, polybasic acid-modified epoxy resins, acrylic resin-modified epoxy resins, alkyd resin-modified epoxy resins, phenol resin-modified epoxy resins, polybutadiene resin-modified epoxy resins, and amine-modified epoxy resins. In order to make the above organic resin water-soluble or water-dispersible, an amine compound or ammonia may be added.

上述したように有機複合シリケートにおける水
分散性シリカと水溶性又は水分散性の有機樹脂と
の配合割合は固形分の重量百分比で10/90〜60/
40、好ましくは20/80〜50/50とする。また、シ
ラン化合物の添化割合は、シリカと有機樹脂の固
形分総重量に対して0.5〜15wt%とする。
As mentioned above, the blending ratio of water-dispersible silica and water-soluble or water-dispersible organic resin in the organic composite silicate is from 10/90 to 60/1 in terms of solid weight percentage.
40, preferably 20/80 to 50/50. Further, the addition ratio of the silane compound is 0.5 to 15 wt% based on the total solid weight of silica and organic resin.

以上のようにして得られる有機複合シリケート
は1種か或いは2種以上を混合して用いても良
い。また更に、モリブデンやタングステン或いは
バナジウムの酸素酸若しくはその塩或いはチタニ
ウムかジルコニウムのアルコキシドキレート化合
物を添加しても良い。これらの添加剤を1種又は
2種以上、シリカゾルと有機樹脂の全固形分に対
して14wt%以下、好ましくは0.2〜8wt%添加す
ることにより耐食性を向上させることができる。
The organic composite silicates obtained as described above may be used alone or in combination of two or more. Furthermore, molybdenum, tungsten, or vanadium oxygen acids or salts thereof, or titanium or zirconium alkoxide chelate compounds may be added. Corrosion resistance can be improved by adding one or more of these additives to 14 wt% or less, preferably 0.2 to 8 wt%, based on the total solid content of the silica sol and organic resin.

有機複合シリケートの塗布方式はロールコータ
ー方式、スプレー方式等、任意の方式を採用する
ことができ、塗布後乾燥して皮膜が形成される。
The organic composite silicate can be applied by any method such as a roll coater method or a spray method, and a film is formed by drying after application.

上述したような溶液処理後、本発明では250℃
を超え300℃以下の温度、また有機複合シリケー
ト溶液中に硬化剤を添加した場合には260℃以上、
350℃以下の温度で加熱処理を行う。このように
加熱温度を限定したのは、上記下限を下回る温度
では十分な耐食性、塗装密着性が得られず、また
上限の300℃、350℃を超えると有機複合シリケー
ト皮膜が熱分解し、重量減少を生じてしまうから
である。上述したように硬化剤の添加により、上
記熱分解の許容限界温度が高温側に移行し、最高
350℃程度までの加熱が可能となる。
After the solution treatment as described above, in the present invention, the temperature is 250°C.
300℃ or less, or 260℃ or more if a curing agent is added to the organic composite silicate solution.
Heat treatment is performed at a temperature of 350℃ or less. The reason for limiting the heating temperature in this way is that sufficient corrosion resistance and paint adhesion cannot be obtained at temperatures below the above lower limit, and when the upper limit of 300°C or 350°C is exceeded, the organic composite silicate film will thermally decompose, resulting in weight loss. This is because it will cause a decrease. As mentioned above, by adding a curing agent, the allowable limit temperature for pyrolysis shifts to the higher temperature side, and the maximum temperature is increased.
It is possible to heat up to about 350℃.

上記加熱処理を耐食性向上の面からみると、ま
ず下地クロメート皮膜の緻密化による耐食性の向
上、即ち加熱によるCr6+の還元、脱水反応等によ
り緻密なクロミツククロメート皮膜が形成される
ことがあげられる。またクロメート皮膜中にシリ
カ又は有機樹脂或いはその両者が存在する時は、
クロムとこれらの成分の間で加熱による架橋反応
を生じ、更に緻密化したクロメート皮膜が形成さ
れる。またクロメート皮膜表層のCr6+が複合有機
シリケート皮膜中の水酸基、カルボキシル基等の
極性基と反応して、2層間の結合を強化し、これ
によつても耐食性が向上する。
Looking at the above heat treatment from the perspective of improving corrosion resistance, first of all, corrosion resistance is improved by densification of the underlying chromate film, that is, a dense chromic chromate film is formed by reduction of Cr 6+ by heating, dehydration reaction, etc. It will be done. In addition, when silica or organic resin or both are present in the chromate film,
A crosslinking reaction occurs between chromium and these components by heating, and a more dense chromate film is formed. Furthermore, Cr 6+ on the surface layer of the chromate film reacts with polar groups such as hydroxyl groups and carboxyl groups in the composite organic silicate film to strengthen the bond between the two layers, which also improves corrosion resistance.

