JPH0380071A - Submerged culture under aeration and apparatus therefor - Google Patents

Submerged culture under aeration and apparatus therefor

Info

Publication number
JPH0380071A
JPH0380071A JP1215037A JP21503789A JPH0380071A JP H0380071 A JPH0380071 A JP H0380071A JP 1215037 A JP1215037 A JP 1215037A JP 21503789 A JP21503789 A JP 21503789A JP H0380071 A JPH0380071 A JP H0380071A
Authority
JP
Japan
Prior art keywords
culture
tank
draft tube
concentration
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1215037A
Other languages
Japanese (ja)
Other versions
JPH0716397B2 (en
Inventor
Masahiko Ishida
昌彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1215037A priority Critical patent/JPH0716397B2/en
Publication of JPH0380071A publication Critical patent/JPH0380071A/en
Publication of JPH0716397B2 publication Critical patent/JPH0716397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • C12M29/08Air lift
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements

Abstract

PURPOSE:To carry out the culture of cells in a culture tank containing a draft tube or a built-in straightening vane in high efficiency by adjusting the gap between the lower end of the draft tube or the straightening vane and the bottom of the tank in such a manner as to get the cell concentration difference between the bottom and the inside of the tank to be fallen within a prescribed range. CONSTITUTION:Living cells are cultured in a liquid in suspended state under aeration using a culture tank containing a draft tube or a built-in straightening vane. In the above process, the gap between the lower end of the draft tube or the straightening vane and the bottom of the tank is adjusted in such a manner as to get the cell concentration difference between the bottom and the inside of the tank to be fallen within a prescribed range. The cells are smoothly fluidized and cultured without causing the precipitation of the cells even under low rate of aeration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は生物細胞の液中通気式懸濁培養方法及び培養装
置及び培養システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a submerged aerated suspension culture method for biological cells, a culture device, and a culture system.

〔従来の技術〕[Conventional technology]

近年、動物細胞、植物細胞及び微生物細胞の懸濁培養は
、医薬品等の有用物質生産用の主流技術になりつつある
In recent years, suspension culture of animal, plant, and microbial cells has become a mainstream technology for producing useful substances such as pharmaceuticals.

これらの細胞を懸濁培養するための従来の代表的な方法
として、ドラフトチューブ付エアリフト方式が知られて
いる。この方式について記載されている文献には例えば
以下のものがある。
An air lift system with a draft tube is known as a typical conventional method for culturing these cells in suspension. Examples of documents describing this method include the following.

(1)特開昭63−84492号公報 (公開1986
年)(2)化学技術誌、21巻、 No、 7 、 p
、21 (昭和58年)(3)アクタ、ビオテクノロギ
力、斐、 (1)、 3(1982年)第3@から第4
1頁(八cta Biotecl+nologica 
2 +(1) p、31〜41 (1982) )(4
)トレンズ、イン、バイオテクノロジー、3巻No、7
 、  第162頁から第166頁(Trends i
n Bi。
(1) Japanese Patent Application Laid-Open No. 63-84492 (Publication 1986)
Year) (2) Journal of Chemical Technology, Volume 21, No. 7, p.
, 21 (1982) (3) Acta, Biotechnology Power, Hi, (1), 3 (1982) 3rd to 4th
1 page (8cta Biotecl+nologica
2 + (1) p, 31-41 (1982) ) (4
) Torrens, in, Biotechnology, Volume 3 No. 7
, pp. 162-166 (Trends i
nBi.

technology、  3. (7) p、162
〜166(1985))(5)バイオテクノロジー、ア
ンド、バイオエンジニアリング、  X I X、 1
503頁から1522頁(Biotechnology
 and Bioengineering、 X I 
X、 p、1503〜1522 (1977)) これらの方法は、液中にガスを通気することにより、 ■生体反応に必要なガスを培養液中に溶解させると同時
に、 ■培養液を混合して細胞を液中に懸垂状態にできる利点
を有し、さらに、■機械攪拌の様に複雑な構造を有しな
いため、大型化にも対応できる特徴を有している。
technology, 3. (7) p. 162
~166 (1985)) (5) Biotechnology, and Bioengineering, XIX, 1
Pages 503 to 1522 (Biotechnology
and Bioengineering,
X, p., 1503-1522 (1977)) These methods: 1. Dissolve gases necessary for biological reactions in the culture solution by aerating gas into the solution; 2. Mix the culture solution. It has the advantage of allowing the cells to be suspended in the liquid, and also has the advantage of being able to cope with larger scales because it does not have a complicated structure unlike mechanical agitation.

しかしながら、これらの方法ば、細胞の培養に際し、以
下のような問題点を有している。
However, these methods have the following problems when culturing cells.

■通気するガスとしては、空気だけでなく、空気よりも
コストの高い酸素、炭酸ガス、窒素等を富化した混合ガ
スを用いる場合が多い。
■As the gas to be vented, not only air but also a mixed gas enriched with oxygen, carbon dioxide, nitrogen, etc., which is more expensive than air, is often used.

■通気ガスは、微生物フィルタ濾過等により、無菌処理
しなければならない。
■Vent gas must be sterilized by microbial filter filtration, etc.

■数日から数箇月間にわたる培養期間中、連続的に通気
を続ける必要があり、大量の通気ガスを消費する。
■Continuous aeration is required during the culture period, which lasts from several days to several months, consuming a large amount of aeration gas.

■培養期間中に、細胞の濃度や液の粘度だけでなく、培
養液中の各細胞が母細胞から娘細胞に分裂して増殖して
いく過程における細胞集団としての細胞の分離のしやす
さ、細胞相互の接触時の付着しやすさ等の細胞特性が刻
々と変化し、それにつれて、細胞及び細胞集塊の比重す
なわち沈降特性が変化する。
■During the culture period, not only the concentration of cells and the viscosity of the solution, but also the ease with which cells can be separated as a cell population during the process in which each cell in the culture solution divides from mother cells to daughter cells and proliferates. Cell characteristics, such as the ease with which cells adhere when they come into contact with each other, change from moment to moment, and the specific gravity of cells and cell aggregates, that is, the sedimentation characteristics, change accordingly.

■通常ガスの溶解に必要な通気量に比べ、液の流動に必
要な通気量の方が大きい。
■Compared to the amount of ventilation required to dissolve gas, the amount of ventilation required for liquid flow is usually larger.

■たとえ一時的であっても、細胞濃度や細胞の比重、液
性の変化に通気量が対応できす、−旦細胞が槽底部に沈
積すると、細胞相互の粘着、接着がおこりやすく、通気
量を増大しても最懸濁が困難になる。沈積すると、沈積
層中の細胞が酸素及び栄養成分の欠乏をおこし、増殖阻
害もしくは死に至る。
■Even if it is temporary, the amount of aeration can be adjusted to changes in cell concentration, cell specific gravity, and liquid properties. Even if the amount is increased, resuspension becomes difficult. When deposited, the cells in the deposited layer are starved of oxygen and nutrients, leading to growth inhibition or death.

■過度の通気は、却って細胞の増殖を阻害する。■Excessive aeration actually inhibits cell growth.

特に、脆弱な動物細胞には影響が大きい。This has a particularly large effect on fragile animal cells.

■動物細胞の培養のように、培地に血清やアルダごン等
の蛋白質を添加したり、蛋白性の生成物を分泌する場合
には、細胞を破壊しない消泡機構を設ける必要がおこる
が、通気量が大きいとそれだけ消泡機構への負荷が増大
し、消泡機構の容量が大きくなる。
■ When adding proteins such as serum or aldagon to the culture medium or secreting proteinaceous products, as in the case of culturing animal cells, it is necessary to provide an antifoaming mechanism that does not destroy the cells. As the amount of ventilation increases, the load on the defoaming mechanism increases accordingly, and the capacity of the defoaming mechanism increases.

このように、前述した従来のトラフ;・チューブ付エア
リフト方式の培養槽では、ある特定の固定した条件下、
例えば、ある特定の細胞濃度、細胞比重、液性のもとで
、流動を最適化した構造に固定されており、条件が変化
した場合には、通気量を規制するしか手段がなかった。
In this way, under certain fixed conditions, the conventional trough and tube-equipped air lift type culture tank described above
For example, they are fixed in a structure that optimizes flow under a certain cell concentration, cell specific gravity, and liquid properties, and if conditions change, the only way to do so is to regulate the amount of ventilation.

このため、条件の変化によっては、最適の構造を用いた
場合よりも、通気量が大きくなり、経済性が低下するだ
けでなく、運転の操作範囲を広く取りにくい等の幾多の
欠点があった。
Therefore, depending on changes in conditions, the amount of ventilation becomes larger than when using the optimal structure, which not only reduces economic efficiency but also has many drawbacks such as making it difficult to widen the operational range of operation. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、前記従来のドラフトチューブもしくは
整流板付エアリフト方式の培養装置の欠点を改善し、細
胞濃度、細胞の比重、細胞の付着性等の細胞特性と、粘
度等の液性に対応して、かつ低通気量でも細胞を沈積さ
せずに円滑に流動化しうる培養装置及び培養方法及び培
養システムを提供することである。
The purpose of the present invention is to improve the drawbacks of the conventional draft tube or air lift type culture device with a baffle plate, and to adapt to cell characteristics such as cell concentration, cell specific gravity, and cell adhesion, and liquid properties such as viscosity. It is an object of the present invention to provide a culture device, a culture method, and a culture system that can smoothly fluidize cells without depositing them even at a low air flow rate.

(課題を解決するための手段〕 0 本発明の発明者は、まず細胞の沈積の原因について検討
したところ、細胞が静止又は低流速下で相互に接触する
と細胞どうしが付着して沈降しやすくなり、−旦沈積す
ると沈積層の再分散が困難になることがわかった。特に
、動物細胞ではその傾向が署しいことを見いだした。沈
積層の内側ある細胞は表層の細胞に酸素と栄養成分の拡
散が妨げられ、増殖が阻害されたり死に至ったりする。
(Means for Solving the Problems) 0 The inventor of the present invention first investigated the causes of cell sedimentation and found that when cells come into contact with each other at rest or at a low flow rate, they tend to adhere to each other and sediment. , - It was found that redispersion of the sedimentary layer becomes difficult once it has been deposited.We found that this tendency is particularly pronounced in animal cells.The cells inside the sedimentary layer provide oxygen and nutrients to the cells in the surface layer. Dissemination is impeded, leading to stunted growth and death.

