JPH0379977A - Method for producing low-temperature air - Google Patents

Method for producing low-temperature air

Info

Publication number
JPH0379977A
JPH0379977A JP21548589A JP21548589A JPH0379977A JP H0379977 A JPH0379977 A JP H0379977A JP 21548589 A JP21548589 A JP 21548589A JP 21548589 A JP21548589 A JP 21548589A JP H0379977 A JPH0379977 A JP H0379977A
Authority
JP
Japan
Prior art keywords
air
temperature
low
expansion turbine
sent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21548589A
Other languages
Japanese (ja)
Other versions
JP2695665B2 (en
Inventor
Kurahito Saisu
斎須 倉人
Masaki Hirokawa
昌樹 弘川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP1215485A priority Critical patent/JP2695665B2/en
Publication of JPH0379977A publication Critical patent/JPH0379977A/en
Application granted granted Critical
Publication of JP2695665B2 publication Critical patent/JP2695665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Abstract

PURPOSE:To make it possible to stabilize the operation in producing low-temperature air by a method wherein air as raw material is divided into two portions, one portion being dehumidified, pressurized to form high-temperature compressed air, cooled to form low- temperature compressed air, and expanded under thermal confinement to produce low- temkperature air as end product and the other portion being utilized to regenerate the absor bent by cooling and heating. CONSTITUTION:Air as raw material is drawn in through a filter 2 by a fan 3 and fed as saturated air through cooling by a heat exchanger 5 provided an route. The dehumidified air as raw material is divided at a branch point 7 in its passageway into two portions; one portion is sent into a main line 8 for producing low-temperature air and the other portion is sent into a regeneration line 9 and utilized for cooling and heating absorbent. The air as raw material sent into the main line 8 is passed into a rotary dehumidifying machine 10 and into a dehumidifying part 11 to be dehumidified, sent into an air compressor 15 and made dry high-temperature air, sent into a booster blower 19 to be pressurized further, and undergoes a rise in temperature. The dry high-temperature air is passed through a first, a second and a third heat exchangers 21, 23, 28 and undergoes a fall in temperature. The dry air is passed into an expansion turbine 32 where it undergoes thermal expansion and generates motive power and turns to low-temperature air with the temperature lowered to approx. -63 deg.C. The low-temperature air thus produced is sent out through an outlet pipe 33.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気を断熱膨張させることによって低温空気
を製造するための方法に係わり、特に再生工程の簡便化
と、低温空気の温度制御と、圧縮熱および膨張タービン
の発生動力の再利用とが行える低温空気製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing low-temperature air by adiabatically expanding air, and particularly to simplifying the regeneration process and controlling the temperature of low-temperature air. , relates to a low temperature air production method that allows reuse of compression heat and power generated by an expansion turbine.

〔従来の技術〕[Conventional technology]

従来、−40℃以下の低温気体を製造する方法として、
フロン冷凍機等の機械式冷凍機を利用する方法、液体窒
素等の低温液化ガスを利用する方法、膨張タービン等に
よる断熱膨張を利用する方法が採られている。
Conventionally, as a method for producing low-temperature gas below -40℃,
Methods that use a mechanical refrigerator such as a fluorocarbon refrigerator, a method that uses low-temperature liquefied gas such as liquid nitrogen, and a method that uses adiabatic expansion using an expansion turbine or the like have been adopted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、フロン冷凍機等を利用する方法では40℃以下
の低温を得るためには冷凍機自体を多段化したり、数種
の冷媒を使用するようにして多元化している。しかしこ
のような方法ではブロワ−1熱交換器、デフロスト構造
等を配置し装置の複雑化が必要で、かつ広範囲の温度制
御には不向きであるという欠点がある。また液体窒素等
の低温液化ガスを利用する方法では、簡便ではあるがそ
の方法において用いる低温液化ガスが非常に高価なもの
であるという欠点がある。さらに膨張タービン等による
断熱膨張を利用する方法では小出力のものに関して殆ど
動力回収がなされていないという欠点がある。
However, in the method of using a fluorocarbon refrigerator or the like, in order to obtain a low temperature of 40° C. or less, the refrigerator itself is multi-staged or several types of refrigerants are used. However, this method has the disadvantage that it requires the arrangement of a blower-1 heat exchanger, a defrost structure, etc., making the device complicated, and that it is unsuitable for wide-range temperature control. Furthermore, methods using low-temperature liquefied gas such as liquid nitrogen are simple, but have the disadvantage that the low-temperature liquefied gas used in the method is very expensive. Furthermore, methods that utilize adiabatic expansion using an expansion turbine or the like have the disadvantage that almost no power is recovered for small-output devices.

