JPH06129719A - Dehumidifying device for compressed gas - Google Patents

Dehumidifying device for compressed gas

Info

Publication number
JPH06129719A
JPH06129719A JP4301764A JP30176492A JPH06129719A JP H06129719 A JPH06129719 A JP H06129719A JP 4301764 A JP4301764 A JP 4301764A JP 30176492 A JP30176492 A JP 30176492A JP H06129719 A JPH06129719 A JP H06129719A
Authority
JP
Japan
Prior art keywords
pressure
cooling fan
refrigerant pressure
refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4301764A
Other languages
Japanese (ja)
Inventor
Haruo Fukushige
春生 福重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohtsu Tire and Rubber Co Ltd
Original Assignee
Ohtsu Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohtsu Tire and Rubber Co Ltd filed Critical Ohtsu Tire and Rubber Co Ltd
Priority to JP4301764A priority Critical patent/JPH06129719A/en
Publication of JPH06129719A publication Critical patent/JPH06129719A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans

Abstract

PURPOSE:To eliminate the damage and the like of a driving motor and a pressure switch for a cooling fan and carry out stabale operation throughout an year by a method wherein a pressure sensor, detecting a refrigerant pressure at the downstream of a compressor for a refrigerating cycle, and a control means, controlling the number of rotation of the cooling fan in accordance with the detected refrigerant pressure, are equipped. CONSTITUTION:A compressor 2 is cooled by cooling air from a cooling fan 10 while a refrigerant pressure is detected by a pressure sensor 16 at the downstream of the compressor 2 for a refrigerating cycle. A setter 19 for setting an objective refrigerant pressure is provided and the objective refrigerant pressure, set by the setter 19, is compared with the detected refrigerant pressure of the pressure sensor 16 while a frequency commanding signal is outputted to an inverter device 13 based on PID operation with respect to a pressure difference between both pressures. According to this method, the frequency of AC power, supplied to a driving motor 11 by the inverter device 13, is controlled whereby the variable speed operation of the cooling fan 10 can be effected steplessly within a wide range with a good efficiency and gas can be cooled and compressed well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧縮気体の除湿装置に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a dehumidifier for compressed gas.

【0002】[0002]

【従来の技術】空気圧縮機で作られた圧縮空気は、高温
で多量の水分を含んでいるため、水分を除湿装置で除去
して、圧縮空気の配管系での結露や空気機器への悪影響
を防止する必要がある。除湿装置としては、化学乾燥方
式と冷凍乾燥方式とがあり、冷凍乾燥方式では冷媒圧縮
機、凝縮器、蒸発器等により、冷凍サイクルが構成され
ると共に、蒸発器が、熱交換器に備えられ、熱交換器内
に供給された高温の圧縮空気が蒸発器により冷却され
て、圧縮空気中の水分が除去される。
2. Description of the Related Art Compressed air produced by an air compressor contains a large amount of moisture at high temperature. Therefore, the moisture is removed by a dehumidifier, which causes dew condensation in the piping system of the compressed air and adverse effects on air equipment. Need to be prevented. As the dehumidifying device, there are a chemical drying system and a freeze drying system. In the freeze drying system, a refrigeration cycle is constituted by a refrigerant compressor, a condenser, an evaporator, etc., and an evaporator is provided in a heat exchanger. The high temperature compressed air supplied into the heat exchanger is cooled by the evaporator, and the moisture in the compressed air is removed.

【0003】又、上記除湿装置では、凝縮器で冷媒を良
好に冷却凝縮するために、凝縮器に冷却風を送る冷却フ
ァンが備えられると共に、冷凍サイクルの凝縮器よりも
下流箇所に圧力スイッチが備えられている。そして、上
記下流箇所での冷媒圧力が設定値以上になると、圧力ス
イッチがオンとなって、冷却ファンが運転され、冷媒圧
力が設定値以下になると、圧力スイッチがオフとなっ
て、冷却ファンが停止される。
Further, in the above dehumidifying device, in order to cool and condense the refrigerant well in the condenser, a cooling fan that sends cooling air to the condenser is provided, and a pressure switch is provided at a location downstream of the condenser in the refrigeration cycle. It is equipped. Then, when the refrigerant pressure at the downstream portion becomes equal to or higher than the set value, the pressure switch is turned on, the cooling fan is operated, and when the refrigerant pressure becomes equal to or lower than the set value, the pressure switch is turned off and the cooling fan is turned on. Be stopped.