発明者は更に、培養槽底部とドラフトチューブもしくは
整流板下部の近傍の細胞の流れに着目し、細胞濃度や液
性を変えながら流動状態を観察した。
The inventor further focused on the flow of cells near the bottom of the culture tank and the draft tube or the lower part of the rectifying plate, and observed the flow state while changing the cell concentration and liquid properties.

その結果、槽底部及びドラフトチューブもしくは整流板
下部の細胞濃度とそれ以外の場所における細胞濃度との
対比に基づいて槽底部とドラフトチューブもしくは整流
板下部との間隙を調節することにより、培養期間中に細
胞濃度が変化しても、従来のドラフトチューブもしくは
整流板の固定された培養槽を用いた場合よりも格段に低
い通気量で細胞を沈積させずに円滑に流動化できること
を見いだした。
As a result, by adjusting the gap between the bottom of the tank and the bottom of the draft tube or current plate based on the contrast between the cell concentration at the bottom of the tank and the bottom of the draft tube or current plate, and the cell concentration at other locations, We have discovered that even if the cell concentration changes over time, cells can be smoothly fluidized without sedimentation with a much lower aeration rate than when using a conventional draft tube or a culture tank with a fixed rectifier plate.

1 本発明は上記したような観察から得られた結果に基づい
てなされたものである。
1 The present invention was made based on the results obtained from the above-mentioned observations.

本発明は、液中に通気して懸濁状態で生物細胞にガスを
供給するドラフトチューブもしくは整流板内蔵型培養槽
を用いる培養方法において、ドラフトチューブもしくは
整流板の下端と槽底部との間隙を変化させ細胞の流動を
調節することを特徴とする生物細胞の培養方法であり、
槽内底部とその他の槽内部とにおける細胞濃度の差を検
知して、該濃度が予め設定された濃度差の範囲内である
ようにドラフトチューブもしくは整流板を移動してドラ
フトチューブもしくは整流板下端と槽底部との間隙を調
節すること、槽内培養液中の酸素、炭酸ガスの一方もし
くは両者の濃度をも検知して、該濃度が予め設定された
溶存ガス濃度の範囲内であるように通気ガス中のガス濃
度を調節すること、槽内培養液中のpHをも検知して、
該pHが予め設定されたpHの範囲内であるように通気
ガス中の炭酸ガス濃度を調節すること、また前記濃度の
調節は細胞濃度差を最優先し、続いて溶存酸素濃2 度、pHのいずれかを優先して行うこと、そして溶存酸
素濃度の調節に際し、該調節が原料ガスの混合ガス中の
酸素濃度の増加によっては対応できない場合には、通気
量を増大させることにより溶存酸素濃度の調節を行うこ
と、さらにドラフトチューブもしくは整流板の上端が液
面上に出ない範囲内でドラフトチューブもしくは整流板
の上端と液面との間隔をも変化させることは、本発明の
生物細胞の培養方法を実施するうえでの具体的乃至より
好ましい態様である。
The present invention provides a culture method using a culture tank with a built-in draft tube or baffle plate for supplying gas to biological cells in a suspended state by aeration into the liquid, by reducing the gap between the lower end of the draft tube or baffle plate and the bottom of the tank. A method for culturing biological cells characterized by changing and regulating cell flow,
The difference in cell concentration between the bottom of the tank and the inside of the other tanks is detected, and the draft tube or current plate is moved so that the concentration is within a preset concentration difference range. and the bottom of the tank, and also detects the concentration of one or both of oxygen and carbon dioxide in the culture solution in the tank, so that the concentration is within a preset range of dissolved gas concentration. By adjusting the gas concentration in the ventilation gas and also detecting the pH in the culture solution in the tank,
Adjusting the carbon dioxide concentration in the ventilation gas so that the pH is within a preset pH range, and adjusting the concentration gives top priority to the cell concentration difference, followed by dissolved oxygen concentration 2 degrees, pH When adjusting the dissolved oxygen concentration, if the adjustment cannot be achieved by increasing the oxygen concentration in the raw material gas mixture, the dissolved oxygen concentration should be adjusted by increasing the aeration rate. In addition, changing the distance between the upper end of the draft tube or the current plate and the liquid level within a range where the upper end of the draft tube or the current plate does not protrude above the liquid level is a method of controlling the biological cells of the present invention. This is a specific or more preferred embodiment for carrying out the culture method.

また本発明は通気により生ずるドラフトチューブもしく
は整流板下端と槽底部との間隙部分の液の流れにおける
供試細胞の線速度の上限が3m/s。
In addition, in the present invention, the upper limit of the linear velocity of the test cells in the liquid flow in the gap between the draft tube or the lower end of the rectifying plate and the bottom of the tank, which is caused by ventilation, is 3 m/s.

となるように通気量を限定することを特徴とする生物細
胞の培養方法であり、好ましくは前記液流速が3m/s
、をこえるばあいには前記間隙を増加し、ついで細胞濃
度差を検知して該濃度差が設定値を越えている場合には
、設定範囲内になるよう通気量を増加させて細胞濃度差
、溶存ガス濃度、法線速度を満足するように調節するも
のである。
A method for culturing biological cells characterized by limiting the amount of ventilation so that the flow rate of the liquid is preferably 3 m/s.
If the difference exceeds the set value, increase the gap, then detect the difference in cell concentration, and if the difference in concentration exceeds the set value, increase the ventilation amount so that the difference in cell concentration falls within the set range. , dissolved gas concentration, and normal velocity are adjusted so as to satisfy them.

3 また本発明は、液中に通気して懸濁状態で生物細胞に酸
素供給する培養槽において、ドラフトチューブもしくは
整流板の上端が液面上に出ない範囲内で上下方向に移動
可能なドラフトチューブもしくは整流板を内蔵したこと
を特徴とする生物細胞用の培養槽であり、前記ドラフト
チューブもしくは整流板下方部、ドラフトチューブもし
くは整流板上方部のいずれかもしくは両方が上下動自在
であること、トラフ]・チューブが内筒と外筒とから構
成されること、ドラフトチプー−ブもしくは整流板の一
部が槽に固定され、かつ他の部分は可動であること、ド
ラフトチューブもしくは整流板を動かす機構がベローズ
もしくはピストンへの流体の入出機構、ギア付モータに
よる駆動機構、熱膨張材料の伸縮機構、マグネット駆動
機構のいずれかもしくはそれらが重複したものであるこ
とは、本発明の具体的乃至より好ましい態様である。
3 The present invention also provides a draft that is movable in the vertical direction within a range where the upper end of the draft tube or the rectifier plate does not protrude above the liquid surface in a culture tank that supplies oxygen to biological cells in a suspended state by ventilating the liquid. A culture tank for biological cells characterized by having a built-in tube or a rectifying plate, the draft tube or the lower part of the rectifying plate, the draft tube or the upper part of the rectifying plate, or both being able to move up and down; trough] - The tube is composed of an inner cylinder and an outer cylinder, a part of the draft tube or rectifier plate is fixed to the tank, and the other parts are movable, and a mechanism for moving the draft tube or rectifier plate. A specific or more preferable example of the present invention is that the mechanism is one or a combination of a mechanism for introducing fluid into and out of a bellows or piston, a drive mechanism using a geared motor, an expansion/contraction mechanism for thermal expansion material, and a magnet drive mechanism. It is a mode.

さらに本発明は、前記した培養槽を直列、あるいは液の
流れにおいて直列と並列とが混合されている状態に複数
積層することを特徴とする生物細4 胞の培養システムであり、本発明の目的を達成するうえ
で具体的乃至より好ましい態様としては、培養槽内に、
ドラフトチューブもしくは整流板の動きを制御する手段
及びその他細胞の培養条件を制御する手段、例えばD○
制御系、pH制御系、培地供給系を含むこと、そして前
記複数積層された培養槽の各種におけるトラフl−チュ
ーブもしくは整流板の動き及びその他の細胞の培養条件
を個別に制御できるようにすることである。
Furthermore, the present invention is a biological cell culture system characterized in that a plurality of the above-mentioned culture vessels are stacked in series or in a mixed state of serial and parallel culture vessels in terms of liquid flow, and is an object of the present invention. As a specific or more preferable embodiment to achieve this, in the culture tank,
Means for controlling the movement of draft tubes or rectifying plates and other means for controlling cell culture conditions, such as D○
It includes a control system, a pH control system, and a medium supply system, and allows the movement of the trough L-tube or rectifier plate and other cell culture conditions in each of the plurality of stacked culture tanks to be individually controlled. It is.

なお、前記本発明の態様において、液の流れにおいて培
養槽を直列の状態に積層するとは、第11図のHに示す
ように積層された培養槽内を順次流れる液が1方向の流
れの状態になるように積層されていることを意味し、ま
た、液の流れにおいて培養槽を並列の状態に積層すると
は、第11図のJに示すように積層された培養槽内を流
れる液が並列の流れの状態になるように積層されている
ことを意味する。したがって、液の流れにおいて直列と
並列とが混合されている状態に複数積層するとは、第1
1図■に示すような状態を意味するもので5 ある。
In addition, in the aspect of the present invention, stacking the culture tanks in series in terms of liquid flow refers to a state in which the liquid flowing sequentially in the stacked culture tanks flows in one direction as shown in H in FIG. 11. This means that the culture tanks are stacked in parallel in terms of liquid flow, as shown in J in Figure 11. This means that they are stacked in such a way that they flow. Therefore, stacking multiple layers in a state where the liquid flow is mixed in series and in parallel means that the first
It means the state shown in Figure 1 (■).

本発明に適用できる生物細胞は特には限定されない。す
なわち、動物細胞、植物細胞、微生物細胞に適用するこ
とができる。これらの細胞は単独状態であっても集合状
態であってもよい。集合状態とは、細胞相互が付着した
フロックや器官や組織を指す。また、他材料を担体とし
て粒状化したものも含むことができる。例えば、細胞を
付着させたマイクロビーズや細胞を包括した細胞包括ゲ
ル粒子等も含まれる。
The biological cells applicable to the present invention are not particularly limited. That is, it can be applied to animal cells, plant cells, and microbial cells. These cells may be in a solitary state or in an aggregated state. Aggregated state refers to flocs, organs, and tissues in which cells are attached to each other. Furthermore, granules obtained by using other materials as carriers can also be included. For example, microbeads to which cells are attached and cell-encompassing gel particles that enclose cells are also included.