本発明は上記事情を鑑みて成されたもので、設備を簡略
化し得て、安定した運転を可能としかつ低温空気の広範
囲な温度制御ができ、エネルギーの有効利用ができる低
温空気製造方法を提供することを目的とするものである
The present invention has been made in view of the above circumstances, and provides a low temperature air production method that can simplify equipment, enable stable operation, control the temperature of low temperature air over a wide range, and use energy effectively. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

かかる目的を遠戚するために、 請求項(1)記載の本発明では、送気する原料空気をフ
ァンにより吸気する過程で除塵、冷却して低露点とした
後、これを二分してその一部を吸着剤を内蔵し、除湿部
、加熱部および冷却部に区画されかつ回転することによ
って、順次前記各部が切換わる回転式除湿機に導入して
除湿し、ついで空気圧縮機と昇圧ブロワ−により昇圧し
て高温圧縮空気とし、第一熱交換器、水冷却式第二熱交
換器、冷凍機式第三熱交換器を経て冷却して低温圧縮空
気とし、該低温圧縮空気を膨張タービンに供給して断熱
膨張せしめて低温空気を製造するとともに、該膨張ター
ビンで発生した動力を前記昇圧ブロワ−の駆動動力とし
て回収する一方、前記二分した原料空気の残部を前記回
転式除湿機の冷却部に導入して、吸着剤を冷却した後、
第一熱交換器に導入して前記高温圧縮空気と熱交換し加
熱した後、前記回転式除湿機の加熱部に導入して、吸着
剤を加熱し再生するようにした。
In order to achieve this object distantly, the present invention as set forth in claim (1) removes dust and cools the raw air to be fed to a low dew point in the process of intake by a fan, and then divides the raw air into two parts. The part contains an adsorbent and is divided into a dehumidifying part, a heating part, and a cooling part, and rotates, so that each part is sequentially switched to dehumidify the air. The pressure is increased to high-temperature compressed air, which is cooled through a first heat exchanger, a water-cooled second heat exchanger, and a refrigerator-type third heat exchanger to become low-temperature compressed air, and the low-temperature compressed air is sent to an expansion turbine. The air is supplied and adiabatically expanded to produce low-temperature air, and the power generated by the expansion turbine is recovered as driving power for the booster blower, while the remainder of the divided raw material air is sent to the cooling section of the rotary dehumidifier. After cooling the adsorbent,
After being introduced into the first heat exchanger and heated by exchanging heat with the high-temperature compressed air, the adsorbent was introduced into the heating section of the rotary dehumidifier to heat and regenerate the adsorbent.

請求項(2)記載の本発明では、請求項(1)記載の低
温空気製造方法において、前記膨張タービンに供給する
低温圧縮空気を、該膨張タービンの出口温度を検出して
、その一部を該膨張タービンの入口と出口を連結したバ
イパス通路に設けられた弁によって、バイパス量を調整
して、所望温度の低温空気を得るようにした。
In the present invention as set forth in claim (2), in the low-temperature air production method as set forth in claim (1), the low-temperature compressed air to be supplied to the expansion turbine is determined by detecting the exit temperature of the expansion turbine, and a portion of the low-temperature compressed air is A valve provided in a bypass passage connecting the inlet and outlet of the expansion turbine adjusts the amount of bypass to obtain low-temperature air at a desired temperature.

請求項(3)記載の本発明では、請求項(1)又は(2
)記載の低温空気製造方法において前記膨張タービンに
供給する低温圧縮空気の温度を膨張タービンの入口温度
を検出して、冷凍機式第三熱交換機の冷媒量を調整する
ことによって、所望温度の低温空気を得るようにした。
In the present invention described in claim (3), claim (1) or (2)
), the temperature of the low-temperature compressed air supplied to the expansion turbine is adjusted to a desired temperature by detecting the inlet temperature of the expansion turbine and adjusting the amount of refrigerant in the refrigerator-type third heat exchanger. I tried to get some air.

請求項(4)記載の本発明では請求項(1)、(2)お
よび(3)のいずれかに記載の低温空気製造方法におい
て、緊急時昇圧ブロワ−と膨張タービンとの送気途路で
送気を遮断する一方、該遮断通路の気体をバイパス通路
を経て昇圧ブロワ−の入口部及び膨張タービンの出口部
にそれぞれ導いて昇圧ブロワ−の制動力の増大と膨張タ
ービンの駆動力とを減少させて、装置を安全に停止させ
るようにした。
In the present invention as set forth in claim (4), in the low temperature air production method as set forth in any one of claims (1), (2) and (3), in the air supply route between the emergency boost blower and the expansion turbine. While cutting off the air supply, the gas in the cutoff passage is guided to the inlet of the booster blower and the outlet of the expansion turbine through the bypass passage to increase the braking force of the booster blower and reduce the driving force of the expansion turbine. to safely stop the device.

〔実施例〕〔Example〕

第1図は本発明の低温空気製造方法の実施例を示すもの
である。
FIG. 1 shows an embodiment of the low temperature air production method of the present invention.