【0004】[0004]

【発明が解決しようとする課題】ところで、夏期等、気
温が高い時には、凝縮器で冷媒を良好に冷却凝縮するた
めに、冷却ファンを頻繁に回転駆動する必要があり、こ
のため、冷却ファンの運転・停止と、圧力スイッチのオ
ン・オフとが頻繁に繰り返されることになる。ところ
で、冷却ファンの駆動モータには、起動時に、大きな起
動電流が流れるが、上記のように、冷却ファンの運転・
停止が頻繁に繰り返されると、大きな起動電流が冷却フ
ァンの駆動モータに頻繁に流れるため、駆動モータが損
傷するという問題があった。
By the way, when the temperature is high such as in summer, the cooling fan must be frequently driven to rotate in order to cool and condense the refrigerant well by the condenser. The operation / stop and the pressure switch on / off are frequently repeated. By the way, a large starting current flows through the drive motor of the cooling fan at the time of startup.
When the stop is frequently repeated, a large starting current frequently flows to the drive motor of the cooling fan, which causes a problem that the drive motor is damaged.

【0005】又、圧力スイッチのオン・オフが頻繁に繰
り返されることにより、圧力スイッチの接点が損傷する
という問題もあった。上記のように、従来の冷凍乾燥方
式の除湿装置では、夏期等、気温が高い時には、冷却フ
ァンの駆動モータや圧力スイッチの損傷等の問題があ
り、このため、年間を通じて、安定した運転ができない
というのが実情であった。本発明は、上記問題を解決で
きる圧縮気体の除湿装置を提供することを目的とする。
Further, there has been a problem that the contacts of the pressure switch are damaged due to the frequent on / off of the pressure switch. As described above, the conventional freeze-drying dehumidifier has a problem such as damage to the drive motor of the cooling fan and the pressure switch when the temperature is high, such as in the summer, so stable operation cannot be performed throughout the year. That was the reality. An object of the present invention is to provide a dehumidifier for compressed gas that can solve the above problems.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の特徴とするところは、冷媒圧縮機、凝縮
器、蒸発器等により、冷凍サイクルが構成され、凝縮器
に冷却風を送る冷却ファンが備えられると共に、蒸発器
が熱交換器に備えられ、熱交換器内に供給された高温の
圧縮気体が蒸発器により冷却されて、圧縮気体中の水分
が除去されるものにおいて、冷凍サイクルの凝縮器より
も下流で冷媒圧力を検出する圧力センサーと、検出され
た冷媒圧力に応じて冷却ファンの回転数を制御する制御
手段が備えられた点にある。尚、冷却ファンの駆動モー
タに交流電力を給電するインバータ装置が備えられ、制
御手段が、インバータ装置を制御して、上記交流電力を
周波数制御することもある。
To achieve the above object, the present invention is characterized in that a refrigerating cycle is constituted by a refrigerant compressor, a condenser, an evaporator, etc., and cooling air is supplied to the condenser. A cooling fan for sending is provided, and an evaporator is provided in the heat exchanger, and the high temperature compressed gas supplied into the heat exchanger is cooled by the evaporator to remove water in the compressed gas. The point is that a pressure sensor that detects the refrigerant pressure is provided downstream of the condenser of the refrigeration cycle, and a control unit that controls the rotation speed of the cooling fan in accordance with the detected refrigerant pressure. In some cases, an inverter device for supplying AC power to the drive motor of the cooling fan is provided, and the control means controls the inverter device to frequency control the AC power.

【0007】[0007]

【作用】冷媒圧縮機から送り出された高温高圧の冷媒
は、凝縮器で、冷却凝縮された後、蒸発器で、膨張蒸発
して、熱交換器内で冷却作用を行う。熱交換器では、高
温の圧縮気体が、蒸発器により冷却され、これにより、
圧縮気体中に含まれていた水分が蒸発器の表面等に結露
して、圧縮気体から分離、除去される。
The high-temperature and high-pressure refrigerant sent from the refrigerant compressor is cooled and condensed in the condenser, expanded and evaporated in the evaporator, and cools in the heat exchanger. In the heat exchanger, the hot compressed gas is cooled by the evaporator, which
Moisture contained in the compressed gas is condensed on the surface of the evaporator or the like, and separated and removed from the compressed gas.