なお所定の板温に加熱後、数秒もしくは数分以
内保持するのが好ましい。長時間の保持は経済的
に不利となるだけではなく、性能が劣化する可能
性もあり好ましくない。
Note that after heating the plate to a predetermined temperature, it is preferable to hold the plate for several seconds or minutes. Holding for a long time is not only economically disadvantageous but also undesirable as it may lead to performance deterioration.

以上のようなメツキ−クロメート処理−有機複
合シリケート溶液処理の一連の被覆処理は鋼板の
両面又は片面に施すことができる。本発明により
製造される鋼板の態様としては例えば以下のよう
なものがある。
A series of coating treatments such as the above-mentioned Metsky-chromate treatment-organic composite silicate solution treatment can be applied to both or one side of the steel plate. Examples of the embodiments of the steel plate manufactured according to the present invention include the following.

(1) 片面…メツキ−クロメート皮膜−有機複合シ
リケート皮膜面 片面…Fe面 (2) 片面…メツキ−クロメート皮膜−有機複合シ
リケート皮膜面 片面…メツキ面 (3) 両面…メツキ−クロメート皮膜−有機複合シ
リケート皮膜面 次に本発明の実施例を説明する。
(1) One side...metallic chromate film - organic composite silicate film One side...Fe side (2) One side...metallic chromate film - organic composite silicate film One side...metallic surface (3) Both sides...metallic chromate film - organic composite Silicate film surface Next, examples of the present invention will be described.

自動車車体内面対応の鋼板として、第1−a表
ないし第2−b表に示すような条件で本発明材お
よび比較材を製造し、それらについて密着性試験
及び耐食性試験を行つた。
Inventive materials and comparative materials were produced as steel plates suitable for the inner surface of automobile bodies under the conditions shown in Tables 1-a to 2-b, and adhesion tests and corrosion resistance tests were conducted on them.

各鋼板のメツキ成分は下記の通りであり、表中
のクロメート皮膜及び有機複合シリケート皮膜を
有する各鋼板については、メツキ鋼板をアルカリ
脱脂後、水洗・乾燥し、これに塗布型クロメート
処理液をロールコーターで塗布し或いは電解クロ
メート処理浴に浸漬して電解クロメート皮膜を形
成し、乾燥後第2層として有機複合シリケート処
理液をロールコーターで塗布した。さらに乾燥
後、加熱処理し空冷した。
The plating components of each steel plate are as follows, and for each steel plate with a chromate film and an organic composite silicate film in the table, the plating steel plate is degreased with alkaline, washed with water, dried, and then coated with a coating type chromate treatment solution. An electrolytic chromate film was formed by coating with a coater or dipping in an electrolytic chromate treatment bath, and after drying, an organic composite silicate treatment liquid was applied as a second layer with a roll coater. After further drying, it was heat-treated and air-cooled.

Ni−Zn合金電気メツキ…Ni含有量12% Fe−Zn合金電気メツキ…Fe含有量25% Mn−Zn合金電気メツキ…Mn含有量60% Zn−Al合金電気メツキ…Al含有量5% なお、塗装型クロメート処理、電解クロメート
条件及び有機複合シリケート処理液の詳細は以下
の通りである。
Ni-Zn alloy electroplating...Ni content 12% Fe-Zn alloy electroplating...Fe content 25% Mn-Zn alloy electroplating...Mn content 60% Zn-Al alloy electroplating...Al content 5% Details of the coating type chromate treatment, electrolytic chromate conditions, and organic composite silicate treatment liquid are as follows.

○†づ鰭朷織○zu fin pattern

JP2820484A 1983-08-31 1984-02-17 Production of corrosion-preventive steel sheet for multi-layer painting Granted JPS60174879A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2820484A JPS60174879A (en) 1984-02-17 1984-02-17 Production of corrosion-preventive steel sheet for multi-layer painting
US06/644,765 US4659394A (en) 1983-08-31 1984-08-27 Process for preparation of highly anticorrosive surface-treated steel plate
KR1019840005244A KR890002953B1 (en) 1983-08-31 1984-08-28 Process for preparation of highly anticorrosive surface-treated steel plates
CA000462190A CA1256054A (en) 1983-08-31 1984-08-30 Process for preparation of highly anticorrosive surface-treated steel plate
AU32542/84A AU563176B2 (en) 1983-08-31 1984-08-30 Anti-corrosive surface-treatment for steel plates
FR848413552A FR2551464B1 (en) 1983-08-31 1984-08-31 PROCESS FOR THE PREPARATION OF A STEEL SHEET WITH A TREATED SURFACE WITH HIGH CORROSION RESISTANCE
DE3432118A DE3432118A1 (en) 1983-08-31 1984-08-31 METHOD FOR PRODUCING A HIGHLY ANTI-CORROSIVE SURFACE-TREATED STEEL PLATE
GB08422103A GB2147826B (en) 1983-08-31 1984-08-31 Process for preparation of highly anticorrosive surface-treated steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2820484A JPS60174879A (en) 1984-02-17 1984-02-17 Production of corrosion-preventive steel sheet for multi-layer painting