原料空気は外気より除塵フィルター2を通してファン3
によって吸引されて回転式除湿ユニットlに取り込まれ
る。この原料空気はその途中冷凍機4において、冷却さ
れた冷媒と熱交換器5において熱交換し約7℃に冷却さ
れ、この温度での飽和空気となる。そしてこの原料空気
に含まれていた水分の一部はこの熱交換器5において凝
縮され、この凝縮水はオートドレン等によって自動的に
導出管6から大気中に排出される。除湿された原料空気
は通路分岐点7において、低温空気を製造するための主
経路8に送られるものと、吸着剤の冷却し、高温圧縮空
気からの熱回収することによって加熱され、吸着剤の加
熱のため利用される再生経路9に送られるものとに二分
される。
Raw air is passed from outside air through a dust removal filter 2 to a fan 3.
is sucked into the rotary dehumidifying unit l. This raw air is cooled to about 7° C. by exchanging heat with the cooled refrigerant in the heat exchanger 5 in the refrigerator 4 and becomes saturated air at this temperature. A part of the moisture contained in this raw air is condensed in this heat exchanger 5, and this condensed water is automatically discharged into the atmosphere from an outlet pipe 6 by an auto drain or the like. The dehumidified feed air is sent at a passage branch point 7 to the main path 8 for producing low-temperature air, and is heated by cooling the adsorbent and recovering heat from the high-temperature compressed air. It is divided into two parts: one sent to the regeneration path 9 and used for heating.

主経路8に送られた原料空気は回転式除湿機10に導入
される。該回転式除湿機lOは第2図に示したように吸
着剤50を筒体51内に充填されていて、該筒体5Iを
外筒56内に機密に、かつ回転可能に気密に封止される
蓋部材57.58で軸59を支軸して収容されている。
The raw air sent to the main path 8 is introduced into a rotary dehumidifier 10. As shown in FIG. 2, the rotary dehumidifier IO has an adsorbent 50 filled in a cylindrical body 51, and the cylindrical body 5I is airtightly and rotatably sealed in an outer cylinder 56. It is housed with a shaft 59 supported by lid members 57 and 58.

そして該蓋部材57.58の内側は仕切いた52で放射
状に3つの区画質53.54.55に区別され、それぞ
れに除湿用管60.60′加熱用@61゜61゛、及び
冷却用管62.62“が配設されている。そして筒体5
1が回転されて該除湿用管60.60′に位置した時は
その吸着剤は除湿作用をする除湿IIIとして作動し、
また該加熱用管61.6!“に位置した時はその吸着剤
は加熱される加熱部12として作動し、更に冷却用管6
2.62′に位置した時はその吸着剤は冷却される冷却
部13を形成する。このようにして筒体5Iの回転に伴
って、吸着剤50は除湿部11に位置する部分53、加
熱部12に位置する部分54、および冷却部13に位置
する部分55を順次変えることにより原料空気の除湿と
吸着剤の加熱および冷却を行い再生を常に連続的に行う
こととなる。そこで前記主経路8を通る原料空気は常に
除湿用管60を介して除湿部11に導入されて除湿され
、原料空気は低露点(露点−40°C以下)の乾燥空気
となって回転式除湿機IOから通路14を通って空気圧
縮機15へ送られる。
The inside of the lid member 57, 58 is divided radially into three partitions 53, 54, 55 by partitions 52, each with a dehumidifying pipe 60, 60' for heating @ 61° 61', and a cooling pipe. 62.62" is arranged. And the cylinder body 5
1 is rotated and placed in the dehumidifying pipe 60, 60', the adsorbent acts as a dehumidifying III that dehumidifies,
Also, the heating tube 61.6! When the adsorbent is located in
2.62', the adsorbent forms a cooling section 13 where it is cooled. In this way, with the rotation of the cylinder 5I, the adsorbent 50 is transferred to the raw material by sequentially changing the part 53 located in the dehumidifying part 11, the part 54 located in the heating part 12, and the part 55 located in the cooling part 13. Regeneration is always performed continuously by dehumidifying the air and heating and cooling the adsorbent. Therefore, the raw material air passing through the main path 8 is always introduced into the dehumidifying section 11 via the dehumidifying pipe 60 and dehumidified, and the raw material air becomes dry air with a low dew point (dew point -40°C or less) and is rotary dehumidified. Air is sent from the machine IO through a passage 14 to an air compressor 15.

