JPH0379859B2 - - Google Patents

Info

Publication number
JPH0379859B2
JPH0379859B2 JP17459884A JP17459884A JPH0379859B2 JP H0379859 B2 JPH0379859 B2 JP H0379859B2 JP 17459884 A JP17459884 A JP 17459884A JP 17459884 A JP17459884 A JP 17459884A JP H0379859 B2 JPH0379859 B2 JP H0379859B2
Authority
JP
Japan
Prior art keywords
etching
fine particles
aluminum foil
foil
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17459884A
Other languages
Japanese (ja)
Other versions
JPS6151818A (en
Inventor
Tatsuhiko Ejima
Takao Suzuki
Eizo Isoyama
Shozo Umetsu
Tadao Fujihira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP17459884A priority Critical patent/JPS6151818A/en
Publication of JPS6151818A publication Critical patent/JPS6151818A/en
Publication of JPH0379859B2 publication Critical patent/JPH0379859B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は電解コンデンサ用アルミニウム電極
材の製造方法に関する。 従来の技術 電解コンデンサ用アルミニウム電極材として用
いられるアルミニウム箔は、可及的大きな表面積
を有して単位体積当りの静電容量の大きいもので
あることが要請される。このため、一般的に電気
化学的あるいは化学的なエツチング処理を施して
アルミニウム箔の実効表面積を拡大することが行
われており、更にこの拡面率の可及的増大を目的
として、エツチング孔をより多く、深く、太くす
ることに関して材料の改善、エツチング方法の改
善、箔の製造工程に関する研究等種々の研究がな
されている。 発明が解決しようとする問題点 ところが、実際上、従来既知のエツチング技術
においては、概してエツチング孔の発生部位が不
均一であり、またエツチング孔を多くしようとす
るとエツチング孔どうしが連通して粗大孔となつ
たり、アルミニウム箔表面の溶解が同時に進行し
て箔の機械的強度が損われるのみならず、エツチ
ング孔が深いものとならないというような欠点を
派生するため、結果において充分に期待されるよ
うな拡面率の増大効果を得ることが難しいという
問題点があつた。特に、エツチング孔の発生部位
の不均一性に関しては、アルミニウム箔中に含ま
れる不純物原子の偏析、金属間化合物、結晶粒塊
の存在等によつて、エツチング時に不均一なエツ
チングピツトが発生するため、これを避けること
は困難なものであつた。 この発明は、かかる問題点を解決し、アルミニ
ウム箔に所要の機械的強度を保有せしめつつ、多
数の深いエツチング孔を均一に形成することを可
能として、拡面率すなわち静電容量に優れたもの
となしうる電解コンデンサ用アルミニウム電極材
を得ることを目的としてなされたものである。 問題点を解決するための手段 この目的においてこの発明は、アルミニウム箔
の表面に、金属若しくは非金属微粒子を混入した
被覆材を塗布した後、前記微粒子を除去すること
により、箔表面に電解エツチング液に対して耐性
を有し、かつエツチング核を形成すべき多数の微
細孔の形成された耐性被膜を一体的に付着形成す
ることを特徴とするものであり、これにより材料
中の金属間化合物、結晶粒塊等の存在に関係な
く、エツチング孔の発生部位を予め決定してエツ
チング処理時にアルミニウム箔の微細孔対応部分
のみの侵食を可能とし、もつて多数の深いエツチ
ング孔を均一に形成せしめうる電極材の製造に成
功したものである。 前記被覆材に混入される微粒子は、金属微粒子
若しくは非金属微粒子のいずれであつても良く、
あるいはこれらの混合物であつても良い。金属微
粒子を構成する金属元素としては、例えばFe,
Co,Ag,Au,V,Mn,Cd,In,Sn,Sb,Pb,
Bi等があげうる。一方、非金属微粒子としては
C微粒子等をあげうるが、元素性微粒子に限ら
ず、例えばアクリル、ポリエステル、エポキシ各
樹脂等のような有機物である水溶性の高分子材料
等の微粒子であつても良い。かかる微粒子は、そ
の後の処理により溶解除去されて、エツチング核
形成用の微細孔を形造るものであり、従つて微粒
子の配列、大きさ、数量等が微細孔すなわちエツ
チング孔の配列、大きさ、数量ひいてはアルミニ
ウム箔の最終的な静電容量、機械的強度等に直接
的に影響する。この観点から、微粒子の被覆材に
対する配合割合を、容積比で5〜80%程度の範囲
とするのが望ましく、特に30〜50%が好適範囲で
あり、また微粒子の大きさとしては直径0.01μm
〜数μm程度の範囲で選択可能であり、特に1μm
程度とするのが好適である。そして、エツチング
孔の均一発生をもたらすためには、かかる微粒子
を被覆材中に均一に分散せしめることが必要であ
る。尚、被覆材の一例としては、市販の半導体フ
オトマスク用レジスト剤等をあげうる。 次に、製造工程について説明すれば、上記多数
の微粒子を含有した被覆材をまず例えば純度
99.90〜99.99%のアルミニウム箔の表面に薄く塗
布する。被覆材の被覆厚さは、全ての微粒子が被
覆材中に完全に埋没状態とならない程度とするこ
とが必要であり、微粒子の大きさに応じて決定す
べきものである。これは、次工程における微粒子
の除去処理時に、微粒子を溶解液等に直接接触さ
せるためである。かかる要求を充足する被覆方法
として、ロールコート法あるいはスピンコート法
等を採用し得る。 次に、乾燥後前記微粒子の除去処理を施す。こ
の除去処理は最も一般的には、被覆材の塗布面を
溶解液に接触させて溶解除去することにより行わ
れる。溶解液としては、微粒子を溶解除去し得る
ものであれば足り、微粒子との組合わせにおいて
酸、アルカリ、あるいは水等を適宜使用し得る。
溶解除去の程度は必ずしも微粒子を完全に消滅さ
せる必要はなく、エツチング処理の際にエツチン
グの開始点となり得る程度のものであれば、一部