【0008】上記の際において、凝縮器は、冷却ファン
からの冷却風を受けて、冷却されると共に、冷凍サイク
ルの凝縮器の下流では、圧力センサーにより、冷媒圧力
が検出される。そして、検出された冷媒圧力に応じて、
冷却ファンの回転数が制御される。即ち、検出冷媒圧力
が高くなる程、冷却ファンの回転数が増大され、又、検
出冷媒圧力が低くなる程、冷却ファンの回転数が減少せ
しめられる。
In the above case, the condenser is cooled by receiving the cooling air from the cooling fan, and the pressure of the refrigerant is detected by the pressure sensor downstream of the condenser of the refrigeration cycle. Then, depending on the detected refrigerant pressure,
The rotation speed of the cooling fan is controlled. That is, the higher the detected refrigerant pressure, the higher the rotational speed of the cooling fan, and the lower the detected refrigerant pressure, the lower the rotational speed of the cooling fan.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づき説明
すると、図1は圧縮空気の冷凍方式の除湿装置を示し、
冷媒圧縮機1、凝縮器2、ドライヤー3、ストレーナー
4、キャピラリチューブから成る蒸発器5、ストレーナ
ー6、アキュムレータ7がループ状に接続されると共
に、冷媒圧縮機1の冷媒出口側管路とアキュムレータ7
とが、キャパシティーコントロールバルブ8を介して接
続されて、冷凍サイクルが構成されている。尚、キャパ
シティーコントロールバルブ8は、冷媒圧縮機1の入口
側冷媒圧力と出口側冷媒圧力を一定に維持するように、
制御される。又、冷媒としては、例えば、フロンガスが
使用される。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a dehumidifier of a compressed air refrigeration system.
The refrigerant compressor 1, the condenser 2, the dryer 3, the strainer 4, the evaporator 5 composed of a capillary tube, the strainer 6, and the accumulator 7 are connected in a loop, and the refrigerant outlet side pipe line of the refrigerant compressor 1 and the accumulator 7 are connected.
And are connected via a capacity control valve 8 to form a refrigeration cycle. The capacity control valve 8 keeps the inlet side refrigerant pressure and the outlet side refrigerant pressure of the refrigerant compressor 1 constant.
Controlled. Further, as the refrigerant, for example, CFC gas is used.

【0010】10は凝縮器2に冷却風を送る冷却ファン
で、駆動モータ11により、回転駆動される。13はイ
ンバータ装置で、商用交流電源14からの交流を、整流
した後、スイッチングによって、所望周波数の3相交流
に変換して、駆動モータ11に給電し、周波数の大小に
より、冷却ファン10の回転数を無段階に制御する。例
えば、周波数20Hzで冷却ファン10の回転数が60
0c/m、周波数60Hzで冷却ファン10の回転数が
1800c/mとされる。16は圧力センサーで、冷凍
サイクルの凝縮器2の直後で冷媒圧力を検出するもの
で、圧力変化に応じて、電気信号(4mA〜20mA)
を出力する。
A cooling fan 10 sends cooling air to the condenser 2 and is driven to rotate by a drive motor 11. An inverter device 13 rectifies the alternating current from the commercial alternating-current power supply 14 and then converts the alternating current into a three-phase alternating current of a desired frequency to supply power to the drive motor 11 to rotate the cooling fan 10 depending on the magnitude of the frequency. Control the number steplessly. For example, at a frequency of 20 Hz, the rotation speed of the cooling fan 10 is 60
The rotation speed of the cooling fan 10 is 1800 c / m at 0 c / m and a frequency of 60 Hz. Reference numeral 16 is a pressure sensor, which detects the refrigerant pressure immediately after the condenser 2 of the refrigeration cycle, and an electric signal (4 mA to 20 mA) according to the pressure change.
Is output.