Publications (2)

Publication Number Publication Date
JPS60174879A JPS60174879A (en) 1985-09-09
JPH0380874B2 true JPH0380874B2 (en) 1991-12-26

Family

ID=12242132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2820484A Granted JPS60174879A (en) 1983-08-31 1984-02-17 Production of corrosion-preventive steel sheet for multi-layer painting

Country Status (1)

Country Link
JP (1) JPS60174879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9044397B2 (en) 2009-03-27 2015-06-02 Ethicon, Inc. Medical devices with galvanic particulates

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775600A (en) * 1986-03-27 1988-10-04 Nippon Kokan Kabushiki Kaisha Highly corrosion-resistant surface-treated steel plate
JPS6335798A (en) * 1986-07-31 1988-02-16 Nippon Steel Corp Organic composite steel sheet having excellent cation electrodeposition paintability
JPS63317696A (en) * 1987-02-19 1988-12-26 Nippon Steel Corp Composite plated steel sheet having excellent workability and corrosion resistance
JPH0243398A (en) * 1988-07-29 1990-02-13 Nippon Steel Corp Organic composite plated steel sheet having excellent corrosion resistance
JPH02277799A (en) * 1988-09-19 1990-11-14 Nippon Steel Corp Organic composite plated steel sheet excellent in corrosion resistance
JPH02263633A (en) * 1989-04-04 1990-10-26 Nippon Steel Corp High corrosion-resistant colored thin film coated steel plate with excellent press workability and spot weldability
JPH0396337A (en) * 1989-09-08 1991-04-22 Kobe Steel Ltd Resin-coated steel sheet excellent in press moldability
JPH0387399A (en) * 1990-03-07 1991-04-12 Nippon Steel Corp Organic composite plated steel sheet excellent in corrosion resistance
JP2722938B2 (en) * 1992-04-20 1998-03-09 住友金属工業株式会社 Organic composite zinc-coated steel sheet for exterior
KR100391566B1 (en) * 1996-12-26 2003-10-17 주식회사 포스코 Method for manufacturing hot dip galvanized strip treated with resin having superior corrosion resistance and blackening resistance after processing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224174A (en) * 1982-06-23 1983-12-26 Nippon Kokan Kk <Nkk> Production of coated steel plate having high resistance to corrosion and rust

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224174A (en) * 1982-06-23 1983-12-26 Nippon Kokan Kk <Nkk> Production of coated steel plate having high resistance to corrosion and rust

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9044397B2 (en) 2009-03-27 2015-06-02 Ethicon, Inc. Medical devices with galvanic particulates

Also Published As

Publication number Publication date
JPS60174879A (en) 1985-09-09

Similar Documents

Publication Publication Date Title
US4659394A (en) Process for preparation of highly anticorrosive surface-treated steel plate
US4411964A (en) Composite coating steel sheets having good corrosion resistance paintability and corrosion resistance after paint coating
US4407899A (en) Surface treated steel sheets for paint coating
US7348068B2 (en) Surface-treated steel sheet excellent in corrosion resistance, conductivity, and coating appearance
EP0385362A1 (en) Steel plate with organic coating having improved corrosion resistance
CA1211406A (en) Plated steel sheet with chromate and composite silicate resin films
JP3968955B2 (en) Organic coated steel plate with excellent corrosion resistance
JP2002053979A (en) Organic matter coated steel sheet excellent in corrosion resistance, and its production method
JP2001089868A (en) Substrate treating agent for precoated metallic sheet, coated substrate treated metallic sheet coated with the same and precoated metallic sheet excellent in working adhesion of coating film using the same
JPH0380874B2 (en)
JPH10251509A (en) Metal surface treating solution and surface treated metal plate
JP5638191B2 (en) Chemical conversion treated metal plate and manufacturing method thereof
JPH0360919B2 (en)
JP2002363766A (en) Organic coated steel sheet having excellent corrosion resistance and electric conductivity
JPH041070B2 (en)
JP2011195941A (en) Surface-treated steel sheet
JPH0128101B2 (en)
JP2002363768A (en) Organic-coated steel sheet having excellent corrosion resistance in hot and humid environment
JPS642670B2 (en)
JP2000160353A (en) Organic coated steel sheet excellent in corrosion resistance
JP2000248367A (en) Galvanized steel sheet with non-chromium type treatment
JP3833033B2 (en) Pre-coated steel sheet with excellent corrosion resistance
JPS6123766A (en) Plated steel sheet having composite coating
JPH09183186A (en) Organically after-treated metal sheet
JP2001335965A (en) Organic compound coated steel sheet excellent in corrosion resistance