培地も特に限定されない。すなわち、供試細胞又は培養
条件等に通した培地を適宜選択して用いることができる
。例えば、炭素源としては、低分子から高分子にわたる
糖類、有機酸、アルコール等、窒素源としてはアミノ酸
、ペプチド、無機窒素源等が用いられる。その他、細胞
の種類、培養条件に応し、血清、アルブ旦ン、ビタミン
類、無機塩類、有41pl+緩衝剤、抗生物質、増殖促
進因子、接着因子、分化因子等の成分も用いられる。
The medium is also not particularly limited. That is, the test cells or the culture medium passed through the culture conditions can be appropriately selected and used. For example, as a carbon source, saccharides ranging from low molecules to polymers, organic acids, alcohols, etc. are used, and as a nitrogen source, amino acids, peptides, inorganic nitrogen sources, etc. are used. Other components such as serum, albumin, vitamins, inorganic salts, buffering agents, antibiotics, growth-promoting factors, adhesion factors, differentiation factors, etc. may also be used depending on the cell type and culture conditions.

本発明の培養は、細胞又は細胞を含む粒状物を6 液中に懸垂状態で流動させて培養する方式に限定される
。すなわち、液中に気体を注入し、気泡と液とを接触さ
せることにより、細胞の生体反応やpH等の液性調節に
必要なガス成分を溶解させると同時に、エアリフトを利
用して粒状物を液中に懸垂させる培養に限られる。この
際、温度、pH1其質濃度、溶存ガス濃度、イオン強度
等も適宜、細胞の種類、設定培養条件に応じ、一般の培
養と同様、適宜調節される。
The culture of the present invention is limited to a method in which cells or particulate matter containing cells are cultured by flowing them in a suspended state in a liquid. In other words, by injecting gas into the liquid and bringing the bubbles into contact with the liquid, gas components necessary for biological reactions in cells and adjustment of liquid properties such as pH are dissolved, and at the same time, particulate matter is removed using an air lift. Limited to culture suspended in liquid. At this time, the temperature, pH 1 substance concentration, dissolved gas concentration, ionic strength, etc. are appropriately adjusted according to the type of cells and set culture conditions, as in general culture.

通気するガスも適宜選択して用いればよい。The gas to be vented may also be appropriately selected and used.

船釣には、空気、酸素、炭酸ガスを単独又は、空気、酸
素、炭酸ガス、窒素のいずれかを混合して用いられる。
For boat fishing, air, oxygen, and carbon dioxide are used alone or in a mixture of air, oxygen, carbon dioxide, and nitrogen.

これらのガスは培養期間中、ガス組成を固定して用いて
も変化させて用いてもどちらでもよい。
These gases may be used either with the gas composition fixed or with the gas composition changed during the culture period.

尚、これらのガスは、すべて、微生物フィルター濾過等
により無菌処理したものが用いられる。
Note that all of these gases are used after being sterilized by microbial filter filtration or the like.

培養槽としては、上記した培養に適した培養槽のうち、
ドラフトチューブもしくは整流板を有するものであれば
特には限定されない。例えば、円7 筒形、角柱形、板状形等の形状のものを用いることがで
きる。特に、角柱形、板状形のものは複数積層しても用
いることが出来るので好ましい。
As a culture tank, among the culture tanks suitable for the above-mentioned culture,
It is not particularly limited as long as it has a draft tube or a current plate. For example, shapes such as a cylinder, a prism, a plate, etc. can be used. Particularly, prismatic or plate-shaped ones are preferable because they can be used even if a plurality of them are laminated.

ドラフトチューブは、直円筒か、上下方向に直径が変化
するものでもよく、培養槽形状、培養条件により適宜選
択される。後者については、例えば円錐形、下方部また
は上方部もしくは両部がロート状に拡張した形状のもの
が用いられる。培養槽が角柱形又は板状形の場合には、
2次元的形状の整流板を用いる。
The draft tube may be a right cylinder or one whose diameter changes in the vertical direction, and is appropriately selected depending on the culture tank shape and culture conditions. As for the latter, for example, a conical shape, or a shape in which the lower part, the upper part, or both parts are expanded into a funnel shape is used. If the culture tank is prismatic or plate-shaped,
A two-dimensional rectifier plate is used.

ドラフトチューブもしくは整流板内の液の流れが上昇流
、下降流のいずれを選択するかにより、ドラフトチュー
ブもしくは整流板の形状も適宜選択される。例えば、上
昇流には下方部を拡大したドラフトチューブもしくは整
流板が適している。
Depending on whether the flow of the liquid in the draft tube or the current plate is upward or downward, the shape of the draft tube or the current plate is appropriately selected. For example, a draft tube with an enlarged lower part or a baffle plate is suitable for upward flow.

本発明においては、前記したように、槽底部とその他の
部分との細胞濃度の差を検知して、設定範囲を越える場
合、すなわち細胞が沈積傾向にある場合は、ドラフトチ
ューブもしくは整流板下端と槽底部との間隙を調節して
、間隙部分での液の8 線速度を変化させる。
In the present invention, as described above, the difference in cell concentration between the bottom of the tank and other parts is detected, and if the cell concentration exceeds the set range, that is, if the cells tend to settle, the lower end of the draft tube or current plate is detected. By adjusting the gap with the bottom of the tank, the linear velocity of the liquid in the gap area can be changed.

細胞濃度の検知箇所は、少なくとも2箇所必要である。At least two detection points for cell concentration are required.

すなわち槽底部もしくはその近傍と、その他の場所、例
えば、槽中央部や槽上半部等である。
That is, the bottom of the tank or its vicinity, and other locations, such as the center of the tank or the upper half of the tank.

細胞濃度の測定方法は特に限定されるものではない。例
えば、透過光又は透過波もしくは反射光反射波もしくは
散乱光を用いる濁度計等の粒子濃度測定装置や、画像計
測による粒子濃度測定装置等がある。
The method for measuring cell concentration is not particularly limited. For example, there are particle concentration measuring devices such as a turbidity meter that uses transmitted light, transmitted waves, reflected light reflected waves, or scattered light, and particle concentration measuring devices that use image measurement.

ドラフトチューブもしくは整流板の上下方向の移動や伸
縮は、槽内のスチーム殺菌に耐え、かつ培養期間中、槽
内を無菌状態に保つことができる機構であればよい。具
体的な例としては、槽外からの流体の出入により作動さ
せるヘローズの伸縮や、シールした電動機や電磁石ピス
トン等がある。
The vertical movement and expansion/contraction of the draft tube or current plate may be any mechanism as long as it can withstand steam sterilization in the tank and can maintain the inside of the tank in a sterile state during the culture period. Specific examples include the expansion and contraction of a heros operated by the inflow and outflow of fluid from outside the tank, a sealed electric motor, and an electromagnetic piston.

この際、動力を発生ずる部分や動力伝達機構は槽の内部
でも外部にあってもよい。
In this case, the part that generates power and the power transmission mechanism may be located inside or outside the tank.

ドラフトチューブもしくは整流板は下方部だBJでなく
、上方部も、液面末端を限定範囲として移9 動、伸縮することができ、糟尚の液の流動を−・層敵し
た状態にすることも可能である。
The draft tube or baffle plate is not only the lower part, but also the upper part, which can move and expand and contract within a limited range at the end of the liquid level, making the flow of the liquid more consistent. is also possible.

ドラフトチューブもしくは整流板の伸縮は、分割したド
ラフトチューブもしくは整流板が2重又は多重に組み合
わされることによっても、またそれらが伸縮性の材料で
構成されることによってもできる。ドラフトチューブの
場合には、分割されたチューブが2重筒又は多重筒に形
成され、それらが水平方向には移動せずに上下方向にの
み移動してもよいし、ネジ機構により相互に回転して伸
縮してもよいし、それらの複合された手段により伸縮す
るものでもよい。
The draft tube or the current plate can be expanded or contracted by combining the divided draft tubes or the current plate in double or multiple layers, or by making them made of a stretchable material. In the case of draft tubes, the divided tubes are formed into double tubes or multiple tubes, which may not move horizontally but only in the vertical direction, or may mutually rotate using a screw mechanism. It may be expanded and contracted by a combination of these methods.

槽底部の構造は、液の流動を円滑にする形状であればよ
い。例えば、なだらかな凹面やさらに凹面の中央部だけ
凸状にしてもよい。
The structure of the bottom of the tank may have any shape as long as it allows smooth flow of the liquid. For example, the concave surface may be gently curved, or only the center portion of the concave surface may be convex.

通気ノズルも培養条件により適宜選択される。The ventilation nozzle is also appropriately selected depending on the culture conditions.

通常は、槽底部と、ドラフトチューブもしくは整流板下
端との中間部に設けられる。槽底部の流動化を円滑にす
るため槽底面に開口する補助用通気ノズルを設けてもよ
い。
Usually, it is provided in the middle between the bottom of the tank and the lower end of the draft tube or current plate. In order to smoothly fluidize the bottom of the tank, an auxiliary ventilation nozzle may be provided that opens at the bottom of the tank.

0 培養には、液の流動化以外に、溶存ガスの供給も必要で
ある。
0 In addition to fluidizing the liquid, culture requires the supply of dissolved gas.

本発明においては、細胞濃度差を第1優先し、さらに異
質用ガスの溶在濃度、pHのうち、少なくともこの2つ
以上において、この優先順で調節する。例えば、動物細
胞の培養の例としては、細胞濃度差による通気ガス量、
溶存酸素濃度に対応する通気ガス組成、pHに対応する
通気ガス中の炭酸ガス濃度の優先順で制御する。
In the present invention, the cell concentration difference is given first priority, and at least two of the dissolved concentration of foreign gas and pH are adjusted in this order of priority. For example, in the case of animal cell culture, the amount of aeration gas due to the difference in cell concentration,
The ventilation gas composition is controlled according to the dissolved oxygen concentration, and the carbon dioxide concentration in the ventilation gas is controlled according to the pH.

もし、溶存酸素濃度の調節に際し、原料ガスの通気用混
合ガス中の濃度が調節の限界を越える場合には、溶在濃
度の調節を細胞濃度差調節に優先し、すなわち通気量を
細胞濃度差調節に適した量以上に増加して通気させるも
のである。
When adjusting the dissolved oxygen concentration, if the concentration of the raw material gas in the mixed gas for aeration exceeds the adjustment limit, the adjustment of the dissolved oxygen concentration will be prioritized over the adjustment of the cell concentration difference. This increases the amount of ventilation beyond the amount suitable for regulation.

