JPH0380111A - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH0380111A
JPH0380111A JP1213726A JP21372689A JPH0380111A JP H0380111 A JPH0380111 A JP H0380111A JP 1213726 A JP1213726 A JP 1213726A JP 21372689 A JP21372689 A JP 21372689A JP H0380111 A JPH0380111 A JP H0380111A
Authority
JP
Japan
Prior art keywords
superconductor
sample
oxygen
oxide superconductor
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1213726A
Other languages
Japanese (ja)
Other versions
JP2855125B2 (en
Inventor
Takahiro Wada
隆博 和田
Shinichi Koriyama
慎一 郡山
Takeshi Sakurai
健 桜井
Noburo Suzuki
鈴木 信郎
Takayuki Miyatake
宮武 孝之
Hisao Yamauchi
尚雄 山内
Naoki Koshizuka
直己 腰塚
Shoji Tanaka
昭二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kyocera Corp
Kobe Steel Ltd
Mitsubishi Materials Corp
Panasonic Holdings Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kyocera Corp
Tokyo Electric Power Co Inc
Kobe Steel Ltd
Mitsubishi Materials Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER, Kyocera Corp, Tokyo Electric Power Co Inc, Kobe Steel Ltd, Mitsubishi Materials Corp, Matsushita Electric Industrial Co Ltd filed Critical KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority to JP1213726A priority Critical patent/JP2855125B2/en
Priority to DE69018898T priority patent/DE69018898T2/en
Priority to EP90115823A priority patent/EP0413360B1/en
Priority to KR1019900012912A priority patent/KR0160509B1/en
Publication of JPH0380111A publication Critical patent/JPH0380111A/en
Priority to US08/068,587 priority patent/US5468724A/en
Application granted granted Critical
Publication of JP2855125B2 publication Critical patent/JP2855125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make the superconductivity transition temp. of the oxide superconductor higher than the b.p. of liquefied nitrogen, to increase its density and to obtain excellent stability that oxygen is not absorbed or desorbed up to high temp. by substituting a part of Ba in the superconductor with RBa2Cu4O8 (R is rare-earth elements) as the base material for Sr. CONSTITUTION:The oxide superconductor has the chemical composition R(Ba1-xSrx)2Cu4O8, R is at least one kind selected from the rare-earth elements (including Y), namely Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and 0.001<=x<=0.6. The superconductor is stable close to 850 deg.C without oxygen being absorbed or desorbed. Accordingly, when a silver-sheathed wire is formed from the superconductor, a stable high-density sintered superconducting wire is formed in the sintering stage as the final stage without deteriorating its superconductivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超電導転移温度Tcが液体窒素温度を越える
酸化物超電導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an oxide superconductor whose superconducting transition temperature Tc exceeds the liquid nitrogen temperature.

[従来の技術] 1− 液体窒素の沸点を越える超電導転移温度Tc(絶対温度
90K)をもつ代表的な酸化物超電導体として3層ペロ
ブスカイト型の結晶構造を有するRB a2 C030
7(R= Y、  希土類元素)が知られている(Ap
pl、 Phys、 Lett、 Vol、 51 (
19137) P57)。
[Prior art] 1- RB a2 C030, which has a three-layer perovskite crystal structure as a typical oxide superconductor with a superconducting transition temperature Tc (absolute temperature 90 K) exceeding the boiling point of liquid nitrogen
7 (R= Y, rare earth element) is known (Ap
pl, Phys, Lett, Vol, 51 (
19137) P57).

ところが、この酸化物超電導体は酸素含有量が熱処理条
件で変化し、これにともなって正方晶−斜方晶構造相転
移を起こす。この相転移により超電導転移温度は90K
からOK(絶縁体)まで大きく変化することが知られて
いる( Phys、 Rev、 836(1987) 
P57]9)。
However, the oxygen content of this oxide superconductor changes depending on the heat treatment conditions, resulting in a tetragonal-orthorhombic structure phase transition. Due to this phase transition, the superconducting transition temperature is 90K.
It is known that it changes greatly from OK (insulator) to OK (insulator) (Phys, Rev, 836 (1987)
P57]9).

[発明が解決しようとする課題] しかしながら、例えば、RBa2Cu307粉末を銀バ
イブZこ充填し、これを冷間線引き加工で線状にした後
、RBa2Cu307粉末の焼結熱処理(800〜90
0℃)により、超電導線材として実用化する場合に(銀
シース線材法)、焼結処理によって酸素が抜けてしまい
、超電導特性が劣化してしまうことを本発明者らは見い
だした。
[Problems to be Solved by the Invention] However, for example, after filling a silver vibe Z with RBa2Cu307 powder and making it into a wire by cold drawing, the RBa2Cu307 powder is subjected to sintering heat treatment (800 to 90
The present inventors have found that when the wire is put to practical use as a superconducting wire (silver sheath wire method), oxygen escapes during the sintering process, resulting in deterioration of the superconducting properties.

