JPH0380573B2 - - Google Patents

Info

Publication number
JPH0380573B2
JPH0380573B2 JP60162053A JP16205385A JPH0380573B2 JP H0380573 B2 JPH0380573 B2 JP H0380573B2 JP 60162053 A JP60162053 A JP 60162053A JP 16205385 A JP16205385 A JP 16205385A JP H0380573 B2 JPH0380573 B2 JP H0380573B2
Authority
JP
Japan
Prior art keywords
stainless steel
fibrous
adhesive
mesh
steel mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60162053A
Other languages
Japanese (ja)
Other versions
JPS6224831A (en
Inventor
Tooru Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60162053A priority Critical patent/JPS6224831A/en
Priority to US06/833,375 priority patent/US4729871A/en
Priority to GB08604871A priority patent/GB2176500A/en
Priority to CA000503044A priority patent/CA1266791A/en
Priority to AU54167/86A priority patent/AU566660B2/en
Publication of JPS6224831A publication Critical patent/JPS6224831A/en
Publication of JPH0380573B2 publication Critical patent/JPH0380573B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は主としてステンレス鋼フイルタおよ
びステンレス鋼吸音材等に利用する多孔質ステン
レス鋼複合材とその製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates primarily to a porous stainless steel composite material used for stainless steel filters, stainless steel sound absorbing materials, etc., and a method for manufacturing the same.

従来の技術 近年、ステンレス鋼多孔質材のフイルタおよび
吸音材は、増々面積が大きく、曲げ加工の大きな
材料が必要となつてきている。従つて、多孔質ス
テンレス鋼材としては加圧による焼結または無加
圧による焼結等が行われているが、これら多孔質
ステンレス鋼材の幅が広く、長さも長いものが要
求され、しかも曲げ加工の良好な材料が必要とな
つてきている。
BACKGROUND ART In recent years, filters and sound absorbing materials made of porous stainless steel materials have an increasingly large area and require materials that can be bent to a large extent. Therefore, porous stainless steel materials are sintered by pressure or non-pressure sintering, but these porous stainless steel materials are required to be wide and long, and moreover, bending process is difficult. There is an increasing need for good materials.

発明が解決しようとする問題点 然し乍ら、従来のステンレス鋼多孔質材は多孔
率50%、板厚2mm程度の材料でも曲げ加工が困難
であり、さらに面積の広い、例えば500×500mm2
上の多孔質材の製造は不可能に近く、特に長さが
要求される多孔質の製造は皆無である。
Problems to be Solved by the Invention However, conventional porous stainless steel materials have a porosity of 50% and are difficult to bend even when the plate thickness is about 2 mm. It is nearly impossible to manufacture solid materials, especially porous materials that require long lengths.

従つて、この発明の目的は、この様な従来にお
ける問題点を解決するために、ステンレス鋼の網
にステンレス鋼繊維状材を植毛して焼結して成る
多孔性の複合材およびその製造方法を提供するこ
とにある。
Therefore, an object of the present invention is to provide a porous composite material made by implanting stainless steel fibrous material into a stainless steel mesh and sintering it, and a method for manufacturing the same, in order to solve the problems in the conventional art. Our goal is to provide the following.

問題点を解決するための手段と作用 この発明に依れば、繊維状ステンレス鋼とステ
ンレス鋼網の複合材は、ステンレス鋼網、このス
テンレス鋼網に塗布される接着剤、接着剤が塗布
されたステンレス鋼網上に静電場の作用により搬
送されて所望の分布状態で植毛される長さ10mm以
下の繊維状ステンレス鋼から成り、繊維状ステン
レス鋼が植毛されたステンレス鋼網をロール圧延
した後に焼結炉にて焼結することを特徴としてい
る。
Means and Effects for Solving the Problems According to the present invention, a composite material of fibrous stainless steel and stainless steel net includes a stainless steel net, an adhesive applied to the stainless steel net, and an adhesive applied to the stainless steel net. It consists of fibrous stainless steel with a length of 10 mm or less, which is transported by the action of an electrostatic field and flocked onto a stainless steel net with a length of 10 mm or less, and after the stainless steel net with the fibrous stainless steel flocked is rolled. It is characterized by being sintered in a sintering furnace.