空気圧縮機15においてその乾燥空気は約2 、0 k
g/ cm’ (ゲージ圧力)に圧縮された約100℃
の高温乾燥空気となり、この高温乾燥空気は通路16を
通って、軸受ガス供給ユニット17から膨張タービンユ
ニット18の軸18’がガスによって指示されている気
体軸受を有する膨張タービンユニットI8の昇圧ブロワ
−19に送られる。この昇圧ブロワ−19では高温乾燥
空気をさらに約3 、5 kg/ cm″(ゲージ圧力
)まで昇圧し、その結果空気の温度が約150℃まで上
昇する。この高温乾燥空気は昇圧ブロワ−I9から通路
20を通って第一熱交換器21に送られ、通路分岐点7
において後述する再生経路9に流入する原料空気の残部
と熱交換されることによって約80℃まで冷却されて降
温する。この降温された乾燥空気は通路22を通って第
二熱交換器23に流入し、そこにおいて冷却水24と熱
交換されることによって約40℃まで降温される。この
降忌された乾燥空気は通路分岐点25を経由して通路2
6に流れる。この乾燥空気は冷凍機27で冷却された冷
媒か供給されている第三熱交換器28を通って約O℃ま
で降温される。この乾燥空気は通路29、フィルター3
0.通路31を通って膨張タービン32に流入する。
In the air compressor 15, the dry air is approximately 2.0 k
Approximately 100℃ compressed to g/cm' (gauge pressure)
The hot dry air passes through the passage 16 from the bearing gas supply unit 17 to the booster blower of the expansion turbine unit I8 having gas bearings, the shaft 18' of which is guided by the gas. Sent to 19th. This booster blower 19 further boosts the pressure of the high-temperature dry air to approximately 3.5 kg/cm'' (gauge pressure), and as a result, the temperature of the air rises to approximately 150°C.This high-temperature dry air is supplied from the booster blower I9. It is sent to the first heat exchanger 21 through the passage 20, and is sent to the passage branch point 7.
The air is cooled down to approximately 80° C. by exchanging heat with the remainder of the raw material air flowing into the regeneration path 9, which will be described later. This cooled dry air flows into the second heat exchanger 23 through the passage 22, where it is heat exchanged with the cooling water 24, and is cooled down to about 40°C. This repelled dry air passes through the passage branch point 25 to the passage 2.
It flows to 6. This dry air passes through a third heat exchanger 28 to which refrigerant cooled by a refrigerator 27 is supplied, and its temperature is lowered to about 0°C. This dry air is passed through the passage 29 and the filter 3.
0. It flows through passage 31 into expansion turbine 32 .

なお、膨張タービン32への流入に際して、その乾燥空
気は圧力損失あるいは侵入熱により、圧力および温度は
それぞれ約3 kg/ cm” (ゲージ圧力)および
約5℃になる。かくして膨張タービン32に入った乾燥
空気は該膨張タービン32で断熱膨張し、圧力は約0 
、 t kg/ cm’ (ゲージ圧力)となるととも
に、該膨張タービン32で仕事を行い動力を発生する。
In addition, upon entering the expansion turbine 32, the pressure and temperature of the dry air become approximately 3 kg/cm'' (gauge pressure) and approximately 5°C, respectively, due to pressure loss or intrusion heat. The dry air is adiabatically expanded in the expansion turbine 32, and the pressure is approximately 0.
, t kg/cm' (gauge pressure), and the expansion turbine 32 performs work to generate power.

その結果として温度は約−63℃までに低下した低温空
気となり、導出管33より送気されることによって本発
明の目的である低温空気が製造される。この間、膨張タ
ービン32で発生した動力は前記した昇圧ブロワ−19
を駆動する動力として使用される。
As a result, low-temperature air whose temperature has decreased to about -63° C. is supplied through the outlet pipe 33 to produce low-temperature air, which is the object of the present invention. During this time, the power generated by the expansion turbine 32 is transferred to the booster blower 19 described above.
It is used as the power to drive.

一方、二分されて通路分岐点7から再生経路9に流入し
た約7℃の原料空気の残部は冷却ガスとして回転式除湿
機IOの冷却用管62より冷却部13に導かれ、先の工
程で加熱された吸着剤を冷却したのち冷却用管62°を
介して通路34より第一熱交換器21に送られる。この
第一熱交換器21において、該空気は主経路8を経て昇
圧ブロワ−19を出た高温乾燥空気と熱交換することに
よって前記した通りこれを冷却して、該空気自身は約1
40℃に昇温された加熱ガスとなり通路35を経て回転
式除湿機10の加熱管61゛ (第2図参照)を介して
加熱部!2に承・反され、先の吸着工程で水分を吸着し
た吸着剤を加Q、 L、管61を介して導出管36から
大気中へ排出される。以下、同様にして回転式除湿器1
0は吸着剤50を充填した筒体51が逐次回転していて
常に除湿部、加熱部、冷却部に位置するよう順次移動し
て配される。この結果、連続して低温空気を製造するこ
とが出来る。
On the other hand, the remainder of the raw material air at about 7°C, which has been divided into two and flowed into the regeneration path 9 from the passage branch point 7, is guided as a cooling gas to the cooling section 13 through the cooling pipe 62 of the rotary dehumidifier IO, and is used in the previous process. After the heated adsorbent is cooled, it is sent to the first heat exchanger 21 from the passage 34 via the cooling pipe 62°. In the first heat exchanger 21, the air passes through the main path 8 and exchanges heat with the high-temperature dry air exiting the booster blower 19, thereby cooling it as described above.
The heated gas is heated to 40°C and passes through the passage 35 and the heating pipe 61' (see Fig. 2) of the rotary dehumidifier 10 to the heating section! 2, the adsorbent that has adsorbed moisture in the previous adsorption step is discharged into the atmosphere from the outlet pipe 36 via the adder Q, L and pipe 61. Below, in the same manner, rotary dehumidifier 1
0, a cylinder 51 filled with an adsorbent 50 rotates sequentially and is always moved sequentially to the dehumidifying section, heating section, and cooling section. As a result, low temperature air can be continuously produced.