上記したような運転方法をとること番こより、液の流動
を円滑にし、かつ溶存酸素濃度等、他の必要条件をも満
たずことができる。
By adopting the operating method described above, it is possible to ensure smooth flow of the liquid and to satisfy other requirements such as dissolved oxygen concentration.

以下に本発明の実施例について詳述する。Examples of the present invention will be described in detail below.

〈実施例■〉 第1図に示すものは、本発明の培養システムに1 かかる一実施例のフローチャートである。<Example ■> The culture system of the present invention shown in FIG. 1 is a flowchart of one such embodiment.

培養槽1はドラフトデユープ外筒支持体5により槽内壁
面で固定されたトラフl−チューブ外筒3と、ドラフト
デユープ内筒上下駆動部6により」1下可動なドラフト
チューブ内筒4からなる円筒形ドラフトチューブを内蔵
している。
The culture tank 1 is a cylindrical draft consisting of a trough L-tube outer cylinder 3 fixed on the inner wall surface of the tank by a draft duplex outer cylinder support 5, and a draft tube inner cylinder 4 which is movable downward by a draft duplex inner cylinder vertical drive unit 6. It has a built-in tube.

培養槽には、液体培地27が液体培地貯槽29から培養
槽1内に導入され、必要に応じ培養液28を培養液貯槽
30に抜き出すことができるようになっている。
A liquid medium 27 is introduced into the culture tank 1 from a liquid medium storage tank 29, and a culture solution 28 can be extracted into a culture solution storage tank 30 as needed.

ガス集合配管18から空気、酸素、窒素、炭酸ガスを配
合したガスが移送され、ドラフトチューブ底部のスパー
ジャ−7から培養液中に散気される。
A gas containing air, oxygen, nitrogen, and carbon dioxide is transferred from the gas collection pipe 18 and diffused into the culture solution from the sparger 7 at the bottom of the draft tube.

培養槽底部への細胞の沈積を監視するため、細胞濃度セ
ンサー10、具体的には例えば濁度センサーが2箇所に
設置されている。一方は培養槽底部とドラフトチューブ
内筒下端との間隙もしくはその近傍に、他方は前者との
比較のため前者と離れた位置、例えば槽内上部ムこ設置
される。上記センサーと細胞濃度検出装置16で細胞濃
度差を測定し、2 設定濃度差の域内に入るよう、間隙コントローラー15
によりドラフトチューブ内筒上下駆動部6に信号を送り
、円筒を上下させることにより間隙を8jI節する。
In order to monitor the deposition of cells at the bottom of the culture tank, cell concentration sensors 10, specifically, for example, turbidity sensors, are installed at two locations. One is installed in or near the gap between the bottom of the culture tank and the lower end of the draft tube, and the other is installed at a position away from the former, for example, in the upper part of the tank for comparison. The sensor and the cell concentration detection device 16 measure the difference in cell concentration, and the gap controller 15
This sends a signal to the draft tube inner cylinder up and down drive section 6 to move the cylinder up and down, thereby increasing the gap by 8jI.

液上面で消泡する必要がある場合には、液面上に消泡用
のネット2を設けることもできる。
If it is necessary to eliminate foam on the upper surface of the liquid, a net 2 for defoaming can be provided above the liquid surface.

溶存酸素はDo全センサー2によりD○コントローラー
13で、pHばpHセンサー11によりpHコントロー
ラー14で調節される。DOは通気ガスの組成と通気量
を調節することにより、pHは、例えば通気ガス中の炭
酸ガス濃度及び通気量を変化さ−l′て調節することが
できる。また、前記間隙に液流速センサー31を4=J
設し、間隙での液の線速度を液流速検出器32で測定し
、前記線速度が細胞の剪断が起こることのない流速域内
に入るよう通気ガス量と間隙を調節する。
Dissolved oxygen is regulated by a Do sensor 2 and a D○ controller 13, and pH is regulated by a pH sensor 11 and a pH controller 14. By adjusting the composition and amount of ventilation gas, DO can adjust the pH by, for example, changing the concentration of carbon dioxide in the ventilation gas and the amount of ventilation. In addition, a liquid flow rate sensor 31 is installed in the gap 4=J
The linear velocity of the liquid in the gap is measured by a liquid flow rate detector 32, and the amount of aeration gas and the gap are adjusted so that the linear velocity falls within a flow rate range in which shearing of the cells does not occur.

本発明の第1実施例の生物細胞の培養に用いられる培養
装置は下記の通りである。
The culture apparatus used for culturing biological cells in the first embodiment of the present invention is as follows.

◎培養槽 形  状二円筒形 3 張込液量=51 槽内径 : 120 mm 槽内深さ7600 mm ◎ドラフトチューブ 外筒上部:直径50 mm 、長さ33 mm外筒下部
:直径80 mm 、長さ50 mm内  筒:直径7
5 mm 、長さ90 mm上記培養装置のドラフトチ
ューブにおける内筒の上下機構を第2図に示す。
◎Culture tank shape Bicylindrical 3 Amount of liquid filled = 51 Tank inner diameter: 120 mm Tank inner depth 7600 mm ◎Draft tube outer cylinder upper part: diameter 50 mm, length 33 mm Lower outer cylinder: diameter 80 mm, length Within 50 mm Tube: Diameter 7
5 mm, length 90 mm The vertical mechanism of the inner cylinder in the draft tube of the above-mentioned culture device is shown in FIG.

外筒3と外筒支持体5付近に金属製へローズ36を配置
し、ベローズ伸縮伝達肢38を介してベローズ下部とド
ラフトチューブ内筒とを接続している。
A metal bellows 36 is arranged near the outer cylinder 3 and the outer cylinder support 5, and the lower part of the bellows and the draft tube inner cylinder are connected via a bellows expansion/contraction transmission limb 38.

ベローズ上部のエア駆動ベローズ用給排気管37より圧
縮空気を導入排出することにより、ベローズを伸縮して
内筒4を上下さセる。
Compressed air is introduced and discharged from the air-driven bellows supply/exhaust pipe 37 located above the bellows, thereby expanding and contracting the bellows to move the inner cylinder 4 up and down.

槽内の温度は恒温水循環ジャケット33により一定に調
節されている。
The temperature inside the tank is controlled to be constant by a constant temperature water circulation jacket 33.

第3図に示すものは、本実施例におけるフローチャート
である。
What is shown in FIG. 3 is a flowchart in this embodiment.

本培養方法及び培養装置を用いて細胞濃度、4 pH,Do、  ドラフトチューブもしくは整流板の下
端と槽底部との間隙等を調節しながら培養した場合と、
他の例とを比較した結果を以下に述べる。
When culturing was carried out using the present culture method and culture apparatus while adjusting the cell concentration, pH, Do, the gap between the lower end of the draft tube or rectifier plate and the bottom of the tank, etc.
The results of comparison with other examples are described below.

○培養条件 供試細胞はラット肝臓の癌細胞株JTC,−1’(Ja
pan  Ti5sue  Cu1tureNo、 1
株)を用いる。
○Culture conditions The test cells were rat liver cancer cell line JTC,-1' (Ja
pan Ti5sue Culture No. 1
Stock) is used.

種培養はイーグルMEM培地を用い、偏平フラスコで培
養後、ローラボトルで培養する。
Seed culture uses Eagle's MEM medium, and is cultured in a flat flask and then in a roller bottle.

培養温度は37°Cである。The culture temperature is 37°C.

上記培養液を遠心分離して細胞を回収して接種用細胞と
する。
The above culture solution is centrifuged to collect cells and used as cells for inoculation.

培養槽内にイーグルMEM培地を51導入後、細胞濃度
がI Xl06cells/mRになるように上記種細
胞を接種し、36〜38°C,pH6,8〜7.2. 
 DO2,5〜3.0 ppmになるように調節しなが
ら、回分式で10日間培養する。
After introducing Eagle's MEM medium into the culture tank, the above seed cells were inoculated so that the cell concentration became IX106 cells/mR, and the mixture was incubated at 36-38°C, pH 6,8-7.2.
Cultivate in batch mode for 10 days while adjusting DO2 to 5 to 3.0 ppm.

以上のような条件のもとて培養を行い、培養開始後34
時間までの調節結果が第4図に示されている。
Culture was carried out under the above conditions, and 34 days after the start of culture.
The results of the adjustment up to the time are shown in FIG.

5 ○調節のプロセス ■種細胞を接種後、通気を開始し10分経過後、細胞濃
度差、DO、pH1間隙の液流速の測定を開始した。
5 ○Adjustment process■ After seed cells were inoculated, aeration was started and after 10 minutes, measurement of cell concentration difference, DO, and liquid flow rate in the pH1 gap was started.

■DO及びpHが徐々に低下し、5時間後に両者とも設
定下限(第4図点線で表示)に達した。
(2) DO and pH gradually decreased, and after 5 hours both reached the set lower limit (indicated by the dotted line in Figure 4).

■D○については酸素ガス濃度を上昇させ、pHについ
ては炭酸ガス濃度を低下させて調節した。
(2) For D○, the oxygen gas concentration was increased, and the pH was adjusted by decreasing the carbon dioxide concentration.

開始後18時間後にも同様の調節を行った。Similar adjustments were made 18 hours after the start.

■21時間後に細胞濃度差分率、すなわち、が設定上限
である10%を越え、槽底部への沈積が検知されたため
、間隙を5cn+から4c+nに減少させた結果、間隙
部分における法線速度が0.5m/s、から0.7 m
/s、に増加するとともに、細胞濃度差分率も設定上限
以下となり、細胞の沈積を防止することができた。
■After 21 hours, the cell concentration difference rate, i.e., exceeded the upper limit of 10%, and sedimentation at the bottom of the tank was detected, so the gap was reduced from 5cn+ to 4c+n, and as a result, the normal velocity in the gap became 0. .5m/s, to 0.7m
/s, and the cell concentration difference rate also became below the set upper limit, making it possible to prevent cell deposition.