更に、この発明に従えば、繊維状ステンレス鋼
とステンレス鋼網の複合材の製造方法は、ステン
レス鋼網の上に、水ガラス系またはエポキシ系接
着剤と微粒のニツケルカルボニル粉との混合物を
塗布し、このステンレス鋼網上に長さ10mm以下の
繊維状ステンレス鋼を静電場の作用により搬送し
て所望の分布で植毛し、これをロール圧延し、次
いで焼結炉内に入れて焼結することから成ること
を特徴としている。
Furthermore, according to the present invention, the method for producing a composite material of fibrous stainless steel and stainless steel net includes applying a mixture of water glass-based or epoxy adhesive and fine nickel carbonyl powder on top of the stainless steel net. Then, fibrous stainless steel with a length of 10 mm or less is conveyed onto this stainless steel net by the action of an electrostatic field, flocked in the desired distribution, rolled, and then placed in a sintering furnace to be sintered. It is characterized by consisting of

この発明の他の目的と特長および利点は以下の
添付図面に沿つての詳細な説明により明らかにな
ろう。
Other objects, features and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings.

図面の第1図にはこの発明の一実施例に係わる
複合材が断面で示されており、長さ10mm以下の繊
維状ステンレス鋼1の短繊維同志は勿論のこと、
繊維状ステンレス鋼1とステンレス鋼網2とが焼
結一体化された状態にあり、この複合材の多孔率
は60〜80%である。
FIG. 1 of the drawings shows a cross section of a composite material according to an embodiment of the present invention, which includes not only short fibers of fibrous stainless steel 1 with a length of 10 mm or less,
The fibrous stainless steel 1 and the stainless steel mesh 2 are sintered and integrated, and the porosity of this composite material is 60 to 80%.

この様なこの発明の複合材の製造工程が第1図
乃至第6図に示されており、第2図に断面で示さ
れるステンレス鋼網2の上に水ガラス系またはエ
ポキシ系等の適宜な接着剤3が第3図に示される
如く薄く塗布される。この場合に、接着剤3は水
ガラスが特に好適である。すなわち、水ガラスの
PH値は12程度で、強アルカリ性であるためにステ
ンレス鋼の短繊維は勿論のこと、ステンレス鋼の
網の酸化被膜を犯すために金属間同志の表面が焼
結時に非常に焼結し易くなる。また、水ガラス系
或はエポキシ系接着剤はステンレス鋼網の毛細管
現象によつて網目からしたゝり落ちない。
The manufacturing process of the composite material of the present invention is shown in FIGS. 1 to 6, in which a suitable material such as water glass or epoxy is placed on the stainless steel mesh 2 shown in cross section in FIG. Adhesive 3 is applied thinly as shown in FIG. In this case, water glass is particularly suitable as the adhesive 3. i.e. water glass
The pH value is around 12, and since it is strongly alkaline, it damages not only short stainless steel fibers, but also the oxide film on the stainless steel mesh, making the surfaces of metals very likely to sinter during sintering. . Furthermore, the water glass-based or epoxy-based adhesive does not drip off from the stainless steel mesh due to capillary action.