これに対して、2重のCuO鎖を有する3層ペロ2− ブスカイト型の結晶構造のRB82Cu40s (第1
図)は、850℃付近まで酸素の出入りが見られず安定
である。しかしながら、本発明者らは、RBa2Cua
 Oeは焼結性が悪く高密度焼結体が得られζこくいこ
とを見いだした。焼結体の密度が低いと臨界電流密度が
高くならないことは当然である。
On the other hand, RB82Cu40s (first
Figure) is stable with no oxygen entering or exiting up to around 850°C. However, we found that RBa2Cua
It has been found that Oe has poor sinterability and a high-density sintered body is obtained. Naturally, if the density of the sintered body is low, the critical current density will not be high.

本発明は、これらの問題点を解決するためになされたも
のである。
The present invention has been made to solve these problems.

本発明の目的は、液体窒素の沸点よりも高い超電導転移
温度を有し、高密度でかつ高温まで酸素の吸収−散出が
なく安定性にすぐれた超電導体を提供することにある。
An object of the present invention is to provide a superconductor that has a superconducting transition temperature higher than the boiling point of liquid nitrogen, is highly dense, and has excellent stability without absorbing or dissipating oxygen up to high temperatures.

[課題を解決するための手段] 前記目的を達成するために、本発明の酸化物超電導体は
、R(Bat−8Srつ)2Cua○8の組成を有し、
RはYlNds  Sms  Eu、  Gdt  D
ys  HO%  Ers  Tmz Yb%  Lu
の希土類元素(Yを含む)のうち少なくとも1種カラな
り、xがO,oo1≦x≦0.6の範囲にあることを特
徴とする。
[Means for Solving the Problems] In order to achieve the above object, the oxide superconductor of the present invention has a composition of R(Bat-8Sr)2Cua○8,
R is YlNds Sms Eu, Gdt D
ys HO% Ers Tmz Yb% Lu
At least one of the rare earth elements (including Y) is free, and x is in the range of O, oo1≦x≦0.6.

[作用] 3− 前述した手段によれば、母材となる超電導体RB a2
 CL120 aの超電導転移温度が80にであり、し
かもこの材料はII焼結性であるのに対して、R(Ba
t−xSrx)2Cu、+08の組成を有しRがHoX
xが0.3の試料は、超電導転移温度が80に以」二で
あり、焼結も容易になり、本実施例では焼結体の気孔率
も10%まで低下することが認められた。さらに、熱重
量分析の結果、本発明の超電導体は、850°C付近ま
で酸素の出入りがなく安定に存在することが確認できた
[Operation] 3- According to the above-mentioned means, the superconductor RB a2 serving as the base material
The superconducting transition temperature of CL120a is 80°C, and this material is II sinterable, whereas R(Ba
t-xSrx)2Cu, has a composition of +08 and R is HoX
The sample where x is 0.3 has a superconducting transition temperature of 80 or higher, and sintering becomes easy, and in this example, it was observed that the porosity of the sintered body was reduced to 10%. Further, as a result of thermogravimetric analysis, it was confirmed that the superconductor of the present invention existed stably without oxygen entering or exiting up to around 850°C.

従って、本発明の超電導体を銀シース線材化する場合、
最終工程である焼結熱処理過程で、超電導特性を損なう
ことなく安定で、しかも高密度に焼結した超電導線材を
作製することができる。
Therefore, when making the superconductor of the present invention into a silver sheath wire,
In the final sintering heat treatment process, a stable and highly densely sintered superconducting wire can be produced without impairing superconducting properties.

[発明の実施例コ 以下、本発明の一実施例を図面を用いて、具体的に説明
する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings.

まず、本発明による酸化物超電導体の主成分であるRB
aaCuaOeの基本構造を第1図に示し、比較するた
めに従来のRBa2CU307の結晶構造を第4− 2図に示す。第1図及び第2図において、■は希土類元
素Rであり、Y%  NcL  5llXEuXGds
  DyX HOXErs  Tm、YE1%  Lu
の希土類元素(Yを含む)のうち少なくとも1種からな
る。2はBa53はCu、4は線分の交差点に配置され
ているOである。
First, RB, which is the main component of the oxide superconductor according to the present invention,
The basic structure of aaCuaOe is shown in Fig. 1, and for comparison, the crystal structure of conventional RBa2CU307 is shown in Fig. 4-2. In Figures 1 and 2, ■ is the rare earth element R, Y% NcL 5llXEuXGds
DyX HOXErs Tm, YE1% Lu
It consists of at least one kind of rare earth elements (including Y). 2 is Ba53 is Cu, and 4 is O placed at the intersection of the line segments.