■32時間後、再びDOが設定下限に達したが、通6 気ガスの酸素濃度がすでに調節上限の40%に達してい
て酸素濃度を上昇することができなかったため通気速度
を0.3 ff/min、から0.3!M!/min、
に増加した。この操作を行った結果D○は再び設定域内
に戻った。この時、間隙での線速度は1m/s、と設定
上限(3m/s、 )内であったので、間隙は変化させ
ることなく培養を続行した。
■After 32 hours, the DO reached the set lower limit again, but the oxygen concentration in the aeration gas had already reached 40% of the adjustment upper limit and it was not possible to increase the oxygen concentration, so the aeration rate was reduced to 0.3 ff. /min, to 0.3! M! /min,
increased to As a result of this operation, D○ returned to within the set range. At this time, the linear velocity in the gap was 1 m/s, which was within the set upper limit (3 m/s), so the culture was continued without changing the gap.

■もし前記■の場合において、法線速度が設定上限以上
に達する場合には、第3図のフローチャートに示すよう
に、間隙を開いて3m/s、以下になるようにし、再び
細胞濃度差を測定する。この時、細胞濃度差が設定域内
であるならそのまま培養を続け、もし設定域をこえる場
合には、設定域内に入るまでガス線速度を増加させるこ
とにより対応することになる。
■If, in the case of (■) above, the normal velocity reaches the set upper limit or higher, as shown in the flowchart in Figure 3, open the gap to 3 m/s or less and reduce the cell concentration difference again. Measure. At this time, if the cell concentration difference is within the set range, the culture is continued; if it exceeds the set range, the linear gas velocity is increased until it falls within the set range.

O比較例1 ドラフトチューブもしくは整流板の下端と槽底部との間
隙を調節せずに]Ocmに固定する以外は、上記した実
施例1の場合と同様の培養装置、同様の細胞を用い、同
様な操作でIO日間培養した。
O Comparative Example 1 The same culture apparatus and the same cells as in Example 1 were used, except that the gap between the lower end of the draft tube or rectifier plate and the bottom of the tank was not adjusted. The cells were cultured for 10 days using the following procedures.

7 ○比較例2 ドラフトチューブもしくは整流板の下端と槽底部との間
隙を調節せずに0.4crnに固定する以外は、実施例
1の場合と同様の培養装置、同様の細胞を用い、同様な
操作で10日間培養した。
7 ○Comparative Example 2 The same culture apparatus and the same cells as in Example 1 were used, except that the gap between the lower end of the draft tube or rectifier plate and the bottom of the tank was fixed at 0.4 crn without adjustment. The cells were cultured for 10 days using the following procedures.

○培養成績 以上3例の培養結果の概略を第1表に示した。○Culture results A summary of the culture results of the above three cases is shown in Table 1.

実施例1の場合は、比較例1及び2に比べ、到達細胞濃
度及び生存率が高く、かつ小さい通気量で培養できるこ
とがわかる。
It can be seen that in the case of Example 1, the achieved cell concentration and survival rate were higher than in Comparative Examples 1 and 2, and culture could be performed with a small aeration amount.

比較例1の場合は通気量を増大させることにより、実施
例1の場合と同様に細胞を均一に懸垂した状態に保って
培養できるが、実施例1の3倍の通気量を必要としかつ
、細胞濃度及び生存率も実施例1に及ばない。
In the case of Comparative Example 1, by increasing the amount of aeration, cells can be cultured while keeping them uniformly suspended in the same way as in Example 1, but the amount of aeration required is three times that of Example 1, and The cell concentration and survival rate are also lower than in Example 1.

比較例2は間隙が狭く固定されているため、細胞が槽底
部に沈積しつつ、順次再懸濁化する状態で平衡状態を維
持するものであった。そして間隙が狭いため、間隙での
法線速度が細胞への剪断が生ずる3m/s、に接近した
他、沈積した細胞への酸8 素供給、栄養成分の拡散が不十分になったため、細胞濃
度及び生存率は実施例1の成績に比べ、著しく劣るもの
であった。
In Comparative Example 2, since the gap was narrow and fixed, an equilibrium state was maintained in which the cells were deposited at the bottom of the tank and were sequentially resuspended. Since the gap is narrow, the normal velocity in the gap approaches 3 m/s, which causes shearing to the cells, and the supply of oxygen to the deposited cells and the diffusion of nutrients become insufficient, causing the cells to The concentration and survival rate were significantly inferior to the results of Example 1.

(本頁以下余白) 9 0 〈実施例2〉 実施例1と同様の培養槽の上部を透明ガラスとし、白色
光源により液面の照度を1000ルツクスに保ち、クロ
レラ・エリプソイデアを回文式で懸濁培養する。
(Margins below this page) 9 0 <Example 2> The top of the culture tank similar to Example 1 was made of transparent glass, the illuminance of the liquid surface was maintained at 1000 lux using a white light source, and Chlorella ellipsoidea was grown in a palindromic manner. Culture in suspension.

本発明の第2実施例の生物細胞の培養に用いられる諸条
件は下記の通りである。
The conditions used for culturing biological cells in the second embodiment of the present invention are as follows.

張込液量:5I!。Filling liquid amount: 5I! .

培  地ニブリスドル培地 接種濃度: 5 X 10 ’ cells/mRPH
:6.6〜7.5 温  度:27〜29°C 通気ガス:空気、炭酸ガス(上限10%)、窒素の混合
ガス 次いで、本発明の第2実施例として後に詳述する培養方
法及び培養装置を用いて、ドラフトチューブもしくは整
流板の下端と槽底部との間隙を調節しながら回分式で2
0日間、懸濁培養した場合と、他の例とを比較した結果
を以下に述べる。
Medium Nibrisdol medium inoculation concentration: 5 x 10' cells/mRPH
: 6.6 to 7.5 Temperature: 27 to 29°C Aeration gas: Mixed gas of air, carbon dioxide gas (upper limit 10%), and nitrogen Next, the culture method and method described in detail later as a second embodiment of the present invention. Using a culture device, batchwise process 2 times while adjusting the gap between the lower end of the draft tube or rectifier plate and the bottom of the tank.
The results of comparing the case of suspension culture for 0 days and other examples will be described below.

○比較例3 1 ドラフトチューブもしくは整流板下端と槽底部との間隙
を調節せずに8cmに固定する以外は、実施例2と同様
の培養装置、同様の細胞を用い、同様の操作で20日間
培養した。
○Comparative Example 3 1 The same culture apparatus and the same cells as in Example 2 were used, except that the gap between the lower end of the draft tube or rectifying plate and the bottom of the tank was fixed at 8 cm, and the same operation was performed for 20 days. Cultured.

○比較例4 ドラフトチューブもしくは整流板下端と槽底部との間隙
を0.4cTrlに固定する以外は、実施例2と同様の
培養装置、同様の細胞を用い、同様の操作で20日間培
養した。
Comparative Example 4 The same culture apparatus and cells were used as in Example 2, except that the gap between the lower end of the draft tube or rectifying plate and the bottom of the tank was fixed at 0.4 cTrl, and the cells were cultured for 20 days in the same manner.

以上3例の結果の概略を第2表に示した。The results of the above three cases are summarized in Table 2.

第2表からも明らかなように、本発明の実施例2により
培養すると、比較例3.4に示すようなドラフトチュー
ブもしくは整流板下端と槽底部との間隙が固定されてい
る従来の方法及び装置を用いた場合に比べ、培養効率が
格段に優れており、又、通気ガス量を大幅に削減できる
As is clear from Table 2, culturing according to Example 2 of the present invention is different from the conventional method in which the gap between the lower end of the draft tube or rectifying plate and the bottom of the tank is fixed as shown in Comparative Example 3.4. Compared to the case of using an apparatus, the culture efficiency is far superior, and the amount of aeration gas can be significantly reduced.

(本頁以下余白) 2 3 〔作 用〕 以上述べたように、本発明の生物細胞培養方法及び培養
装置及び培養システムによれば、ドラフトチューブもし
くは整流板の下端ど槽底部との間隙を変化させ細胞の流
動を調節し、しかも培養槽内底部とその他の槽内部とに
おける細胞濃度の差を検知して前記間隙を変化させるば
かりでなく、槽内培養液中の酸素、炭酸ガスの一方もし
くは両者の濃度をも検知して、さらには、槽内培養液中
のpHをも検知し、設定溶存ガス濃度の範囲内に、ある
いは設定pH範囲内であるように通気ガス中のガス濃度
あるいはpHをも調節するから、細胞の濃度、液の粘度
、細胞特性の変化による細胞及び細胞集塊の比重すなわ
ち沈降特性の変化に通気量がよく対応でき、細胞の槽底
部への沈積を防ぎ、細胞が酸素及び栄養分の欠乏を起こ
すことによる増殖阻害、もしくは細胞の死を排除するこ
とができるから、常に一定の精度により生物細胞の培養
を行うことができる。
(Margins below this page) 2 3 [Function] As described above, according to the biological cell culture method, culture device, and culture system of the present invention, the gap between the lower end of the draft tube or the rectifier plate and the bottom of the tank can be changed. It not only adjusts the flow of cells and changes the gap by detecting the difference in cell concentration between the bottom of the culture tank and the other parts of the tank, but also changes the gap between oxygen and carbon dioxide in the culture solution in the tank. It also detects the concentration of both, and also detects the pH in the culture solution in the tank, and adjusts the gas concentration or pH in the ventilation gas so that it is within the set dissolved gas concentration range or within the set pH range. Since it also adjusts the aeration rate, it can respond well to changes in cell concentration, liquid viscosity, and changes in the specific gravity of cells and cell aggregates, that is, changes in sedimentation characteristics due to changes in cell properties, preventing cells from settling at the bottom of the tank, and Since growth inhibition or cell death due to lack of oxygen and nutrients can be eliminated, biological cells can always be cultured with a certain degree of precision.

〈実施例3〉 4 第5図に示すように、本発明の生物細胞の培養装置に用
いる円筒形ドラフトチューブである。
<Example 3> 4 As shown in FIG. 5, this is a cylindrical draft tube used in the biological cell culturing apparatus of the present invention.

第5図において、 A:培養槽1内に配置したドラフトチューブ8全体が上
下駆動装置7により上下動する形式。
In FIG. 5, A: A type in which the entire draft tube 8 placed in the culture tank 1 is moved up and down by a vertical drive device 7.

B:培養槽1の外部に上下駆動装置を有する形式。B: A type having a vertical drive device outside the culture tank 1.