【0011】18はインバータ装置13の調節器で、目
標冷媒圧力を設定するための設定器19を有すると共
に、設定器19による目標冷媒圧力と圧力センサー16
による検出冷媒圧力とを比較して、両者の圧力偏差に対
するPID動作に基づき、周波数指令信号(直流(1〜
5V))をインバータ装置13に出力する。21は熱交
換器で、空気圧縮機からの高温の圧縮空気を予冷する予
冷室22と、蒸発器5が備えられ且つ予冷された圧縮空
気を冷却する冷却室23と、冷却室23と連通する貯留
室24と、予冷室22に内有され且つ貯留室24からの
圧縮空気が加温される加温室25とから成る。
Reference numeral 18 denotes an adjuster of the inverter device 13, which has a setting device 19 for setting a target refrigerant pressure, and the target refrigerant pressure and pressure sensor 16 set by the setting device 19.
The detected refrigerant pressure is compared to the frequency command signal (DC (1 to 1
5V)) is output to the inverter device 13. Reference numeral 21 denotes a heat exchanger, which communicates with a pre-cooling chamber 22 that pre-cools the high-temperature compressed air from the air compressor, a cooling chamber 23 that includes the evaporator 5 and that cools the pre-cooled compressed air, and a cooling chamber 23. It comprises a storage chamber 24 and a warming chamber 25 which is contained in the pre-cooling chamber 22 and in which the compressed air from the storage chamber 24 is heated.

【0012】27はオートドレントラップで、冷却室2
3内に残留した水分や、油分等の不純物を自動的に外部
に排出するものである。上記のように構成した実施例に
よれば、冷媒圧縮機1から送り出された高温高圧の冷媒
の一部は、キャパシティーコントロールバルブ8を介し
て、アキュムレータ7に送られ、残りは凝縮器2で、冷
却凝縮される。冷却凝縮された冷媒は、ドライヤー3、
ストレーナ4を介して、蒸発器5に送られ、蒸発器5
で、キャピラリチューブによる流量制限作用を受けつ
つ、膨張蒸発して、熱交換器21内で冷却作用を行った
後、ストレーナー6、アキュムレータ7を介して、冷媒
圧縮機1に戻る。
Reference numeral 27 denotes an auto drain trap, which is a cooling chamber 2
Water and impurities such as oil remaining inside 3 are automatically discharged to the outside. According to the embodiment configured as described above, a part of the high-temperature and high-pressure refrigerant sent from the refrigerant compressor 1 is sent to the accumulator 7 via the capacity control valve 8 and the rest is taken to the condenser 2. , Cooled and condensed. The refrigerant condensed and cooled is dried by the dryer 3,
It is sent to the evaporator 5 via the strainer 4, and the evaporator 5
Then, after undergoing expansion and evaporation while performing a flow rate limiting action by the capillary tube and performing a cooling action in the heat exchanger 21, it returns to the refrigerant compressor 1 via the strainer 6 and the accumulator 7.

【0013】熱交換器21では、空気圧縮機から送られ
た高温の圧縮空気が、予冷室22で、冷却された圧縮空
気との間で熱交換を行って、予冷された後、冷却室23
で蒸発器5により最終的に約10℃まで急激に冷却され
る。これにより、圧縮空気中に含まれていた水分が蒸発
器5の表面等に結露して、圧縮空気から分離、除去され
る。水分が除去された圧縮空気は、貯留室24を介し
て、加温室25に入り、予冷室22を通過する高温の圧
縮空気との間で熱交換を行って、加温され、相対湿度の
極めて低い乾燥空気として、外部に供給される。
In the heat exchanger 21, the high temperature compressed air sent from the air compressor exchanges heat with the cooled compressed air in the precooling chamber 22, and after being precooled, it is cooled in the cooling chamber 23.
Finally, it is rapidly cooled to about 10 ° C. by the evaporator 5. As a result, the water contained in the compressed air is condensed on the surface of the evaporator 5 and the like, and is separated and removed from the compressed air. The compressed air from which the water has been removed enters the warming chamber 25 via the storage chamber 24, exchanges heat with the high-temperature compressed air passing through the precooling chamber 22, is heated, and has extremely high relative humidity. Externally supplied as low dry air.

【0014】上記の際において、凝縮器2は、冷却ファ
ン10からの冷却風を受けて、冷却されると共に、冷凍
サイクルの凝縮器2の下流では、圧力センサー16によ
り、冷媒圧力が検出される。そして、調節器18によ
り、設定器19による目標冷媒圧力と圧力センサー16
による検出冷媒圧力とが比較されて、両者の圧力偏差に
対するPID動作に基づき、周波数指令信号をインバー
タ装置13に出力する。
In the above case, the condenser 2 is cooled by receiving the cooling air from the cooling fan 10 and the refrigerant pressure is detected by the pressure sensor 16 downstream of the condenser 2 in the refrigeration cycle. . Then, the controller 18 controls the target refrigerant pressure by the setter 19 and the pressure sensor 16
Is compared with the detected refrigerant pressure and the frequency command signal is output to the inverter device 13 based on the PID operation for the pressure deviation between the two.