第1図に示した本発明の酸化物超電導体の主成分R(B
 al−x S rx)2Cυ40 mは、第2図に示
すRBa2cuso7の結晶構造の1重のCuO鎖を、
2重のCuO鎖に置換し、ざらにBaを部分的にSrに
置換したものである。この二重のCuO鎖を有する構造
において、一部BaをSrに置換することが本発明の一
つの特徴である。
The main component R (B
al-x S rx)2Cυ40 m is the single CuO chain of the crystal structure of RBa2cuso7 shown in Figure 2,
Double CuO chains are substituted, and Ba is partially substituted with Sr. One of the features of the present invention is that in this structure having double CuO chains, part of Ba is replaced with Sr.

つぎに、本発明の酸化物超電導体の実施例について説明
する。
Next, examples of the oxide superconductor of the present invention will be described.

〔実施例1〕 純度99.9%のY2O3、Ba(NOs)2、Cub
[Example 1] Y2O3, Ba(NOs)2, Cub with a purity of 99.9%
.

5r(NCh)2粉末を化学組成式Y (B al−x
 S rx)2Cu408において、x=0.0.01
,0.1.0.2.0.3.0,4.0.5.0.6.
0.7となるように5− 混合し、酸素中850℃で24時間仮焼を行った。
5r(NCh)2 powder has the chemical composition formula Y (B al-x
S rx) In 2Cu408, x=0.0.01
,0.1.0.2.0.3.0,4.0.5.0.6.
0.7, and calcined in oxygen at 850°C for 24 hours.

仮焼後、試料を粉砕し矩形に成形した。この成形体を酸
素中800℃で5時間予備焼結した。この予備焼結体を
1000kg/cm2・Ar80%−0220%のガス
雰囲気下で熱処理を行った。200℃/hで加熱して9
60°Cで6時間保持し、そこからさらに1050℃ま
で200’C/hで加熱して、その温度で6時間保持し
た。冷却は200″C/hの速度で300℃まで行い、
1気圧まで減圧したあと試料を空気中に取り出した。こ
の試料を再び粉砕し成形した。この成形体を酸素中80
0℃で焼結して所定の試料を得た。
After calcining, the sample was crushed and shaped into a rectangle. This compact was pre-sintered in oxygen at 800° C. for 5 hours. This preliminary sintered body was heat-treated in a gas atmosphere of 1000 kg/cm2.Ar 80%-0220%. Heating at 200℃/h9
It was held at 60°C for 6 hours, then further heated to 1050°C at 200'C/h, and held at that temperature for 6 hours. Cooling was performed at a rate of 200″C/h to 300°C.
After reducing the pressure to 1 atm, the sample was taken out into the air. This sample was ground again and shaped. This molded body was heated to 80% in oxygen.
A predetermined sample was obtained by sintering at 0°C.

この様にして得られたY(Bat−,5rx)2cUA
o8の焼結体の生成相を粉末X線回折を用いて確認した
。得られた試料の主成分はいずれもY B 82C11
408型の結晶構造を有することを確認した。X=0.
3の粉末X線回折図形を第3図に示した。図中の数字は
Y B a2 C0408型構造にもとづいたピークの
指数である。この試料は超電導相の単一相である。
Y(Bat-,5rx)2cUA obtained in this way
The formed phase of the o8 sintered body was confirmed using powder X-ray diffraction. The main component of the obtained samples was Y B 82C11.
It was confirmed that it had a type 408 crystal structure. X=0.
The powder X-ray diffraction pattern of No. 3 is shown in FIG. The numbers in the figure are peak indices based on the Y B a2 C0408 type structure. This sample is a single superconducting phase.

試料の生成相を第1表にまとめて示した。The formed phases of the samples are summarized in Table 1.

6− Xが0から0.6の範囲では、Y (B 81−x S
 rx)2Cu40 eの単一相であり、Xが0.7に
なると第2相を含むようになる。
6- For X in the range 0 to 0.6, Y (B 81-x S
rx) 2Cu40 e is a single phase, and when X becomes 0.7, it begins to contain a second phase.

これらの試料の超電導特性を抵抗測定により調べた。そ
の結果を第4図及び第1表に示した。第1表乃至第4表
において、Tconは常電導状態から超電導転移を開始
する温度、TcR″eは抵抗Oなるときの温度、ρ3I
Kは300にのときの抵抗率である。
The superconducting properties of these samples were investigated by resistance measurements. The results are shown in FIG. 4 and Table 1. In Tables 1 to 4, Tcon is the temperature at which superconducting transition starts from the normal conductive state, TcR″e is the temperature at which the resistance becomes O, and ρ3I
K is the resistivity at 300.

以下、余白。Below is the margin.