Cニドラフトチューブが上下分割され、上部のドラフト
チューブ内筒9が固定され、下部のドラフトチューブ外
筒6が上下動する形式。
A type in which the draft tube C is divided into upper and lower parts, the upper draft tube inner cylinder 9 is fixed, and the lower draft tube outer cylinder 6 moves up and down.

D1上中下3分割され、中間の外筒のみ固定されていて
、上下両内筒5,6が上下動する形式。
D1 is divided into upper, middle and lower parts, with only the middle outer cylinder being fixed, and both the upper and lower inner cylinders 5 and 6 moving up and down.

のちのがそれぞれ示されている。The later ones are shown.

〈実施例4〉 第6図に示すように、培養槽壁をドラフトチューブと共
有するか、もしくは整流板を有する培養槽である。
<Example 4> As shown in FIG. 6, the culture tank shares a culture tank wall with a draft tube or has a rectifying plate.

5 第6図において、 E:槽の水平断面が矩形で、整流板と槽側壁とでドラフ
トチューブ4,5が形威されており、ドラフトチューブ
」二部4は固定され、ドラフトチューブ下部5が上下動
する形式。
5 In Fig. 6, E: The horizontal cross section of the tank is rectangular, and the draft tubes 4 and 5 are formed by the rectifying plate and the tank side wall.The second part 4 of the draft tube is fixed, and the lower part 5 of the draft tube is A format that moves up and down.

F二種側面に平行して整流板を有しており、整流板5は
固定され、整流板8が上下動する形式。
Type F has a rectifier plate parallel to the side surface, the rectifier plate 5 is fixed, and the rectifier plate 8 moves up and down.

G:槽の横方向Oこ貫通した空洞部により培養槽2とド
ラフトチューブ4とに分割され、ドラフトチューブ4の
下部に設けられた整流板8を上下させる形式。
G: A type in which the tank is divided into a culture tank 2 and a draft tube 4 by a cavity extending through it in the lateral direction, and a rectifying plate 8 provided at the bottom of the draft tube 4 is moved up and down.

のものがそれぞれ示されている。are shown respectively.

〈実施例5〉 第7図に示すように、ドラフトチューブ内筒の上下によ
る間隙調節以外に、ドラフトチューブ底面に対向する培
養槽底面を凹に、スパージャ−近傍の槽底面を凸にそれ
ぞれ形威し、沈降する細胞が液の上昇流に乗りやすくし
た培養槽である。
<Example 5> As shown in Fig. 7, in addition to adjusting the gap by raising and lowering the inner cylinder of the draft tube, the bottom of the culture tank opposite to the bottom of the draft tube was made concave, and the bottom of the tank near the sparger was made convex. This is a culture tank in which the settling cells can easily ride the upward flow of the liquid.

〈実施例6〉 6 第8図に示すように、ドラフトチューブ内筒の上下によ
る間隙調節以外に、底面上部の主スパージャ−とは別の
副スパージャ−を底面に設け、底面に滞留しやすい細胞
を液の上昇流に乗せやすくした培養槽である。
<Example 6> 6 As shown in Fig. 8, in addition to adjusting the gap by raising and lowering the inner cylinder of the draft tube, a sub-sparger separate from the main sparger at the top of the bottom is provided on the bottom to remove cells that tend to stay on the bottom. This is a culture tank that makes it easy to carry the liquid upstream.

〈実施例7〉 第9図に示すように、実施例4のEにおいて、さらにド
ラフトチューブの中間部分を固定し、上部の整流板を上
下させる形式のものをユニット化した培養槽である。
<Example 7> As shown in FIG. 9, this is a culture tank in which the intermediate part of the draft tube is fixed in E of Example 4, and the upper rectifying plate is moved up and down.

本実施例の形式のものは、張込液量に対応して使用でき
る。例えば、培養開始時には小液量で培養し、培養の進
行ムこともない、順次培地を追加する、いわゆる流加培
養にも使用できる。
The type of this embodiment can be used depending on the amount of liquid to be filled. For example, it can be used for so-called fed-batch culture, in which a small amount of liquid is used at the start of culture, and the culture medium is added sequentially without the need for the progress of culture.

〈実施例8〉 第10図に示すように、実施例7のユニット培養槽を複
数基積層した培養槽である。
<Example 8> As shown in FIG. 10, this is a culture tank in which a plurality of unit culture tanks of Example 7 were stacked.

本実施例におけるユニット培養槽の組合せの例が第11
図に示されている。すなわち、H:単純直列方式。
The example of the combination of unit culture tanks in this example is the 11th example.
As shown in the figure. That is, H: simple series system.

7 ■:並列に接続したユニット培養槽群を直列に配管する
もの。
7 ■: A group of unit culture tanks connected in parallel are piped in series.

J:積層形培養槽をユニット培養槽群に分け、それぞれ
を別個に運転するもの。図においては、並列結合した2
つのユニット培養槽に分けて運転するフローチャー1・
を例示している。
J: Stacked culture tanks are divided into unit culture tank groups and each is operated separately. In the figure, two
Flowchart 1, which operates separately in two unit culture tanks.
is exemplified.

〔効 果〕〔effect〕

以上述べたように、本発明の液中通気式培養方法は、液
中に通気して懸濁状態で生物細胞にガスを供給するドラ
フトチューブもしくは整流板内蔵型培養槽を用いる培養
方法において、ドラフトチューブもしくは整流板下端と
槽底部との間隙を変化させ細胞の流動を調節するもので
あり、槽内底とその他の槽内部とにおける細胞濃度の差
を検知して、該差が予め設定された濃度差の範囲内であ
るようにドラフトチューブもしくは整流板を移動させて
ドラフトチューブもしくは整流板下端と槽底部との間隙
を調節するものであり、さらには槽内培養液中の酸素、
炭酸ガス、またpHをも検知8 しそれらが予め設定された範囲内であるようにドラフト
チューブもしくは整流板下端と槽底部との間隙を調節す
るものであるから、槽内の培養液の流動を常に円滑にし
、かつ大量の通気ガスを必要としないという大きな効果
を有している。
As described above, the submerged aeration culture method of the present invention is a culture method using a draft tube or a culture tank with a built-in rectifier plate that aerates the liquid and supplies gas to biological cells in a suspended state. This device adjusts the flow of cells by changing the gap between the lower end of the tube or rectifying plate and the bottom of the tank, and detects the difference in cell concentration between the bottom of the tank and the rest of the tank, and sets this difference in advance. The draft tube or current plate is moved to adjust the gap between the lower end of the draft tube or current plate and the bottom of the tank so that the concentration difference is within the range of the oxygen in the culture solution in the tank,
It detects carbon dioxide gas and pH as well, and adjusts the gap between the draft tube or the lower end of the rectifying plate and the bottom of the tank so that they are within a preset range, so the flow of the culture solution in the tank is controlled. It has the great effect of always being smooth and not requiring a large amount of ventilation gas.

又、生物細胞の培養においては、培養期間中に、細胞の
濃度や液の粘度だけでなく、培養液中の各細胞が母細胞
から娘細胞に分裂して増殖していく過程における細胞の
分離のしやすさ、細胞相互の接触時の付着しやすさ等の
細胞特性が刻々と変化し、それにつれて、細胞及び細胞
集塊の比重すなわち沈降特性が変化するものであるが、
本発明の培養方法によれば、細胞濃度差のみならす培養
液中の酸素、炭酸ガスの濃度、さらにはpHをも検知し
、これらの濃度を調節し、ドラフトチューブもしくは整
流板下端と槽内底部との間隙を調節するので、培養を効
率よく高精度に行うために必要な条件を満たすことがで
きる、という優れた効果をもたらすものである。
In the culture of biological cells, during the culture period, not only the concentration of cells and the viscosity of the liquid, but also the separation of cells during the process of each cell in the culture medium dividing from a mother cell to a daughter cell and multiplying. Cell characteristics such as ease of handling and adhesion when cells come into contact with each other change from time to time, and the specific gravity of cells and cell aggregates, that is, sedimentation characteristics, change accordingly.
According to the culture method of the present invention, not only the cell concentration difference but also the concentration of oxygen and carbon dioxide in the culture solution, as well as the pH, are detected, and these concentrations are adjusted, and the lower end of the draft tube or rectifier plate and the bottom of the tank are detected. Since it adjusts the gap between the two, it has the excellent effect of satisfying the conditions necessary for culturing efficiently and with high precision.

更に本発明の培養方法においては、細胞の沈積9 を通気量のみにより防くものではないから、過度の通気
により却って細胞の増殖を阻害するようなこともなく、
特に脆弱な動物細胞の培養に好結果を与えることができ
る、という優れた効果を有している。
Furthermore, in the culture method of the present invention, cell deposition 9 is not prevented only by the amount of aeration, so that excessive aeration does not actually inhibit cell proliferation.
It has an excellent effect in that it can give good results especially in culturing fragile animal cells.

そして本発明は、液中に通気して懸濁状態で生物細胞に
酸素供給する培養槽において、ドラフトチューブもしく
は整流板の上端が液面上に出ない範囲内で上下方向に移
動可能なドラフトチューブもしくは整流板を内蔵した生
物細胞の培養槽であり、又ドラフトチューブもしくは整
流板下方部、ドラフトチューブもしくは整流板上方部の
いずれかもしくは両方が上下動自在であるドラフトチュ
ーブもしくは整流板を内蔵した生物細胞の培養槽である
から、生物細胞の培養期間中に培養の条件、具体的には
例えば、細胞濃度、細胞比重、液性等が変化した場合に
は、従来のものにおいては、通気量の増減により制御す
るしか手段がなく、経済性が低下し、運転の操作範囲を
広くとることが困難であったが、本発明の培養槽を使用
し、トラフ0 トチューブもしくは整流板下端と槽底部との間隙を変化
させることにより、前記したような培養条件の変化にも
素早く対応することができ、低通気量でも細胞を沈積さ
せずに円滑に流動させることができ、運転の操作範囲が
広く、経済効果も高くなる、という卓越した効果を得る
ことができるものである。
The present invention also provides a draft tube that is movable in the vertical direction within a range where the upper end of the draft tube or current plate does not protrude above the liquid surface in a culture tank that supplies oxygen to biological cells in a suspended state by aerating the liquid. Or a biological cell culture tank with a built-in current plate, and an organism with a built-in draft tube or current plate in which the draft tube or the lower part of the current plate, the draft tube or the upper part of the current plate, or both can move up and down. Since this is a cell culture tank, if the culture conditions (for example, cell concentration, cell specific gravity, liquid properties, etc.) change during the culture period of biological cells, the amount of ventilation can be changed in the conventional tank. The only means of control was to increase or decrease, which lowered economic efficiency and made it difficult to widen the range of operation.However, by using the culture tank of the present invention, the trough 0 tube or the lower end of the rectifier plate and the bottom of the tank By changing the gap, it is possible to quickly respond to changes in culture conditions as described above, and even at low aeration rates, cells can flow smoothly without sedimentation, and the operating range is wide. It is possible to obtain an outstanding effect of increasing the economic effect.