また、この例では膨張タービン32の入口部に導入され
る通路31に温度調節計37を設け、ここの−温度によ
って第三熱交換器28に流入する冷媒量を弁38で制御
し、該膨張タービン32の入口温度を変えることによっ
て、導出管33で得られる低温空気の温度を調節できる
ようになっているとともに、膨張タービン32から導出
される導出管33に温度調節計39を設け、ここの温度
によって通路3Iからバイパス通路40を経て導出管3
3に流れる約5℃の乾燥空気の量を弁41で制御するこ
とによって膨張タービン32への供給を調節し、これに
よって導出管33から得られる低温空気の温度を調節す
ることしできるようになっている。
Further, in this example, a temperature controller 37 is provided in the passage 31 introduced into the inlet of the expansion turbine 32, and the amount of refrigerant flowing into the third heat exchanger 28 is controlled by a valve 38 according to the -temperature here. By changing the inlet temperature of the turbine 32, it is possible to adjust the temperature of the low-temperature air obtained in the outlet pipe 33, and a temperature controller 39 is provided in the outlet pipe 33 led out from the expansion turbine 32. Depending on the temperature, the outlet pipe 3 passes from the passage 3I through the bypass passage 40.
By controlling the amount of dry air of about 5° C. flowing through the outlet pipe 33 with the valve 41, the supply to the expansion turbine 32 can be adjusted, thereby making it possible to adjust the temperature of the low temperature air obtained from the outlet pipe 33. ing.

さらにこの例では、停電または緊急時等における安全対
策として、装置が緊急停止されると自動弁42が閉じ、
昇圧ブロワ−19側と膨張タービン32側を通路24で
遮断し、それと同時に通路24と、昇圧ブロワ−19の
入口通路16を連続するバイパス通路43に設けた自動
弁44を開いて、該バイパス通路43を介して昇圧ブロ
ワ−19入口に戻し、制動力を増大させると共に、前記
バイパス通路40に設けた弁41が開いて、該バイパス
通路40を介して膨張タービン32出口に導き。
Furthermore, in this example, as a safety measure in the event of a power outage or emergency, the automatic valve 42 closes when the device is stopped in an emergency.
The pressure boost blower 19 side and the expansion turbine 32 side are shut off by the passage 24, and at the same time, an automatic valve 44 provided in the bypass passage 43 that connects the passage 24 and the inlet passage 16 of the pressure boost blower 19 is opened to open the bypass passage. 43 to the inlet of the booster blower 19 to increase the braking force, the valve 41 provided in the bypass passage 40 is opened, and the air is guided to the outlet of the expansion turbine 32 via the bypass passage 40.

膨張タービン32への乾燥空気の流入を断ち、膨張ター
ビン32の駆動力を減少させるようになっている。
The dry air is cut off from flowing into the expansion turbine 32, and the driving force of the expansion turbine 32 is reduced.

以上説明したように本実施例は以下に示す効果を奏する
ものである。
As explained above, this embodiment has the following effects.

回転式除湿機を用いることにより、吸着剤の加熱と冷却
とが簡便化され、また工程の吸入初段階段の圧縮工程前
においてこの回転式除湿機が原料空気の除湿を行うこと
により、それ以降の工程の段階において機器類、配管類
に水分が溜ることを防ぐことができ、衛生的である。
The use of a rotary dehumidifier simplifies heating and cooling of the adsorbent, and the rotary dehumidifier dehumidifies the feed air before the compression process in the first intake stage of the process, thereby reducing the It is hygienic as it prevents moisture from accumulating in equipment and piping during the process.

原料空気の一部を利用して空気圧縮機および昇圧ブロワ
−において生じた空気の圧縮熱を回転式除湿機の吸着剤
の加熱のための熱源とすることができる。また圧縮され
た空気は約150℃程度の高温になることから、原料空
気を減菌することができる。
By using a portion of the raw air, the heat of compression of the air generated in the air compressor and booster blower can be used as a heat source for heating the adsorbent of the rotary dehumidifier. Furthermore, since the compressed air has a high temperature of about 150° C., the raw air can be sterilized.