溶解状態であつても良い。この微粒子の溶解除去
処理を経て、アルミニウム箔表面への多数のエツ
チング核形成用の微細孔を有する被膜の付着形成
が完了する。かかる被膜は今までの説明から明ら
かなように、エツチング時に微細孔対応部分を除
いてアルミニウム箔表面の侵食を防止するための
ものであり、従つてその性質として耐性を有する
ものであること、即ち、非溶性かつ耐食性のもの
であることを条件とする。 こうして製造された本発明に係る電極材には、
その後酸またはアルカリ浴中で電気化学的あるい
は化学的なエツチング処理が施される。エツチン
グ処理に用いるエツチング液は、特に限定される
ものではなく、既知のような2〜15%塩酸水溶
液、あるいは該溶液に更にクロム酸、硫酸、蓚酸
等の酸を添加した水溶液等を任意に採択使用しう
る。他のエツチング処理条件、即ち、液温、電流
密度、エツチング時間等もすべて従来既知のエツ
チング処理条件をそのまま採用しうる。このエツ
チング処理により、アルミニウム箔の耐性被膜付
着部の表面溶解を抑制しつつ、微細孔対応部分の
みを集中的に侵食しうる結果、深くて太いエツチ
ング孔の形成が可能となる。 エツチング処理を終えたアルミニウム箔には、
続いて、例えば数%Na、OH溶液等のアルカリ
液等に浸漬することにより箔表面に付着している
耐性被膜の除去処理が施される。 発明の効果 以上説明したようにこの発明によれば、金属若
しくは非金属微粒子を混入した被覆材をアルミニ
ウム箔表面に塗布したのち、前記微粒子を除去す
ることにより、アルミニウム箔表面に多数の微細
孔を均一に有する耐性被膜を一体的に付着形成せ
しめたアルミニウム電極材を製造することができ
る結果、該電極材にその後に施すエツチング処理
において、アルミニウム箔の耐性被膜付着部の表
面溶解を該被膜層によつて抑制しながら、微細孔
対応部分のみをエツチング核として集中的に侵食
せしめることが可能となる。従つて、その結果、
アルミニウム箔に多数の深くて太いエツチング孔
を金属間化合物、結晶粒塊等の存在に関係なく均
一に形成することができ、機械的強度を損うこと
なく、拡面率の著しく高い、即ち静電容量の極め
て大きい電気的特性に優れた理想的なアルミニウ
ム電極材の提供が可能となるものである。 実施例 次にこの発明の実施例を比較例との対比におい
て示す。 平均粒径1μmのCu微粒子とNaCl微粒子を、容
積比40%の配合割合でそれぞれ重クロム酸/親水
性ポリマー液を主成分とする市販のフオトレジス
ト剤に混入し、充分撹拌後厚さ100μm、純度
99.99%の各焼鈍アルミニウム箔の表面にロール
コート法によりそれぞれ薄く塗布した。 その後、Cu微粒子を含むレジストを塗布した
アルミニウム箔(試料No.1)については5%HCl
水溶液中に約30秒浸漬することにより、一方
NaCl微粒子を含むレジストを塗布したアルミニ
ウム箔(試料No.2)については純水にて洗浄する
ことにより、Cu,NaOH各微粒子の溶解除去処
理を行い、アルミニウム箔表面に多数の微細孔を
有する耐性被膜を形成せしめた本発明に係る電極
材を得た。 次いで水洗、乾燥後各電極材に、エツチング
液:5wt%塩酸水溶液、温度80℃、直流電流密
度:20A/dm2、エツチング時間:2分の条件の
もので前段電解エツチングを施し、続いて同一液
組成、同一温度、直流電流密度:5A/dm2、エ
ツチング時間10分の条件のもとで後段電解エツチ
ングを施した後、25℃、5wt%水酸化ナトリウム
水溶液に2秒浸漬して被膜除去処理を行つた。 上記により得られたエツチング箔を硼酸浴中で
380Vに化成したのち、該箔の静電容量を測定し
た。一方、この結果を、前記と同一アルミニウム
材を使用しかつ同一のエツチング条件でエツチン
グのみを施したアルミニウム箔(比較例)のそれ
と比較した。 結果は下表のとうりであつた。
INDUSTRIAL APPLICATION FIELD This invention relates to a method of manufacturing an aluminum electrode material for an electrolytic capacitor. BACKGROUND ART Aluminum foil used as an aluminum electrode material for electrolytic capacitors is required to have as large a surface area as possible and a large capacitance per unit volume. For this reason, the effective surface area of the aluminum foil is generally expanded by electrochemical or chemical etching treatment, and etching holes are also added to increase the area expansion ratio as much as possible. In order to make the foil thicker, deeper, and thicker, various studies are being conducted, including improving materials, improving etching methods, and researching the manufacturing process of foil. Problems to be Solved by the Invention However, in practice, in the conventionally known etching techniques, the locations where etching holes are generated are generally uneven, and when attempting to increase the number of etching holes, the etching holes communicate with each other, resulting in coarse holes. If this occurs, the surface of the aluminum foil will melt at the same time, which will not only impair the mechanical strength of the foil, but also cause defects such as the etching holes not being deep, so the