【0015】これにより、インバータ装置13が駆動モ
ータ11に供給する交流電力が周波数制御されて、冷却
ファン10が,広範囲に効率良く無段階で可変速運転さ
れる。即ち、検出冷媒圧力が目標冷媒圧力よりも大きく
なる程、周波数が増大されて、冷却ファン10の回転数
が増大され、又、検出冷媒圧力が目標冷媒圧力よりも小
さくなる程、周波数が減少されて、冷却ファン10の回
転数が減少せしめられる。上記制御により、凝縮器2
で、冷媒の良好な冷却凝縮が行われる。尚、実施例は、
本発明を圧縮空気の除湿装置に適用したものであるが、
本発明は、圧縮空気以外の圧縮気体の除湿装置に適用可
能である。
As a result, the AC power supplied from the inverter device 13 to the drive motor 11 is frequency-controlled, and the cooling fan 10 is operated in a wide range efficiently and steplessly at a variable speed. That is, as the detected refrigerant pressure becomes higher than the target refrigerant pressure, the frequency is increased and the rotation speed of the cooling fan 10 is increased, and as the detected refrigerant pressure becomes lower than the target refrigerant pressure, the frequency is decreased. As a result, the rotation speed of the cooling fan 10 is reduced. By the above control, the condenser 2
Thus, good cooling and condensation of the refrigerant is performed. The example is
Although the present invention is applied to a dehumidifier for compressed air,
INDUSTRIAL APPLICABILITY The present invention can be applied to a dehumidifying device for compressed gas other than compressed air.

【0016】[0016]

【発明の効果】以上詳述したように、本発明によれば、
冷凍サイクルの凝縮器よりも下流で冷媒圧力を検出する
圧力センサーと、検出された冷媒圧力に応じて冷却ファ
ンの回転数を制御する制御手段が備えられて、冷却ファ
ンが常時回転駆動されるので、冷却ファンの駆動モータ
に、頻繁に、大きな起動電流が流れて、駆動モータ等が
損傷したりする惧れはなく、年間を通じて除湿装置の安
定した運転ができると共に、凝縮器を常時良好に冷却で
きる。又、請求項2によれば、冷却ファンを、広範囲に
効率良く無段階で可変速運転でき、凝縮器を更に良好に
冷却できる。
As described in detail above, according to the present invention,
Since a pressure sensor that detects the refrigerant pressure downstream of the condenser of the refrigeration cycle and a control unit that controls the rotation speed of the cooling fan according to the detected refrigerant pressure are provided, the cooling fan is constantly driven to rotate. There is no fear that a large starting current will frequently flow to the drive motor of the cooling fan and damage the drive motor, etc., allowing stable operation of the dehumidifier throughout the year and cooling the condenser well at all times. it can. According to the second aspect, the cooling fan can be efficiently operated over a wide range in a stepless manner at a variable speed, and the condenser can be cooled even better.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…冷媒圧縮機、2…凝縮器、5…蒸発器、10…冷却
ファン、11…駆動モータ、13…インバータ装置、1
6…圧力センサー、18…調節器、21…熱交換器。
1 ... Refrigerant compressor, 2 ... Condenser, 5 ... Evaporator, 10 ... Cooling fan, 11 ... Drive motor, 13 ... Inverter device, 1
6 ... Pressure sensor, 18 ... Regulator, 21 ... Heat exchanger.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷媒圧縮機、凝縮器、蒸発器等により、冷
凍サイクルが構成され、凝縮器に冷却風を送る冷却ファ
ンが備えられると共に、蒸発器が熱交換器に備えられ、
熱交換器内に供給された高温の圧縮気体が蒸発器により
冷却されて、圧縮気体中の水分が除去されるものにおい
て、 冷凍サイクルの凝縮器よりも下流で冷媒圧力を検出する
圧力センサーと、検出された冷媒圧力に応じて冷却ファ
ンの回転数を制御する制御手段が備えられたことを特徴
とする圧縮気体の除湿装置。
1. A refrigeration cycle is constituted by a refrigerant compressor, a condenser, an evaporator, etc., a cooling fan for sending cooling air to the condenser is provided, and an evaporator is provided for a heat exchanger,
A high-pressure compressed gas supplied into the heat exchanger is cooled by an evaporator to remove moisture in the compressed gas, and a pressure sensor that detects the refrigerant pressure downstream of the condenser of the refrigeration cycle, A dehumidifying device for compressed gas, comprising: a control unit that controls the rotation speed of a cooling fan according to the detected refrigerant pressure.
【請求項2】冷却ファンの駆動モータに交流電力を給電
するインバータ装置が備えられ、制御手段が、インバー
タ装置を制御して、上記交流電力を周波数制御する請求
項1記載の圧縮空気の除湿装置。
2. A dehumidification device for compressed air according to claim 1, further comprising an inverter device for supplying AC power to a drive motor of the cooling fan, and the control means controls the inverter device to frequency control the AC power. .
JP4301764A 1992-10-14 1992-10-14 Dehumidifying device for compressed gas Pending JPH06129719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4301764A JPH06129719A (en) 1992-10-14 1992-10-14 Dehumidifying device for compressed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4301764A JPH06129719A (en) 1992-10-14 1992-10-14 Dehumidifying device for compressed gas