膨張タービンの発生動力を伝達軸を介して昇圧ブロワ−
の動力源とすることによって、動力を節約することがで
きる。またこの膨張タービンに気体軸受を採用すること
によってプロセスガスの油類等による汚染を防ぐことが
できる。
The power generated by the expansion turbine is transferred to the boost blower via the transmission shaft.
By using this as the power source, power can be saved. Further, by employing a gas bearing in this expansion turbine, it is possible to prevent contamination of the process gas with oils and the like.

膨張タービン入口の圧力または温度条件を変えることに
よって装置を複雑化せずに低温空気が得られる。また膨
張タービンへ導入される通路と膨張タービンから導出管
にバイパス通路を設けることによって、低温空気の温度
を調節することができる。
By varying the pressure or temperature conditions at the expansion turbine inlet, cold air can be obtained without complicating the equipment. Further, by providing a bypass passage in the passage leading to the expansion turbine and the pipe leading out from the expansion turbine, the temperature of the low-temperature air can be adjusted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の低温空気製造方法は原料
空気を二分し、その一部を吸着剤の加熱と冷却とが常時
行える回転式除湿機の除湿部に導入することによって除
湿し、さらに圧縮、断熱膨張させることによって低温空
気を製造することができ、また前肥二分した原料空気の
残部を媒介にして低温空気を製造する工程によって生じ
た空気の圧縮熱を回転式除湿機械の加熱部を加熱するこ
とに利用することができ、さらに膨張タービンの発生動
力を、原料空気の圧縮のための動力とじて利用すること
ができるものなので、動力の低減化と設備の簡略化とが
なされた工程で低温空気の製造を行うことができる。
As explained above, the low-temperature air production method of the present invention dehumidifies raw air by dividing the raw air into two parts, introducing a part of it into the dehumidifying section of a rotary dehumidifier that can constantly heat and cool the adsorbent, and further Low-temperature air can be produced by compression and adiabatic expansion, and the heat of compression of the air generated by the process of producing low-temperature air is transferred to the heating section of the rotary dehumidification machine using the remainder of the pre-fertilized raw air as a medium. In addition, the power generated by the expansion turbine can be used as power for compressing the raw air, reducing power and simplifying equipment. Low-temperature air can be produced in the process.

そして圧縮前のプロセス初段で除湿を行うことにしたの
で、以後のプロセスの機器類、配管類の防錆が可能で、
高価な不透鋼を使用する必要がなく価格域できる。
Since we decided to dehumidify at the first stage of the process before compression, it is possible to prevent rust on equipment and piping used in subsequent processes.
There is no need to use expensive opaque steel, and the price range can be reduced.

また膨張タービンの入口部にて温度の必要な条件を最適
化するよう制御するようにしたので常に原料空気は一定
状態で給気し得、その結果安定した運転が保持出来るば
かりでなく、得ようとする低温空気の湯度に応じて加圧
圧力を変化させることなく低圧で運転可能であって安全
に運転を保持すると共に低入力で運転できる。
In addition, since the necessary temperature conditions at the inlet of the expansion turbine are controlled to be optimized, feed air can always be supplied in a constant state, and as a result, not only stable operation can be maintained, but also the It is possible to operate at a low pressure without changing the pressurizing pressure according to the hot water temperature of the low-temperature air, and the operation can be maintained safely and at low input.

さらにまた、緊急時には即刻、膨張タービンへの空気を
遮断をし、該管部に残存する空気をそれぞれ昇圧カブロ
ワーの入口、および膨張タービン出口に導くようにした
ので、これが膨張タービンの回転を制動することとなり
、安全な停止操作ができる等多くの効果を奏する。
Furthermore, in the event of an emergency, the air to the expansion turbine is immediately shut off, and the air remaining in the tube is guided to the inlet of the booster blower and the outlet of the expansion turbine, which brakes the rotation of the expansion turbine. This has many effects, such as enabling safe stopping operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す工程図で、第2図は回転
式除湿機の概略図である。 !0・・・・・・回転式除湿機、 12・・・・・・加熱再生部、1 32・・・・・・膨張タービン。 11・・・・・・除湿部、 3・・・・・冷却部、
FIG. 1 is a process diagram showing an embodiment of the present invention, and FIG. 2 is a schematic diagram of a rotary dehumidifier. ! 0... Rotating dehumidifier, 12... Heating regeneration section, 1 32... Expansion turbine. 11... Dehumidifying section, 3... Cooling section,

Claims (4)