results are not as expected. There was a problem in that it was difficult to obtain the effect of increasing the area expansion ratio. In particular, regarding the non-uniformity of the location where etching holes occur, uneven etching pits are generated during etching due to the segregation of impurity atoms contained in the aluminum foil, the presence of intermetallic compounds, crystal grain agglomerates, etc. This was difficult to avoid. The present invention solves these problems and makes it possible to uniformly form a large number of deep etched holes while maintaining the necessary mechanical strength in aluminum foil, and has an excellent surface area ratio, that is, capacitance. The purpose of this work was to obtain an aluminum electrode material for electrolytic capacitors that could be used as an aluminum electrode material for electrolytic capacitors. Means for Solving the Problems For this purpose, the present invention applies a coating material mixed with metal or non-metal fine particles to the surface of an aluminum foil, and then removes the fine particles, thereby applying an electrolytic etching solution to the foil surface. It is characterized by integrally depositing a resistant film with a large number of micropores that are resistant to etching nuclei and that form etching nuclei, thereby eliminating intermetallic compounds in the material, Regardless of the presence of crystal grain agglomerates, etc., it is possible to predetermine the location where etching holes will occur and erode only the portion of the aluminum foil that corresponds to the micropores during the etching process, thereby making it possible to uniformly form a large number of deep etching holes. The electrode material was successfully manufactured. The fine particles mixed into the coating material may be either metal fine particles or non-metal fine particles,
Alternatively, it may be a mixture of these. Examples of the metal elements constituting the metal fine particles include Fe,
Co, Ag, Au, V, Mn, Cd, In, Sn, Sb, Pb,
Bi etc. can be given. On the other hand, non-metallic fine particles include C fine particles, but are not limited to elemental fine particles, and can also be fine particles of organic water-soluble polymeric materials such as acrylic, polyester, and epoxy resins. good. These fine particles are dissolved and removed by subsequent processing to form fine pores for forming etching nuclei. Therefore, the arrangement, size, quantity, etc. of the fine particles are different from those of the fine pores, that is, the etching holes. The quantity directly affects the final capacitance, mechanical strength, etc. of the aluminum foil. From this point of view, it is desirable that the blending ratio of fine particles to the coating material be in the range of about 5 to 80% by volume, with a particularly preferable range of 30 to 50%, and the size of the fine particles is 0.01 μm in diameter.