次いで、接着剤3が塗布されたステンレス鋼網
2の上に太さ1〜50μで長さ1〜10mmの短い繊維
状ステンレス鋼1が植毛される。この状態は第4
図に示されている。空気に平板電極を用いて電圧
を印加すると空気の絶縁が破壊され電離状態をつ
くり、その中にある繊維状金属は分極する。一方
の金属繊維の先端はマイナスとなり、反対側はプ
ラスとなる。例えばステンレス鋼網側をプラス極
側においておくと金属繊維の先端のマイナス極は
プラスである鋼網側に飛翔し(Up法)あるいは
落下し(down法)植毛される。繊維状ステンレ
スの分布状態は、繊維状ステンレスの直径、長さ
あるいは、電場の強さによつて制御する。印加電
圧は繊維状ステンレスの径、長さ、誘電率により
異なるが一般的に10〜50KV、電流0.1〜0.2mA、
電極間距離3〜20cmが好ましい。この様にして繊
維状ステンレス鋼1がステンレス鋼網2に植毛あ
るいは散布されて接着剤3が乾燥された後、これ
を第5図に示される如く一対のロール4の間に通
してロールに圧延し、所要の長さに適宜に切断
し、次いで第6図に示される様に焼結炉6の中に
入れて先ず約200〜400℃の温度で加熱して接着剤
3を気化蒸発させ、その後に所要の焼結温度、例
えば1000〜1200℃で所定の時間焼結して本来の焼
結工程を行えば、繊維状ステンレス鋼1とステン
レス鋼網2が一体化焼結された複合材10が得ら
れる。
Next, short fibrous stainless steel 1 having a thickness of 1 to 50 μm and a length of 1 to 10 mm is flocked onto the stainless steel net 2 coated with the adhesive 3. This state is the fourth
As shown in the figure. When a voltage is applied to air using a flat plate electrode, the insulation of the air is broken down, creating an ionized state, and the fibrous metal within it becomes polarized. One end of the metal fiber becomes negative, and the other end becomes positive. For example, if the stainless steel mesh side is placed on the positive pole side, the negative pole at the tip of the metal fiber will fly (up method) or fall (down method) to the positive steel mesh side and be flocked. The distribution state of the fibrous stainless steel is controlled by the diameter and length of the fibrous stainless steel or the strength of the electric field. The applied voltage varies depending on the diameter, length, and dielectric constant of the fibrous stainless steel, but generally 10 to 50 KV, current 0.1 to 0.2 mA,
The distance between the electrodes is preferably 3 to 20 cm. After the fibrous stainless steel 1 is flocked or spread on the stainless steel net 2 and the adhesive 3 is dried in this way, it is passed between a pair of rolls 4 and rolled into rolls as shown in FIG. Then, as shown in FIG. 6, it is placed in a sintering furnace 6 and heated at a temperature of about 200 to 400°C to vaporize the adhesive 3. After that, if the original sintering process is performed by sintering at a required sintering temperature, for example, 1000 to 1200°C for a predetermined time, a composite material 10 in which the fibrous stainless steel 1 and the stainless steel mesh 2 are integrally sintered is obtained. is obtained.

この様にしてつくられたこの発明の繊維状ステ
ンレス鋼とステンレス鋼網の焼結された複合材
は、短繊維状ステンレス鋼が圧延工程にてかなり
の冷間加工を受けていて転位の集中個所がみら
れ、特に繊維の交叉部分が非常な冷間加工を受け
ているために交叉部分は転位により活性化されて
いて焼結が一層容易となる。
In the sintered composite of the fibrous stainless steel and stainless steel mesh of the present invention, the short fibrous stainless steel has been subjected to considerable cold working during the rolling process, resulting in areas where dislocations are concentrated. In particular, since the intersection portions of the fibers have been subjected to severe cold working, the intersection portions are activated by dislocations, making sintering easier.