【特許請求の範囲】[Claims] (1)送気する原料空気をファンにより吸気する過程で
除塵、冷却して低露点とした後、これを二分してその一
部を吸着剤を内蔵し、除湿部、加熱部および冷却部に区
画されかつ回転することによって、順次前記各部が切換
わる回転式除湿機に導入して除湿し、ついで空気圧縮機
と昇圧ブロワーにより昇圧して高温圧縮空気とし、第一
熱交換器、水冷却式第二熱交換器、冷凍機式第三熱交換
器を経て冷却して低温圧縮空気とし、該低温圧縮空気を
膨張タービンに供給して断熱膨張せしめて低温空気を製
造するとともに、該膨張タービンで発生した動力を前記
昇圧ブロワーの駆動動力として回収する一方、前記二分
した原料空気の残部を前記回転式除湿機の冷却部に導入
して、吸着剤を冷却した後、第一熱交換器に導入して前
記高温圧縮空気と熱交換し加熱した後、前記回転式除湿
機の加熱部に導入して、吸着剤を過熱し再生することを
特徴とする低温空気製造方法。
(1) In the process of drawing in the raw air to be supplied by a fan, dust is removed and the air is cooled down to a low dew point.The air is then divided into two parts, a part of which is stored in a built-in adsorbent, and used in the dehumidifying section, heating section, and cooling section. By partitioning and rotating, each part is introduced into a rotary dehumidifier that sequentially switches to dehumidify it, and then is pressurized by an air compressor and booster blower to produce high-temperature compressed air. The low-temperature compressed air is cooled through the second heat exchanger and the refrigerator-type third heat exchanger, and the low-temperature compressed air is supplied to the expansion turbine for adiabatic expansion to produce low-temperature air. The generated power is recovered as driving power for the booster blower, while the remaining part of the divided raw material air is introduced into the cooling section of the rotary dehumidifier to cool the adsorbent, and then introduced into the first heat exchanger. A method for producing low-temperature air, which comprises heating the adsorbent by exchanging heat with the high-temperature compressed air, and then introducing the adsorbent into a heating section of the rotary dehumidifier to superheat and regenerate the adsorbent.
(2)前記膨張タービンに供給する低温圧縮空気を、該
膨張タービンの出口温度を検出して、その一部を該膨張
タービンの入口と出口を連結したバイパス通路に設けら
れた弁によって、バイパス量を調整して、所望温度の低
温空気を得ることを特徴とした請求項(1)記載の低温
空気製造方法。
(2) The low-temperature compressed air supplied to the expansion turbine is supplied to the expansion turbine by detecting the outlet temperature of the expansion turbine and transferring a portion of the low-temperature compressed air to the bypass amount by a valve installed in a bypass passage connecting the inlet and outlet of the expansion turbine. The method for producing low-temperature air according to claim 1, wherein the low-temperature air at a desired temperature is obtained by adjusting the temperature.
(3)前記膨張タービンに供給する低温圧縮空気の温度
を膨張タービンの入口温度を検出して、冷凍機式第三熱
交換機の冷媒量を調整することによって、所望温度の低
温空気を得ることを特徴とした請求項(1)又は(2)
記載のいずれかの低温空気製造方法。
(3) The temperature of the low-temperature compressed air supplied to the expansion turbine is obtained by detecting the inlet temperature of the expansion turbine and adjusting the amount of refrigerant in the refrigerator-type third heat exchanger. Characteristic claim (1) or (2)
Any method of producing low temperature air as described.
(4)緊急時昇圧ブロワーと膨張タービンとの送気途路
で送気を遮断する一方、該遮断通路の気体をバイパス通
路を経て昇圧ブロワーの入口部及び膨張タービンの出口
部にそれぞれ導いて昇圧ブロワーの制動力の増大と膨張
タービンの駆動力とを減少させて、装置を安全に停止さ
せるようにしたことを特徴とした請求項(1)、(2)
及び(3)記載のいづれかに記載の低温空気製造方法。
(4) In an emergency, the air supply is cut off in the air supply route between the booster blower and the expansion turbine, and the gas in the cutoff passage is guided to the inlet of the booster blower and the outlet of the expansion turbine through the bypass passage to raise the pressure. Claims (1) and (2) characterized in that the apparatus is safely stopped by increasing the braking force of the blower and decreasing the driving force of the expansion turbine.
and (3) the method for producing low-temperature air according to any one of the above.
JP1215485A 1989-08-22 1989-08-22 Low temperature air production method Expired - Lifetime JP2695665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215485A JP2695665B2 (en) 1989-08-22 1989-08-22 Low temperature air production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215485A JP2695665B2 (en) 1989-08-22 1989-08-22 Low temperature air production method

Publications (2)

Publication Number Publication Date
JPH0379977A true JPH0379977A (en) 1991-04-04
JP2695665B2 JP2695665B2 (en) 1998-01-14

Family

ID=16673167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215485A Expired - Lifetime JP2695665B2 (en) 1989-08-22 1989-08-22 Low temperature air production method

Country Status (1)