さらに本発明の実施例に記載したように、本発明の培養
槽を複数積層して用いることにより、異バッチ培養の並
行運転を、熱、通気ガス、培養液を削減した状態の下で
行うことができ、経済的な効果が大であり、さらには培
養のスケールアップにも著しい効果を発揮するものであ
る。
Furthermore, as described in the examples of the present invention, by using a plurality of stacked culture tanks of the present invention, parallel operation of different batch cultures can be performed under conditions where heat, ventilation gas, and culture solution are reduced. This method has a great economical effect and is also extremely effective in scaling up culture.

また、従来のドラフトチューブを固定する培養方法、培
養装置及び培養システムは培養期間中に槽内張込液量を
変えることは実質上不可能であるが、本発明の培養方法
又は培養装置或いは培養システムによれば、培養期間中
に槽内張込液量を変化させながら培養を行うことができ
る。例えば、種培養から本培養まで同一槽で継続して行
うこと1 もできる。すなわち、培養の規模、培養液中の細胞の特
性の変化に応して常に適正な液量のもとて培養を行うこ
とができ、培養の梢度を一定に保ち、ニーズによく応え
、高い経済効果を得ることができる。
In addition, in the conventional culture method, culture device, and culture system in which a draft tube is fixed, it is virtually impossible to change the amount of solution in the tank during the culture period, but the culture method, culture device, or culture system of the present invention According to the system, culture can be performed while changing the amount of solution in the tank during the culture period. For example, it is also possible to carry out everything from seed culture to main culture continuously in the same tank. In other words, it is possible to always perform culture with an appropriate volume of liquid depending on the culture scale and changes in the characteristics of cells in the culture medium, to maintain a constant culture density, to meet needs, and to maintain high Economic effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第5〜10図は本発明の培養システム及び培
養装置を示す説明図、第2図は第1図のドラフトチュー
ブチューブ内筒の上下駆動部分を拡大した図、第3図は
本発明の培養方法の説明図、第4図は本発明による培養
の進行に関する説明図、第11図は第10図に示された
培養槽の運転に関する説明図である。第12図は生物細
胞の培養期間中における槽内細胞分布状況を示す説明図
である。 0;培養槽、1ニドラフトチユーブ、2:消泡ネッ+−
、aニドラフトチューブ外筒、4;ドラフトチューブ内
筒、5ニドラフトチューブ外筒支持対、6:ドラフトチ
ユーブ内筒上下駆動部、7:スパージャ−,8:エアフ
ィルター、9:排気用2 配管、10:細胞濃度センサー、11: pHセンサー
12:DO全センサー13:DOコントローラー、14
: pHコントローラー、15:間隙コントローラー1
6:細胞濃度検出装置、17:ガス組成、流量コントロ
ーラー、18:ガス集合配管、19:酸素ガス貯槽、2
0:窒素ガス貯槽、21:炭酸ガス貯槽、22:エアコ
ンプレッサー、 23.24.25.26 :流量調節
弁、27:液体培地、28:培養液、29:液体培地貯
槽、30:培養液貯槽、31:液流速センサー、32:
液流速検出器、33:恒温水ジャケラ)、34ニドラフ
トチユ一ブ内筒上下駆動部のケーシング、35:エア駆
動ベローズ、36:エア駆動ベローズ用給排気配管、3
7:へローズ伸縮伝達肢、38:吊アーム。 39:整流板、40:整流板上下駆動装置、41;整流
板上部、42:整流板中部、43:整流板下部、44:
槽底丘部、45:槽底攪拌用スパージャ−246:スパ
ージャ−空気移送配管、47:排気管、48:恒温水抜
出配管、49:培養液抜出配管、50:培地導入配管、
51:恒温水導入配管、 52.53:空気移送配管、
54:ガス移送配管、55二液流入配管3 A:ユニット培養槽。 :積層培養槽 C:液 移送配管
FIG. 1 and FIGS. 5 to 10 are explanatory diagrams showing the culture system and culture apparatus of the present invention, FIG. 2 is an enlarged view of the vertical driving portion of the draft tube inner cylinder of FIG. 1, and FIG. FIG. 4 is an explanatory diagram of the cultivation method of the invention, FIG. 4 is an explanatory diagram of the progress of culture according to the invention, and FIG. 11 is an explanatory diagram of the operation of the culture tank shown in FIG. 10. FIG. 12 is an explanatory diagram showing the cell distribution within the tank during the period of culturing biological cells. 0: Culture tank, 1 Nidraft tube, 2: Antifoam net +-
, a draft tube outer cylinder, 4; draft tube inner cylinder, 5 draft tube outer cylinder supporting pair, 6: draft tube inner cylinder vertical drive section, 7: sparger, 8: air filter, 9: exhaust 2 piping , 10: cell concentration sensor, 11: pH sensor 12: DO total sensor 13: DO controller, 14
: pH controller, 15: Gap controller 1
6: Cell concentration detection device, 17: Gas composition, flow rate controller, 18: Gas collection pipe, 19: Oxygen gas storage tank, 2
0: Nitrogen gas storage tank, 21: Carbon dioxide gas storage tank, 22: Air compressor, 23.24.25.26: Flow rate adjustment valve, 27: Liquid medium, 28: Culture solution, 29: Liquid medium storage tank, 30: Culture solution storage tank , 31: Liquid flow rate sensor, 32:
Liquid flow rate detector, 33: Constant temperature water jacket), 34 Nidraft tube inner cylinder vertical drive section casing, 35: Air drive bellows, 36: Supply and exhaust piping for air drive bellows, 3
7: Helows telescopic transmission limb, 38: Hanging arm. 39: rectifier plate, 40: rectifier plate vertical drive device, 41; upper rectifier plate, 42: middle part of rectifier plate, 43: lower part of rectifier plate, 44:
Tank bottom hill, 45: Sparger for tank bottom stirring 246: Sparger air transfer piping, 47: Exhaust pipe, 48: Constant temperature water extraction piping, 49: Culture solution extraction piping, 50: Culture medium introduction piping,
51: Constant temperature water introduction piping, 52.53: Air transfer piping,
54: Gas transfer piping, 55 Two-liquid inflow piping 3 A: Unit culture tank. : Stacked culture tank C: Liquid transfer piping

Claims (1)