7− 本実施例のY(Ba+−xsrx)2cUaosの超電
導体試料は、第4図及び第1表かられかるように、いず
れも80に級の超電導転移温度を示す。この超電導転移
温度は、液体窒素の沸点(77K)よりも高い温度であ
る。試料の室温における抵抗値を比較すると、Srの含
有量xの増加とともに室温の抵抗値が低下する。このよ
うに室温の抵抗値の低い試料に対して高臨界電流密度が
期待できる。室温の抵抗はXが0.5の試料が一番低く
、xが0。
7- As can be seen from FIG. 4 and Table 1, the Y(Ba+-xsrx)2cUaos superconductor samples of this example all exhibit a superconducting transition temperature of 80 degrees. This superconducting transition temperature is higher than the boiling point (77K) of liquid nitrogen. Comparing the resistance values of the samples at room temperature, the resistance value at room temperature decreases as the Sr content x increases. In this way, a high critical current density can be expected for a sample with a low resistance value at room temperature. The resistance at room temperature is lowest for the sample with X of 0.5;

6以上ではXの増加と共に抵抗値は高くなりX=0、7
ではX=Oの場合よりも高くなる。
Above 6, the resistance value increases as X increases, and X=0, 7
In this case, the value becomes higher than in the case where X=O.

また、これらの試料の気孔率を研磨試料の光学顕微鏡観
察から求めた。これらの値を第1表にまとめて示した。
Furthermore, the porosity of these samples was determined by observing the polished samples with an optical microscope. These values are summarized in Table 1.

この結果を見ると、Xの増加とともに気孔率が低下し、
x=0.3の試料でほぼ5%になる。しかし、これ以上
Xが増加しても気孔率は変化しない。
Looking at this result, the porosity decreases as X increases,
The sample with x=0.3 becomes approximately 5%. However, even if X increases further, the porosity does not change.

X線回折の結果、室温における抵抗率、気孔率の測定結
果を考慮すると、Xの増加にともなう試料の室温の抵抗
率の低下は、YBa2CuzOsのBa9− のサイトにSrが固溶することによる効果によるものと
考えられられる。したがってXの望ましい範囲としては
、0.001≦x≦0.6である。
Considering the results of X-ray diffraction and the measurement results of resistivity and porosity at room temperature, the decrease in resistivity at room temperature of the sample as X increases is due to the solid solution of Sr at the Ba9- site of YBa2CuzOs. This is thought to be due to Therefore, the desirable range of X is 0.001≦x≦0.6.

また、例えば第5図の(a)に示すようにX−0、3の
試料の熱重量分析の結果、常温から850℃付近まで重
量変化を示さず、850〜900″Cで重量の減少を示
すことから、850°Cという高温に至るまで酸素の出
入りもなく安定に存在することが確認できた。ところが
従来の起電導体YBa2 C u3 0 7では、第5
図の(b)に示すように、400〜800℃で大きく酸
素が放出してしまう。
For example, as shown in Figure 5 (a), the results of thermogravimetric analysis of samples X-0 and 3 show no weight change from room temperature to around 850°C, and a decrease in weight between 850 and 900''C. From this, it was confirmed that it existed stably without oxygen entering or exiting up to a high temperature of 850°C.However, in the conventional electromotive conductor YBa2Cu307, the 5th
As shown in (b) of the figure, a large amount of oxygen is released at 400 to 800°C.

以上の説明かられかるように、本実施例によれば、母材
となる超電導体Y B a2 C u, O aは難焼
結性であり、そのため焼結体の気孔率が30%以上であ
るのに対して、Y(Ba+−xsrx)2cuzo8の
組成を有し、Xがo.ooi≦x≦0.6の範囲にある
試料は、いずれもMi N導転移温度が80に以上であ
り、焼結体の気孔率も10%以下である。さらに、これ
らの試料は室温の電気抵抗率も低く、熱分析では850
°C付近まで、酸素の出入りがなく1〇− 安定に存在することが確認できた。
As can be seen from the above description, according to this example, the superconductor YB a2 Cu, O a serving as the base material is difficult to sinter, and therefore the sintered body has a porosity of 30% or more. On the other hand, it has a composition of Y(Ba+-xsrx)2cuzo8, and X is o. All of the samples in the range of ooi≦x≦0.6 have a MiN conduction transition temperature of 80 or higher, and the porosity of the sintered body is also 10% or lower. Furthermore, these samples also have a low electrical resistivity at room temperature, with a thermal analysis of 850
It was confirmed that it existed stably up to around 10°C with no oxygen going in and out.

〔実施例2〕 純度99.9%の)(o203、Ba(NO3)2、C
ub。
[Example 2] Purity 99.9%) (o203, Ba(NO3)2, C
ub.

5r(NOa)2粉末を化学組成式Ho(Bat−xS
rx)2cuaosにおいて、x=O10,01,0,
1,0,2,0,3,0,4,0,5,0,6,0,7
となるように混合し、酸素中850°Cで24時間仮焼
を行った。
5r(NOa)2 powder with chemical composition formula Ho(Bat-xS
rx)2cuaos, x=O10,01,0,
1,0,2,0,3,0,4,0,5,0,6,0,7
The mixture was mixed and calcined in oxygen at 850°C for 24 hours.