Country Link
JP (1) JP2695665B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017065A1 (en) * 1997-09-29 1999-04-08 Sharp Kabushiki Kaisha Air cycling type air-conditioner
WO2000053982A1 (en) * 1999-03-05 2000-09-14 Daikin Industries, Ltd. Air conditioner
WO2000055550A1 (en) * 1999-03-17 2000-09-21 Daikin Industries, Ltd. Air conditioner
WO2000066953A1 (en) * 1999-04-30 2000-11-09 Daikin Industries, Ltd. Refrigerating device
KR100501808B1 (en) * 2004-06-16 2005-07-20 주식회사 건일엔지니어링 An anchor for a silt protector
WO2009037790A1 (en) * 2007-09-21 2009-03-26 Earthship K.K. Cooling system of warehouse for cooling article
CN104422191A (en) * 2013-09-05 2015-03-18 江苏绿叶锅炉有限公司 Device for using deflating to produce low-temperature air

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301922B1 (en) 1997-09-29 2001-10-16 Sharp Kabushiki Kaisha Air cycling type air-conditioner
WO1999017065A1 (en) * 1997-09-29 1999-04-08 Sharp Kabushiki Kaisha Air cycling type air-conditioner
EP1164339A4 (en) * 1999-03-05 2002-04-10 Daikin Ind Ltd Air conditioner
WO2000053982A1 (en) * 1999-03-05 2000-09-14 Daikin Industries, Ltd. Air conditioner
US6619064B1 (en) 1999-03-05 2003-09-16 Daikin Industries, Ltd. Air conditioning system
EP1164339A1 (en) * 1999-03-05 2001-12-19 Daikin Industries, Ltd. Air conditioner
US6484525B1 (en) * 1999-03-17 2002-11-26 Daikin Industries, Ltd. Air conditioner
EP1178266A1 (en) * 1999-03-17 2002-02-06 Daikin Industries, Ltd. Air conditioner
EP1178266A4 (en) * 1999-03-17 2003-06-04 Daikin Ind Ltd Air conditioner
WO2000055550A1 (en) * 1999-03-17 2000-09-21 Daikin Industries, Ltd. Air conditioner
EP1176372A1 (en) * 1999-04-30 2002-01-30 Daikin Industries, Ltd. Refrigerating device
WO2000066953A1 (en) * 1999-04-30 2000-11-09 Daikin Industries, Ltd. Refrigerating device
EP1176372A4 (en) * 1999-04-30 2003-08-06 Daikin Ind Ltd Refrigerating device
US6629427B1 (en) 1999-04-30 2003-10-07 Daikin Industries, Ltd Refrigerating system
KR100501808B1 (en) * 2004-06-16 2005-07-20 주식회사 건일엔지니어링 An anchor for a silt protector
WO2009037790A1 (en) * 2007-09-21 2009-03-26 Earthship K.K. Cooling system of warehouse for cooling article
CN104422191A (en) * 2013-09-05 2015-03-18 江苏绿叶锅炉有限公司 Device for using deflating to produce low-temperature air

Also Published As

Publication number Publication date
JP2695665B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
KR100943285B1 (en) Hybrid desiccant dehumidification apparatus and threrof control method
US5502975A (en) Air conditioning system
JP6251311B2 (en) Low temperature regeneration desiccant dehumidification system for low dew point drying room
JP2004512465A (en) Method of adjusting a compressor device having a dryer and a compressor device to which the method is applied
CN108758807A (en) The multi-staged air deep dehumidification apparatus of ultra-low dew point environment
JP6485881B2 (en) Dehumidifying system for dry rooms
TW201631284A (en) Adsorption dehumidifier
JP2010510472A (en) Adjusting device for air supply in drying chamber of coating equipment and method for adjusting air supply
JPH1028832A (en) Method and apparatus for drying gas compressed by compressor
KR101528640B1 (en) Controlling Method Of Hybrid Desiccant Dehumidification Apparatus
JP2021504665A (en) Humidity control device and method
CN111457514B (en) Energy-saving constant-temperature humidity control air conditioning system capable of utilizing cooling tower for cooling in winter and temperature control dehumidification method
JPH0379977A (en) Method for producing low-temperature air
JP2008111631A (en) Dehumidifying air conditioner
SE1650994A1 (en) Device for continuous water absorption and an air cooler
JPH11188224A (en) Dry type dehumidifying system
JPS58185990A (en) Dehumidifier for compressor
JP2007093085A (en) Carbon dioxide gas removing device
CN102777983B (en) Dehumidification device of freezing and runner absorbing coupled operation
JP2019039574A (en) Air refrigerant refrigeration unit, air refrigerant refrigeration system and air refrigerant refrigeration method
JP3289155B2 (en) Low-temperature air generation method and apparatus
JP2011094852A (en) Temperature/humidity control device and temperature/humidity control method
JP4207370B2 (en) Air conditioning system
JPH06129719A (en) Dehumidifying device for compressed gas
JPH11304191A (en) Dehumidifier and dehumidifying method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

EXPY Cancellation because of completion of term