【特許請求の範囲】 1、液中に通気して懸濁状態で生物細胞にガスを供給す
るドラフトチューブもしくは整流板内蔵型培養槽を用い
る培養方法に於いて、ドラフトチューブもしくは整流板
の下端と槽底部との間隙を変化させ細胞の流動を調節す
ることを特徴とする生物細胞の培養方法。 2、槽内底部とその他の槽内部とにおける細胞濃度の差
を検知して、該差が予め設定された濃度差の範囲内であ
るようにドラフトチューブもしくは整流板を移動してド
ラフトチューブもしくは整流板の下端と槽底部との間隙
を調節することを特徴とする、請求項1記載の生物細胞
の培養方法。 3、槽内培養液中の酸素、炭酸ガスの一方もしくは両者
の濃度をも検知して、該濃度が予め設定された溶存ガス
濃度の範囲内であるように通気ガス中のガス濃度を調節
することを特徴とする、請求項2記載の生物細胞の培養
方法。 4、槽内培養液中のpHをも検知して、該pHが予め設
定されたpHの範囲内であるように通気ガス中の炭酸ガ
ス濃度を調節することを特徴とする、請求項2もしくは
3記載の生物細胞の培養方法。 5、細胞濃度差を最優先し、続いて溶存酸素濃度、pH
のいずれかを優先してドラフトチューブもしくは整流板
の下端と槽底部との間隙を調節することを特徴とする、
請求項2乃至4のいずれか1つに記載の生物細胞の培養
方法。 6、溶存酸素濃度の調節に際し、該調節が原料ガスの混
合ガス中の酸素濃度の増加によっては対応できない場合
には、通気量を増大させることにより溶存酸素濃度の調
節を行うことを特徴とする、請求項5記載の生物細胞の
培養方法。 7、ドラフトチューブもしくは整流板の上端と液面との
間隙をも変化させることを特徴とする、請求項1乃至6
のいずれか1つに記載の生物細胞の培養方法。 8、ドラフトチューブもしくは整流板の調節はドラフト
チューブもしくは整流板の上端が液面上に出ない範囲で
行うことを特徴とする、請求項1、2または6のいずれ
か1つに記載の生物細胞の培養方法。 9、通気により生ずるドラフトチューブもしくは整流板
下端と槽底部との間隙部分の液の流れにおける供試細胞
の線速度の上限が3m/s.となるように通気量を限定
することを特徴とする生物細胞の培養方法。 10、ドラフトチューブもしくは整流板下端と槽底部と
の間隙部分の液流速が3m/s.を越える場合には、ま
ず前記間隙を増加し、ついで細胞濃度差を検知して該濃
度差が設定範囲を越えている場合には、設定範囲内にな
るよう通気量を増加させて細胞濃度差、溶存ガス濃度、
液線速度を満足させるように調節することを特徴とする
、請求項9記載の生物細胞の培養方法。 11、ドラフトチューブもしくは整流板を移動、伸縮さ
せることにより槽底部との間隙、あるいは液面との間隙
を変化させることを特徴とする、請求項1〜9もしくは
10のいずれか1つに記載の生物細胞の培養方法。 12、液中に通気して懸濁状態で生物細胞に酸素供給す
る培養槽において、チューブまたは板の上端が液面上に
出ない範囲内で上下方向に移動可能なドラフトチューブ
もしくは整流板を内蔵したことを特徴とする生物細胞用
の培養槽。 13、液中に通気して懸濁状態で生物細胞に酸素を供給
する培養槽において、ドラフトチューブもしくは整流板
下方部、ドラフトチューブもしくは整流板上方部のいず
れかもしくは両方が上下動自在であるドラフトチューブ
もしくは整流板を内蔵したことを特徴とする生物細胞の
培養槽。 14、ドラフトチューブが内筒と外筒とから構成されて
いることを特徴とする、請求項12または13記載の生
物細胞の培養槽。 15、ドラフトチューブもしくは整流板の一部が槽に固
定され、かつ他の部分は可動であることを特徴とする、
請求項12乃至14のいずれか1つに記載の生物細胞の
培養槽。 16、ドラフトチューブもしくは整流板を動かす機構が
、ベローズもしくはピストンへの流体の入出機構、ギア
付モーターによる駆動機構、熱膨張材料の伸縮機構、マ
グネット駆動機構のいずれかもしくはこれらの重複した
ものであることを特徴とする、請求項12乃至15のい
ずれか1つに記載の生物細胞の培養槽。 17、請求項12乃至16のいずれかに記載の培養槽を
単位とする培養槽を直列に複数積層することを特徴とす
る生物細胞の培養システム。 18、請求項12乃至16のいずれかに記載の培養槽を
液の流れにおいて直列と並列とが混合している状態で複
数積層することを特徴とする生物細胞の培養システム。 19、液中に通気して懸濁状態で生物細胞に酸素を供給
する生物細胞の培養システムにおいて、請求項12乃至
18のいずれかに記載の培養槽にドラフトチューブもし
くは整流板の動きを制御する手段及びその他の細胞培養
条件制御手段を含むことを特徴とする生物細胞の培養シ
ステム。 20、液中に通気して懸濁状態で生物細胞に酸素を供給
する培養システムにおいて、請求項12乃至16のいず
れかに記載の培養槽にDO制御系もしくはpH制御系の
いずれか、もしくは両者を含むことを特徴とする生物細
胞の培養システム。 21、請求項20記載の培養システムにおいて、さらに
培地供給系を含むことを特徴とする生物細胞の培養シス
テム。 22、複数積層した培養槽におけるドラフトチューブも
しくは整流板の動き、及びその他の細胞の培養条件を個
別に制御できるようにしたことを特徴とする、請求項1
7乃至21のいずれかに記載の生物細胞の培養システム
[Scope of Claims] 1. In a culture method using a culture tank with a built-in draft tube or baffle plate for supplying gas to biological cells in a suspended state by aerating the liquid, the lower end of the draft tube or baffle plate and A method for culturing biological cells characterized by adjusting the flow of cells by changing the gap between the tank and the bottom. 2. Detect the difference in cell concentration between the bottom of the tank and the inside of the other tanks, and move the draft tube or rectifier plate so that the difference is within a preset concentration difference range. 2. The method for culturing biological cells according to claim 1, wherein the gap between the lower end of the plate and the bottom of the tank is adjusted. 3. Detect the concentration of one or both of oxygen and carbon dioxide in the culture solution in the tank, and adjust the gas concentration in the ventilation gas so that the concentration is within a preset dissolved gas concentration range. The method for culturing biological cells according to claim 2, characterized in that: 4. The pH of the culture solution in the tank is also detected, and the carbon dioxide concentration in the ventilation gas is adjusted so that the pH is within a preset pH range. 3. The method for culturing biological cells according to 3. 5. Give top priority to the cell concentration difference, followed by dissolved oxygen concentration and pH.
The gap between the lower end of the draft tube or the rectifier plate and the bottom of the tank is adjusted to give priority to either of the above.
The method for culturing biological cells according to any one of claims 2 to 4. 6. When adjusting the dissolved oxygen concentration, if the adjustment cannot be achieved by increasing the oxygen concentration in the mixed gas of the raw material gas, the dissolved oxygen concentration is adjusted by increasing the ventilation amount. The method for culturing biological cells according to claim 5. 7. Claims 1 to 6, characterized in that the gap between the upper end of the draft tube or the rectifying plate and the liquid level is also changed.
The method for culturing biological cells according to any one of the above. 8. The biological cell according to any one of claims 1, 2, or 6, wherein the adjustment of the draft tube or the current plate is performed within a range where the upper end of the draft tube or the current plate does not protrude above the liquid surface. Cultivation method. 9. The upper limit of the linear velocity of the test cells in the liquid flow in the gap between the draft tube or the lower end of the rectifying plate and the tank bottom caused by ventilation is 3 m/s. A method for culturing biological cells, characterized by limiting the amount of aeration so that. 10. The liquid flow velocity in the gap between the lower end of the draft tube or rectifying plate and the bottom of the tank is 3 m/s. If the difference exceeds the set range, first increase the gap, then detect the difference in cell concentration, and if the difference exceeds the set range, increase the ventilation amount so that the difference in cell concentration falls within the set range. , dissolved gas concentration,
10. The method for culturing biological cells according to claim 9, wherein the liquid linear velocity is adjusted to satisfy the liquid linear velocity. 11. The gap with the bottom of the tank or the gap with the liquid level is changed by moving, expanding and contracting the draft tube or the current plate, according to any one of claims 1 to 9 or 10. Method for culturing biological cells. 12. In a culture tank that supplies oxygen to biological cells in suspension by aerating the liquid, it has a built-in draft tube or rectifier plate that can be moved vertically within the range where the upper end of the tube or plate does not protrude above the liquid surface. A culture tank for biological cells characterized by: 13. A draft in which the draft tube or the lower part of the current plate, or the draft tube or the upper part of the current plate, or both, are movable up and down in a culture tank that supplies oxygen to biological cells in a suspended state by ventilating the liquid. A biological cell culture tank characterized by having a built-in tube or rectifying plate. 14. The biological cell culture tank according to claim 12 or 13, wherein the draft tube is composed of an inner tube and an outer tube. 15. Part of the draft tube or current plate is fixed to the tank, and the other part is movable.
The biological cell culture tank according to any one of claims 12 to 14. 16. The mechanism for moving the draft tube or rectifying plate is one of a bellows or piston fluid input/output mechanism, a drive mechanism using a geared motor, a thermal expansion material expansion/contraction mechanism, a magnet drive mechanism, or a combination of these. The biological cell culture tank according to any one of claims 12 to 15, characterized in that: 17. A system for culturing biological cells, characterized in that a plurality of culture vessels each having the culture vessel according to any one of claims 12 to 16 are stacked in series. 18. A system for culturing biological cells, characterized in that a plurality of culture vessels according to any one of claims 12 to 16 are stacked in a state in which the culture vessels are mixed in series and in parallel in terms of liquid flow. 19. In a biological cell culture system that supplies oxygen to biological cells in a suspended state by aerating the liquid, the movement of a draft tube or a rectifier plate is controlled in the culture tank according to any one of claims 12 to 18. 1. A system for culturing biological cells, comprising a means for controlling cell culture conditions and a means for controlling other cell culture conditions. 20. In a culture system that supplies oxygen to biological cells in a suspended state by aerating the liquid, the culture tank according to any one of claims 12 to 16 is provided with either a DO control system or a pH control system, or both. A biological cell culture system comprising: 21. The culture system for biological cells according to claim 20, further comprising a culture medium supply system. 22. Claim 1, characterized in that the movement of draft tubes or rectifying plates in a plurality of stacked culture tanks and other cell culture conditions can be individually controlled.
22. The biological cell culture system according to any one of 7 to 21.
JP1215037A 1989-08-23 1989-08-23 Submerged aeration type culture method and culture device Expired - Lifetime JPH0716397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215037A JPH0716397B2 (en) 1989-08-23 1989-08-23 Submerged aeration type culture method and culture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215037A JPH0716397B2 (en) 1989-08-23 1989-08-23 Submerged aeration type culture method and culture device

Publications (2)

Publication Number Publication Date
JPH0380071A true JPH0380071A (en) 1991-04-04
JPH0716397B2 JPH0716397B2 (en) 1995-03-01

Family

ID=16665710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215037A Expired - Lifetime JPH0716397B2 (en) 1989-08-23 1989-08-23 Submerged aeration type culture method and culture device

Country Status (1)

Country Link
JP (1) JPH0716397B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175723A3 (en) * 2013-04-24 2014-12-24 Universiti Kebangsaan Malaysia A bioreactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884909B2 (en) * 2022-04-25 2024-01-30 Ark Biotech Inc. Cluster airlift bioreactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568691A (en) * 1979-07-03 1981-01-29 Denki Kagaku Kogyo Kk Method and apparatus for continuous production of l-alanine
JPS62128798U (en) * 1986-02-04 1987-08-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568691A (en) * 1979-07-03 1981-01-29 Denki Kagaku Kogyo Kk Method and apparatus for continuous production of l-alanine
JPS62128798U (en) * 1986-02-04 1987-08-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175723A3 (en) * 2013-04-24 2014-12-24 Universiti Kebangsaan Malaysia A bioreactor

Also Published As

Publication number Publication date
JPH0716397B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US11859163B2 (en) Method of using a bioreactor
US4906577A (en) Cell culture bioreactor
AU691494B2 (en) Particle settler for use in cell culture
EP0585419B1 (en) Method and apparatus for growing biomass particles
KR20190010709A (en) Continuously controlled hollow fiber bioreactor
JP2011092117A (en) Method and device for culturing biological cell
AU651080B2 (en) Method for culturing cells
JP7459244B2 (en) Bioreactors or fermentors for the cultivation of cells or microorganisms in suspension on an industrial scale
JPH0380071A (en) Submerged culture under aeration and apparatus therefor
US20220204905A1 (en) Bioreactor and methods of use thereof
JPS62265A (en) Apparatus for cell culture and method therefor
WO1991006627A1 (en) Nested-cone separator
Su et al. Secreted enzyme production by fungal pellets in a perfusion bioreactor
Halfani Hydrodynamics of a three-phase fluidised bed bioreactor with a novel biomass support
JPS60251878A (en) Cultivation tank
JPS63164879A (en) Bubble-tower perfusion culture and apparatus therefor
JPH0428352B2 (en)
EP0276154A2 (en) Method and apparatus for cell culture
JPH0398572A (en) Cell culture device and cell culture
Dynesius et al. New suspension culture system (Mini‐AR)
JPS62289170A (en) Method of cell culture and device therefor
JPS62259580A (en) Cell cultivation and device therefor
JPH0338830B2 (en)