仮焼後、試料を粉砕し矩形に成形した。この成形体を酸
素中800℃で5時間予備焼結した。この予備焼結体を
1000 k g/ c m2・Ar80%−0220
%のガス雰囲気下で熱処理を行った。200”C/ h
で加熱して950°Cで6時間保持し、そこからさらに
1050°Cまで200’C/hで加熱して、その温度
で6時間保持した。冷却は200″C/hの速度で30
0℃まで行い、1気圧まで減圧したあと試料を空気中に
取り出した。この試料を再び粉砕し成形した。この成形
体を酸素中800℃で焼結して所定の試料を得た。
After calcining, the sample was crushed and shaped into a rectangle. This compact was pre-sintered in oxygen at 800° C. for 5 hours. This preliminary sintered body was heated to 1000 kg/cm2・Ar80%-0220
The heat treatment was carried out in a gas atmosphere of 10%. 200”C/h
The sample was heated at 950°C and held for 6 hours, and then further heated to 1050°C at 200'C/h and held at that temperature for 6 hours. Cooling is at a rate of 200″C/h for 30
The temperature was raised to 0°C, and the pressure was reduced to 1 atm, and then the sample was taken out into the air. This sample was ground again and shaped. This molded body was sintered at 800° C. in oxygen to obtain a predetermined sample.

この様にして得られたHo(Bat−xsrx)2cu
408の焼結体の生成相を粉末X線回折を用いて確認し
11− た。得られた試料の主成分はいずれもRB a2CLI
408型の結晶構造を有することを確認した。X=0.
10の試料の粉末X線回折図形を第3図に示した。
Ho (Bat-xsrx) 2 cu obtained in this way
The formed phase of the sintered body of No. 408 was confirmed using powder X-ray diffraction. The main components of the obtained samples were all RB a2CLI
It was confirmed that it had a type 408 crystal structure. X=0.
The powder X-ray diffraction patterns of the 10 samples are shown in FIG.

図中の数字はRB a2Cua Oa型構造にもとづい
たピークの指数である。この試料は、超電導相の単一相
であった。試料の生成相を第2表にまとめて示した。X
がOから0.6の範囲では、Ho(Bat−xsrつ)
2cu40Bの単一相であり、Xが0.7になると第2
相を含むようになる。
The numbers in the figure are peak indices based on the RB a2Cua Oa type structure. This sample was a single superconducting phase. The formed phases of the samples are summarized in Table 2. X
In the range of O to 0.6, Ho(Bat-xsr)
It is a single phase of 2cu40B, and when X becomes 0.7, the second
It comes to include phases.

これらの試料のB電導特性を抵抗測定により調べた。そ
の結果を第6図及び第2表に示した。
The B conductivity properties of these samples were investigated by resistance measurement. The results are shown in FIG. 6 and Table 2.

以下、余白。Below is the margin.

12− 13− 本実施例のHo(Bat−xSr、)2cu40eのa
電導体試料は、第6図及び第2表かられかるように、い
ずれも80に級のa電導転移温度を示す。この超電導転
移温度は、液体窒素の沸点(77K)よりも高い温度で
ある。試料の室温における抵抗イ直を比較すると、Sr
の含有ff1xの増加とともに室温の抵抗値が低下する
。このように室温の抵抗値の低い試料Zこ対して高臨界
電流密度が期待できる。室温の抵抗はXが0.5の試料
が一番低く、xが0゜6以上ではXの増加と共に抵抗値
は高くなりX=0.7ではX=Oの場合よりも高くなる
12-13- Ho(Bat-xSr, )2cu40e a of this example
As can be seen from FIG. 6 and Table 2, the conductor samples all exhibit an a conductivity transition temperature of 80 degrees. This superconducting transition temperature is higher than the boiling point (77K) of liquid nitrogen. Comparing the resistance values of the samples at room temperature, Sr
As the content of ff1x increases, the resistance value at room temperature decreases. In this way, a high critical current density can be expected for sample Z, which has a low resistance value at room temperature. The resistance at room temperature is the lowest in the sample where X is 0.5, and when x is 0°6 or more, the resistance increases as X increases, and when X=0.7, it becomes higher than when X=O.

また、これらの試料の気孔率を研磨試料の光学顕微鏡観
察から求めた。これらの値を第2表にまとめて示した。
Furthermore, the porosity of these samples was determined by observing the polished samples with an optical microscope. These values are summarized in Table 2.

この結果を見ると、Xの増加とともに気孔率が低下し、
x=0.3の試料でほぼ5%になる。しかし、これ以上
Xが増加しても気孔率はほとんど変化しない。
Looking at this result, the porosity decreases as X increases,
The sample with x=0.3 becomes approximately 5%. However, even if X increases further, the porosity hardly changes.