実施例 1 30メツシユ、線径0.15mmのSUS316のステンレ
ス鋼網の上に、水ガラス系接着剤に平均粒度40μ
のニツケルカルボニル粉を接着剤重量1に対して
ニツケルカルボニル粉1になる様に混合したもの
を上記SUS316のステンレス鋼網に約5μの厚さに
塗布し、この上にビビリ振動法により作製された
太さ20μ、長さ6mmのステンレス鋼短繊維を植毛
し、その後に5t/cm2程度の圧力でロール圧延を行
つた。植毛条件は使用電圧100V、印加電圧
40KV、電流0.1mAとし接着剤を塗布せる鋼網と
金属繊維との距離は3cmとした。これを更に、水
ガラス系接着剤を蒸発させるために約400℃の炉
内に装入して水分を5分間蒸発させた。従つて、
この短時間における燃焼にてはステンレス鋼繊維
の転位およびニツケルカルボニル粉の変化はな
い。次いで、以上に材料を焼結により完全に一体
とする必要があるので、従つてこれを温度1180
℃、時間30分で露点−40℃なる炉にて1時間焼結
したところ、多孔率80%、厚さ0.5mmのSUS316の
ステンレス鋼網とSUS308の三次元を有する多孔
質ステンレス鋼材の複合材が得られた。
Example 1 A water glass adhesive with an average particle size of 40μ was placed on a 30-mesh SUS316 stainless steel mesh with a wire diameter of 0.15mm.
A mixture of 1 part nickel carbonyl powder and 1 part nickel carbonyl powder by weight of adhesive was applied to the above SUS316 stainless steel mesh to a thickness of about 5 μm, and on top of this was fabricated by the chatter vibration method. Short stainless steel fibers with a thickness of 20 μm and a length of 6 mm were flocked, and then rolled with a pressure of about 5 t/cm 2 . Flocking conditions are working voltage 100V, applied voltage
The voltage was 40KV and the current was 0.1mA, and the distance between the metal fiber and the steel mesh to which the adhesive was applied was 3cm. This was further placed in a furnace at about 400° C. to evaporate water for 5 minutes in order to evaporate the water glass adhesive. Therefore,
There is no dislocation of the stainless steel fibers and no change in the nickel carbonyl powder during this short combustion period. Next, it is necessary to completely integrate the materials by sintering, so this is done at a temperature of 1180°C.
When sintered for 1 hour in a furnace with a dew point of -40℃ for 30 minutes at ℃, a composite material of SUS316 stainless steel mesh with a porosity of 80% and a thickness of 0.5mm and a three-dimensional porous stainless steel material of SUS308 was obtained. was gotten.

この様に、この発明に従えば、曲げ加工が容易
で且つ良好な多孔率を有し、三次元に連通する連
通孔を具備する繊維状ステンレス鋼とステンレス
鋼網が焼結一体化された複合材を得ることができ
る。
As described above, according to the present invention, a composite material is formed by sintering and integrating fibrous stainless steel and stainless steel mesh, which is easy to bend, has good porosity, and has three-dimensional communicating holes. material can be obtained.

実施例 2 30メツシユの線径0.15mmのSUS316のステンレ
ス鋼網の上に、水ガラス系接着剤に平均粒度40μ
のニツケルカルボニル粉を接着剤重量1に対して
ニツケルカルボニル粉3%になる様に混合したも
のを上記SUS316のステンレス鋼網に約5μの厚さ
に塗布し、この上にメルトエクストラクシヨン
法、すなわち特殊な表面性状を有する回転デスク
をステンレス溶鋼に高速で接触させ、直接、製品
を凝固抽出する方法にて作成された直径0.1mm、
長さ5mmのステンレス短繊維を接着剤に実施例1
と同様に植毛させた後、接着剤の水分を蒸発させ
る目的で600℃にて10分間還元性雰囲気にて加熱
し、その後露点−30℃のアンモニヤ分解炉内にて
1200℃にて1時間焼結したところ多孔率90%の短
繊維が植毛されたまゝの状態で金網と繊維の複合
材が得られた。
Example 2 On top of a 30-mesh SUS316 stainless steel net with a wire diameter of 0.15 mm, an average particle size of 40 μm was applied to a water glass adhesive.
A mixture of 3% nickel carbonyl powder per 1 weight of adhesive was applied to the above SUS316 stainless steel mesh to a thickness of about 5μ, and then melt extraction method, In other words, the product is 0.1 mm in diameter, made by bringing a rotating disk with a special surface texture into contact with molten stainless steel at high speed, and directly solidifying and extracting the product.
Example 1 Using stainless steel short fibers with a length of 5 mm as an adhesive
After flocking in the same manner as above, it was heated in a reducing atmosphere at 600℃ for 10 minutes to evaporate the moisture in the adhesive, and then placed in an ammonia decomposition furnace with a dew point of -30℃.
After sintering at 1200°C for 1 hour, a composite material of wire mesh and fibers was obtained with short fibers having a porosity of 90% still flocked.