Publications (1)

Publication Number Publication Date
JPH06129719A true JPH06129719A (en) 1994-05-13

Family

ID=17900893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4301764A Pending JPH06129719A (en) 1992-10-14 1992-10-14 Dehumidifying device for compressed gas

Country Status (1)

Country Link
JP (1) JPH06129719A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338256B1 (en) * 1999-08-12 2002-05-30 박흥석 Air dryer and drying method
JP2008290017A (en) * 2007-05-25 2008-12-04 Orion Mach Co Ltd Compressed air dehumidifier
JP2010007939A (en) * 2008-06-26 2010-01-14 Orion Mach Co Ltd Condenser and compressed air dehumidifier equipped with the same
JP2010091173A (en) * 2008-10-07 2010-04-22 Welcon:Kk Air conditioner
KR20180079035A (en) * 2016-12-30 2018-07-10 (주)이에스 Constant temperature and humidity air conditioning system
CN115414766A (en) * 2022-09-01 2022-12-02 南通超曼滤清器有限公司 Gas dryer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338256B1 (en) * 1999-08-12 2002-05-30 박흥석 Air dryer and drying method
JP2008290017A (en) * 2007-05-25 2008-12-04 Orion Mach Co Ltd Compressed air dehumidifier
JP2010007939A (en) * 2008-06-26 2010-01-14 Orion Mach Co Ltd Condenser and compressed air dehumidifier equipped with the same
JP2010091173A (en) * 2008-10-07 2010-04-22 Welcon:Kk Air conditioner
KR20180079035A (en) * 2016-12-30 2018-07-10 (주)이에스 Constant temperature and humidity air conditioning system
CN115414766A (en) * 2022-09-01 2022-12-02 南通超曼滤清器有限公司 Gas dryer

Similar Documents

Publication Publication Date Title
CN107923664B (en) Refrigeration system
EP1022521B1 (en) Air cycling type air-conditioner
US10619332B2 (en) Method and system for obtaining water from air
JP2002516168A (en) Cooling drying method and apparatus
KR20110045436A (en) Energy-efficient refrigerated air dryer dehumidify device
EP1293243B1 (en) Control system for compressed gas refrigeration dryers
JP3823444B2 (en) Air conditioner
EP0912865A1 (en) Make-up air handler with direct expansion dehumidification
JPH06129719A (en) Dehumidifying device for compressed gas
JP2004353916A (en) Temperature controlling method and air conditioner
KR20150114232A (en) low dew point cool wind dryer
JPH07198235A (en) Air conditioner
JP2695665B2 (en) Low temperature air production method
JPH05256550A (en) Temperature and humidity controlling device for refrigerator
JP3096673B2 (en) Cold air dryer
JPS6146368Y2 (en)
JP2003326126A (en) Compressed air dehumidifier
KR102538185B1 (en) cooling dehumidifier
KR100187222B1 (en) Deodorizing device of airconditioner and its control method
KR101871378B1 (en) Air water system
JP2019174087A (en) Environment forming device and environment forming method
JPH05256497A (en) Controlling method for dry operation of air conditioner
US20230366601A1 (en) Air conditioner and operation method thereof
JPH0349015B2 (en)
JPH06201206A (en) Method and apparatus for generating low temperature air