X線回折の結果、室温における抵抗率、気孔率の測定結
果を考慮すると、Xの増加にともなう試料の室温の抵抗
率の低下は、HoBa2CuaO8のB10− aのサイトにSrが固溶することによる効果と考えられ
る。したがってXの望ましい範囲としては、0.001
≦x≦0.6である。
Considering the results of X-ray diffraction and the measurement results of resistivity and porosity at room temperature, the decrease in the resistivity at room temperature of the sample as X increases is due to solid solution of Sr at the B10-a site of HoBa2CuaO8. This is considered to be an effect. Therefore, the desirable range of X is 0.001
≦x≦0.6.

また、例えば第8図の(a)に示すようにX−0,1の
試料の熱重量分析の結果、常温から850℃付近まで重
量変化を示さず、850〜900℃で重量の減少を示す
ことから、850℃という高温に至るまで酸素の出入り
もなく安定に存在することが確認できた。ところが従来
の超電導体HoBa2cu*o7では、第8図の(b)
に示すように、400〜800°Cで大きく酸素が放出
してしまう。
For example, as shown in Figure 8 (a), the thermogravimetric analysis of the sample X-0,1 shows no change in weight from room temperature to around 850°C, and a decrease in weight between 850 and 900°C. Therefore, it was confirmed that it existed stably without oxygen entering or exiting, even up to a high temperature of 850°C. However, in the conventional superconductor HoBa2cu*o7, (b) in Figure 8
As shown in , a large amount of oxygen is released at 400 to 800°C.

以上の説明かられかるように、本実施例によれば、母材
となる超電導体HoB a2CL140sの超電導転移
温度が80にで、しかも難焼結性であり、そのため焼結
体の気孔率が30%以上であるのに対して、Ho(Ba
+−,5rx)2cu+osの組成を有し、Xが0.0
01≦x≦0.6の範囲にある試料は、いずれも超電導
転移温度が80に以上であり、焼結体の気孔率も20%
以下である。さらに、これらの試料は室温の電気抵抗率
も低く、熱分析では815− 50°C付近まで、酸素の出入りがなく安定に存在する
ことが確認できた。
As can be seen from the above description, according to this example, the superconductor HoBa2CL140s serving as the base material has a superconducting transition temperature of 80°C and is difficult to sinter, so that the porosity of the sintered body is 30°C. % or more, whereas Ho(Ba
+-,5rx) has a composition of 2cu+os, and X is 0.0
All samples in the range of 01≦x≦0.6 have superconducting transition temperatures of 80 or higher, and the porosity of the sintered bodies is also 20%.
It is as follows. Furthermore, these samples had low electrical resistivity at room temperature, and thermal analysis confirmed that they existed stably with no oxygen entering or exiting up to around 815-50°C.

〔実施例3〕 Ho(Ba+−xSrx)2cu40eの1−(oのと
ころをNd。
[Example 3] 1-(O is Nd in Ho(Ba+-xSrx)2cu40e.

S11、Eus  GdXDy%  Ers  Tm、
Ybs  Luにして、x=0.3に固定して実施例1
と同様のプロセスで試料を作製した。また、実施例1と
同様の評価を行い、その結果を第3表に示した。
S11, Eus GdXDy% Ers Tm,
Example 1 by setting Ybs Lu and fixing x=0.3
A sample was prepared using the same process as above. In addition, the same evaluation as in Example 1 was performed, and the results are shown in Table 3.

以下、余白。Below is the margin.

6 17− この表を見ると、希土類元素RをHoからNd。6 17- Looking at this table, we can see that the rare earth elements R range from Ho to Nd.

Sms  Eus  GdXDyXEr5  Tms 
 Ybt  Luのうちのどれかにかえても同様の効果
が得られることがわかった。
Sms Eus GdXDyXEr5 Tms
It was found that the same effect can be obtained by replacing it with any one of Ybt and Lu.

〔実施例4〕 本実施例4の酸化物超電導体は、R(Ba+−,5r−
)2clIaosをx=0.3に固定し、RとしてYと
HOを使用したものである。すなわち、(Y+−yHo
、)(B all、? S rl]、a)2Cu40s
のyの値を変えて、つまり、Y+−、HOyの混合比率
を変化させ、実施例1と同様のプロセスで試料を作製し
た。また、実施例1と同様な評価を行い、その結果を第
4表に示した。
[Example 4] The oxide superconductor of Example 4 has R(Ba+-,5r-
)2clIaos is fixed at x=0.3, and Y and HO are used as R. That is, (Y+-yHo
, ) (B all,? S rl], a) 2Cu40s
Samples were prepared in the same process as in Example 1 by changing the value of y, that is, by changing the mixing ratio of Y+- and HOy. In addition, the same evaluation as in Example 1 was conducted, and the results are shown in Table 4.

以下、余白。Below is the margin.