以上の実施例においてステンレス金網を使用し
たが、ステンレス板材においても繊維の焼結が可
能なることは理の当然である。
Although stainless wire mesh was used in the above embodiments, it is natural that fibers can be sintered using stainless steel plate material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の繊維状ステンレス鋼とステ
ンレス鋼網の焼結された複合材を示す断面図、第
2図乃至第6図はこの発明の複合材の製造工程を
順次示す概要図である。図中、1……繊維状ステ
ンレス鋼、2……ステンレス鋼網、3……接着
剤、4……ロール、6……焼結炉、10……複合
材。
FIG. 1 is a cross-sectional view showing a sintered composite material of fibrous stainless steel and stainless steel net of the present invention, and FIGS. 2 to 6 are schematic diagrams sequentially showing the manufacturing process of the composite material of the present invention. . In the figure, 1... fibrous stainless steel, 2... stainless steel mesh, 3... adhesive, 4... roll, 6... sintering furnace, 10... composite material.

Claims (1)

【特許請求の範囲】 1 ステンレス鋼網、該ステンレス鋼網に塗布さ
れる接着剤、該接着剤が塗布されたステンレス鋼
網上に静電場の作用により搬送されて所望の分布
状態で植毛される長さ10mm以下の繊維状ステンレ
ス鋼から成り、該繊維状ステンレス鋼が植毛され
たステンレス鋼網をロール圧延し、次いで焼結炉
内にて焼結してなることを特徴とする繊維状ステ
ンレス鋼とステンレス鋼網の複合材。 2 ステンレス鋼網の上に、水ガラス系またはエ
ポキシ系接着剤と微粒のニツケルカルボニル粉と
の混合物を塗布し、このステンレス鋼網上に長さ
10mm以下の繊維状ステンレス鋼を静電場の作用に
より搬送して所望の分布状態で植毛し、これをロ
ール圧延し、次いで焼結炉内に入れて焼結するこ
とから成ることを特徴とする繊維状ステンレス鋼
とステンレス鋼網の複合材の製造方法。 3 ステンレス鋼網の上に、無機質系または有機
質系接着剤と微粒のニツケルカルボニル粉あるい
はステンレス粉との混合物を塗布し、このステン
レス鋼網上に長さ10mm以下の繊維状ステンレス鋼
を静電場の作用により搬送して所望の分布状態で
植毛し、次いで低温焼結炉内に入れて脱水し、さ
らに高温焼結炉内にて焼結することから成ること
を特徴とする繊維状ステンレス鋼とステンレス鋼
網の複合材の製造方法。
[Scope of Claims] 1. A stainless steel net, an adhesive applied to the stainless steel net, and the adhesive is transported onto the stainless steel net coated with the adhesive by the action of an electrostatic field and flocked in a desired distribution state. A fibrous stainless steel made of fibrous stainless steel having a length of 10 mm or less, which is obtained by rolling a stainless steel mesh flocked with the fibrous stainless steel and then sintering it in a sintering furnace. and stainless steel mesh composite. 2. Apply a mixture of water glass-based or epoxy adhesive and fine nickel carbonyl powder onto the stainless steel mesh, and apply a length onto the stainless steel mesh.
A fiber characterized in that it consists of transporting fibrous stainless steel of 10 mm or less by the action of an electrostatic field, flocking it in a desired distribution state, rolling it with rolls, and then putting it in a sintering furnace and sintering it. A method for manufacturing a composite material of shaped stainless steel and stainless steel mesh. 3. Apply a mixture of an inorganic or organic adhesive and fine nickel carbonyl powder or stainless steel powder onto a stainless steel mesh, and place a fibrous stainless steel with a length of 10 mm or less on the stainless steel mesh in an electrostatic field. Fibrous stainless steel and stainless steel characterized by being transported by action and flocked in a desired distribution state, then placed in a low-temperature sintering furnace to be dehydrated, and further sintered in a high-temperature sintering furnace. Method for manufacturing steel mesh composites.
JP60162053A 1985-06-21 1985-07-24 Composite material of fibrous stainless steel and stainless steel net and its production Granted JPS6224831A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60162053A JPS6224831A (en) 1985-07-24 1985-07-24 Composite material of fibrous stainless steel and stainless steel net and its production
US06/833,375 US4729871A (en) 1985-06-21 1986-02-26 Process for preparing porous metal plate
GB08604871A GB2176500A (en) 1985-06-21 1986-02-27 Process for preparing sintered porous metal plate
CA000503044A CA1266791A (en) 1985-06-21 1986-02-28 Process for preparing porous metal plate
AU54167/86A AU566660B2 (en) 1985-06-21 1986-02-28 Preparing porous metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162053A JPS6224831A (en) 1985-07-24 1985-07-24 Composite material of fibrous stainless steel and stainless steel net and its production