=18− 19− この表を見ると、Yを含む希土類元素Rを、HOから前
記Rのうちから2種(YX Haの混合比率を変化させ
たもの)にかえても同様の効果が得られることがわかっ
た。
=18- 19- Looking at this table, the same effect can be obtained even if the rare earth element R containing Y is changed from HO to two of the above R (by changing the mixing ratio of YX Ha) I understand.

また、Yを含む希土類元素Rのうちから選択された3N
1類以上を混合したものを使用しても同様な効果が得ら
れるであろうことがわかった。
In addition, 3N selected from rare earth elements R including Y
It has been found that similar effects can be obtained by using a mixture of one or more of the above.

したがって、本発明の酸化物超電導体は、釦シース線材
化する場合、最終工程である焼結熱処理工程で、超電導
特性を損なうことなく安定で、しかも易焼結性であるの
でそれぞれの粒子が高密度に焼結した臨界電流密度の高
い超電導線祠を作製することができる。
Therefore, when the oxide superconductor of the present invention is made into a button sheath wire, it is stable without impairing its superconducting properties and is easy to sinter, so that each particle has a high A densely sintered superconducting wire shrine with a high critical current density can be produced.

また、本発明による酸化物超電導体は、高温成形を行う
場合、バインダーの使用で高密度成形が可能である。す
なわち、従来の超電導体RBa2Cu307は、400
℃以上でバインダー除去はできないが、本発明の超電導
体の場合には、850°C以下でバインダー除去は可能
である。これにより、高密度成形ができるので、ざらに
&@導電流密度20− を向上させることができる。
Further, when the oxide superconductor according to the present invention is subjected to high-temperature molding, high-density molding is possible by using a binder. That is, the conventional superconductor RBa2Cu307 has 400
Although the binder cannot be removed at temperatures above 850°C, in the case of the superconductor of the present invention, the binder can be removed at 850°C or below. As a result, high-density molding is possible, and the conductive current density 20- can be improved.

また、従来のRB a2Cus 07の薄膜は比表面積
が大きいため、常温空気中でも超電導特性が劣化してい
たが、本発明による酸化物超電導体の薄膜は、RBa2
Cu307の薄膜に比較すると環境安定性が高(、B電
導転移温度が安定している。
Furthermore, since the conventional thin film of RB a2Cus 07 has a large specific surface area, its superconducting properties deteriorate even in air at room temperature, but the thin film of the oxide superconductor according to the present invention
Compared to Cu307 thin film, it has higher environmental stability (and stable B conduction transition temperature).

以上、本発明を実施例に基づき具体的に説明したが、本
発明は前記実施例に限定されるものではなく、その主旨
を逸脱しない範囲において種々変更可能なことは言うま
でもない。
Although the present invention has been specifically described above based on Examples, it goes without saying that the present invention is not limited to the above-mentioned Examples and can be modified in various ways without departing from the spirit thereof.

例えば、本発明は、低温電子装置の配線、あるいは磁気
遮蔽等に用いることができるのは、勿論である。
For example, it goes without saying that the present invention can be used for wiring of low-temperature electronic devices, magnetic shielding, and the like.

[発明の効果コ 以上、説明したように、本発明によれば、液体窒素の沸
点よりも高い超電導転移温度を有し、易焼結性で、かつ
高温まで酸素の出入りがなく安定な超電導体を提供でき
る。
[Effects of the Invention] As explained above, the present invention provides a superconductor that has a superconducting transition temperature higher than the boiling point of liquid nitrogen, is easily sinterable, and is stable without oxygen entering or exiting even at high temperatures. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例のY B a2 Cu40
 sの21− 結晶構造を説明するための図、 第2図は、従来のYBa2Cu3C)+の構造を説明す
るための図、 第3図は、本実施例に係るR=YX x=0.3の試料
の粉末X線回折図形、 第4図は、本実施例のY (B al −x S I’
X )2 Cu40 eの抵抗−温度特性図、 第5図は、本実施例のR=YX x=0.3の試料の熱
重量分析の結果を示す図、 第6図は、本実施例に係るR:HOX x=0.3の試
料の粉末X線回折図形、 第7図は、本実施例のHo(Bat−xSrx)2cu
z08の抵抗−温度特性図、 第8図は、本実施例のR=Hos  x=0.3の試料
の熱重量分析の結果を示す図である。 図中、1・・・R,2・・・Ba、3・・・Cu、4・
・・Oである。
FIG. 1 shows Y B a2 Cu40 according to an embodiment of the present invention.
Figure 2 is a diagram to explain the structure of conventional YBa2Cu3C)+. Figure 3 is R=YX x=0.3 according to the present example. FIG. 4 shows the powder X-ray diffraction pattern of the sample of this example.
X ) 2 Resistance-temperature characteristic diagram of Cu40 e. Figure 5 is a diagram showing the results of thermogravimetric analysis of the sample of R = YX x = 0.3 in this example. The powder X-ray diffraction pattern of the sample with R:HOX x=0.3, FIG. 7 shows the Ho(Bat-xSrx)2cu of this example.
Resistance-temperature characteristic diagram of z08, FIG. 8 is a diagram showing the results of thermogravimetric analysis of the sample with R=Hos x=0.3 of this example. In the figure, 1...R, 2...Ba, 3...Cu, 4...
...It is O.

Claims (2)

【特許請求の範囲】[Claims] (1)R(Ba_1_−_xSr_x)_2Cu_4O
_8の化学組成式で表される酸化物超電導体であって、
RがY、Nd、Sm、Eu、Gd、Dy、Ho、Er、
Tm、Yb、Luの希土類元素(Yを含む)のうちから
選ばれた1種であり、xが0.001≦x≦0.6の範
囲にあることを特徴とする酸化物超電導体。
(1) R(Ba_1_-_xSr_x)_2Cu_4O
An oxide superconductor represented by the chemical composition formula of _8,
R is Y, Nd, Sm, Eu, Gd, Dy, Ho, Er,
An oxide superconductor which is one selected from the rare earth elements (including Y) of Tm, Yb, and Lu, and is characterized in that x is in the range of 0.001≦x≦0.6.
(2)前記請求項1に記載の酸化物超電導体において、
前記Rが、Y、Nd、Sm、Eu、Gd、Dy、Ho、
Er、Tm、Yb、Luの希土類元素(Yを含む)のう
ちから選ばれた2種以上からなることを特徴とする酸化
物超電導体。
(2) In the oxide superconductor according to claim 1,
The R is Y, Nd, Sm, Eu, Gd, Dy, Ho,
An oxide superconductor comprising two or more rare earth elements (including Y) selected from Er, Tm, Yb, and Lu.
JP1213726A 1989-08-18 1989-08-18 Oxide superconductor Expired - Lifetime JP2855125B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1213726A JP2855125B2 (en) 1989-08-18 1989-08-18 Oxide superconductor
DE69018898T DE69018898T2 (en) 1989-08-18 1990-08-17 High temperature oxide superconductor.
EP90115823A EP0413360B1 (en) 1989-08-18 1990-08-17 High-temperature oxide superconductor
KR1019900012912A KR0160509B1 (en) 1989-08-18 1990-08-18 High temperature oxide superconductor
US08/068,587 US5468724A (en) 1989-08-18 1993-05-27 High temperature oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1213726A JP2855125B2 (en) 1989-08-18 1989-08-18 Oxide superconductor

Publications (2)

Publication Number Publication Date
JPH0380111A true JPH0380111A (en) 1991-04-04
JP2855125B2 JP2855125B2 (en) 1999-02-10

Family

ID=16643982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1213726A Expired - Lifetime JP2855125B2 (en) 1989-08-18 1989-08-18 Oxide superconductor

Country Status (1)

Country Link
JP (1) JP2855125B2 (en)

Also Published As

Publication number Publication date
JP2855125B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
Sheng et al. Superconductivity at 90 K in the Tl-Ba-Cu-O system
JP2533108B2 (en) Superconducting material
JPH0380111A (en) Oxide superconductor
Thomas et al. Electrical transport and superconductivity in YBa2Cu3O7− δ‐YBa2HfO5. 5 percolation system
JP2855123B2 (en) Oxide superconductor
EP0443488B1 (en) Method for producing oxide superconductor
JPH0764560B2 (en) Layered copper oxide
JP2618046B2 (en) Oxide superconducting material and its manufacturing method
Khan et al. Synthesis, electrical and magnetic properties of nanocrystalline AgxHgBa2CuO4+ δ (x= 0, 0.02) superconductors
CA1341636C (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JP2855128B2 (en) Oxide superconductor
JPH0380110A (en) Oxide superconductor
JP2855126B2 (en) Oxide superconductor
Abdullah et al. Superconducting properties of niobium-doped Y Ba Cu Nb O superconductors
JP2855127B2 (en) Oxide superconductor
Liu et al. Superconductivity above 130 K in Tl1− xHgxBa2Ca2Cu3O8+ δ
JPH01503060A (en) Devices and systems based on new superconducting materials
Liu et al. Enhancement of the superconducting transition temperature of TlSr2CaCu2O7 by yttrium and vanadium substitutions
Kwasnitza et al. Metallic materials for superconductor stabilization with very high specific heat and good thermal conductivity
JP2618047B2 (en) Oxide superconducting material and its manufacturing method
Fukuhara et al. Superconductors in BiO-CuO-(Sr0. 5, Ca0. 5) O system
JP2642194B2 (en) Oxide superconducting material and its manufacturing method
JPH0569059B2 (en)
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
Bhanumathi et al. High-T c superconductivity in Y-Ba-Cu-O compounds