Publications (2)

Publication Number Publication Date
JPS6224831A JPS6224831A (en) 1987-02-02
JPH0380573B2 true JPH0380573B2 (en) 1991-12-25

Family

ID=15747197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162053A Granted JPS6224831A (en) 1985-06-21 1985-07-24 Composite material of fibrous stainless steel and stainless steel net and its production

Country Status (1)

Country Link
JP (1) JPS6224831A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820765B2 (en) * 1988-06-06 1996-03-04 三菱レイヨン株式会社 Polyester resin for toner and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018770A (en) * 1973-06-25 1975-02-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018770A (en) * 1973-06-25 1975-02-27

Also Published As

Publication number Publication date
JPS6224831A (en) 1987-02-02

Similar Documents

Publication Publication Date Title
US4729871A (en) Process for preparing porous metal plate
CA2163819A1 (en) Porous Metallic Sheet Used as an Electrode Substrate of a Battery and Method of Manufacturing the Porous Metallic Sheet
KR100264754B1 (en) Fibrous tantalum and capacitors made therefrom
JP2019528702A (en) Susceptor assembly and aerosol generating article having the same
US2836641A (en) Process for the production of electrodes for electro-chemical purposes
US3354247A (en) Method of producing porous separators
JPH0380573B2 (en)
DE1496358A1 (en) Electrode for accumulators
EP1237211A3 (en) Method for producing electrode for alkali batteries
JPH05230799A (en) Sintered metallic fiber sheet and its production
EP1067613A4 (en) Method of manufacturing electrode of nonaqueous electrolytic battery
JPS59134563A (en) Production process of collector for electrode
US4037310A (en) Method of manufacturing a homopolar electret from a foil
FR2439046A1 (en) Applying glazing coating to ceramic ware - using dry powder of specified electric resistivity in electrostatic field
JPS61293618A (en) Composite material of fibrous nickel and stainless steel net and its manufacture
DE879920C (en) Bimorphic transmission element and process for its manufacture
US3276975A (en) Silver oxide electrodes
JPH0135042B2 (en)
US3092509A (en) Glass fiber reinforced battery separators
JPS61223105A (en) Sintered metallic fiber sheet and its production
JP2707400B2 (en) Method of forming hydrogen storage alloy powder slurry layer
EP0102966A1 (en) Method for manufacturing a large surface current collector for an electrochemical cell in the form of a porous titanium plate or sheet
JPS63270403A (en) Production of metallic porous material
SU577095A1 (en) Method of obtaining porous metal
US3732095A (en) Method of making porous electrodes comprising freezing wet powder and sintering