Can be selected in the range of ~ several μm, especially 1 μm
It is preferable to set it as approximately. In order to uniformly generate etching holes, it is necessary to uniformly disperse such fine particles in the coating material. An example of the coating material is a commercially available resist agent for semiconductor photomasks. Next, to explain the manufacturing process, firstly, the coating material containing the above-mentioned large number of fine particles is
Apply a thin layer to the surface of 99.90-99.99% aluminum foil. The coating thickness of the coating material needs to be such that all the particles are not completely buried in the coating material, and should be determined depending on the size of the particles. This is because the fine particles are brought into direct contact with the solution etc. during the fine particle removal treatment in the next step. As a coating method that satisfies such requirements, a roll coating method, a spin coating method, or the like can be adopted. Next, after drying, the fine particles are removed. This removal treatment is most commonly carried out by bringing the coated surface of the coating material into contact with a dissolving solution to dissolve and remove it. As the dissolving liquid, it is sufficient as long as it can dissolve and remove the fine particles, and acids, alkalis, water, etc. can be used as appropriate in combination with the fine particles.
The degree of dissolution and removal does not necessarily mean that the fine particles are completely eliminated, but may be partially dissolved as long as they can serve as starting points for etching during the etching process. After the fine particles are dissolved and removed, the formation of a film having a large number of micropores for forming etching nuclei on the surface of the aluminum foil is completed. As is clear from the above explanation, such a film is intended to prevent corrosion of the aluminum foil surface during etching, except for the areas corresponding to the micropores, and therefore, it must be resistant in nature, i.e. , provided that it is insoluble and corrosion resistant. The electrode material according to the present invention manufactured in this way includes:
Thereafter, an electrochemical or chemical etching treatment is performed in an acid or alkaline bath. The etching solution used in the etching process is not particularly limited, and a known 2 to 15% hydrochloric acid aqueous solution, or an aqueous solution in which an acid such as chromic acid, sulfuric acid, or oxalic acid is further added to the solution, etc. can be arbitrarily selected. Can be used. All other etching processing conditions, ie, liquid temperature, current density, etching time, etc., may also be employed as conventionally known etching processing conditions. By this etching treatment, while suppressing surface dissolution of the portion of the aluminum foil to which the resistant coating is attached, it is possible to intensively erode only the portions corresponding to the micropores, thereby making it possible to form deep and thick etching holes. After the etching process, the aluminum foil is
Subsequently, the resistant film adhering to the foil surface is removed by immersing it in an alkaline solution such as a few percent Na or OH solution. Effects of the Invention As explained above, according to the present invention, a coating material mixed with metal or non-metal fine particles is applied to the surface of the aluminum foil, and then the fine particles are removed, thereby forming a large number of fine pores on the surface of the aluminum foil. As a result of being able to manufacture an aluminum electrode material on which a uniformly resistant film is integrally deposited, during the subsequent etching treatment applied to the electrode material, surface dissolution of the resistant film-attached portion of the aluminum foil is performed on the film layer. Therefore, while suppressing the etching, it is possible to intensively erode only the portions corresponding to the micropores as etching nuclei. Therefore, as a result,
It is possible to uniformly form a large number of deep and thick etching holes in aluminum foil regardless of the presence of intermetallic compounds, crystal grain agglomerates, etc., and to achieve a significantly high area ratio without compromising mechanical strength. This makes it possible to provide an ideal aluminum electrode material with extremely high capacitance and excellent electrical properties. Examples Next, examples of the present invention will be shown in comparison with comparative examples. Cu microparticles and NaCl microparticles with an average particle size of 1 μm were mixed at a volume ratio of 40% into a commercially available photoresist agent whose main component was dichromic acid/hydrophilic polymer liquid, and after thorough stirring, a thickness of 100 μm was obtained. purity
A thin layer was applied to the surface of each 99.99% annealed aluminum foil by roll coating. After that, for aluminum foil coated with resist containing Cu fine particles (sample No. 1), 5% HCl was applied.
On the other hand, by immersing it in an aqueous solution for about 30 seconds.
The aluminum foil coated with a resist containing NaCl fine particles (sample No. 2) was washed with pure water to dissolve and remove the Cu and NaOH fine particles, and the aluminum foil had many fine pores on its surface. An electrode material according to the present invention on which a film was formed was obtained. After washing and drying, each electrode material was subjected to pre-electrolytic etching using an etching solution: 5wt% hydrochloric acid aqueous solution, temperature: 80°C, DC current density: 20A/dm 2 , etching time: 2 minutes, followed by the same etching process. After performing post-electrolytic etching under the conditions of liquid composition, same temperature, DC current density: 5A/dm 2 and etching time of 10 minutes, the film was removed by immersion in a 5wt% sodium hydroxide aqueous solution at 25℃ for 2 seconds. I processed it. The etched foil obtained above was placed in a boric acid bath.
After converting to 380V, the capacitance of the foil was measured. On the other hand, this result was compared with that of an aluminum foil (comparative example) in which the same aluminum material as above was used and only etching was performed under the same etching conditions. The results were as shown in the table below.

【表】 上表の結果に示されるように、この発明によれ
ば、アルミニウム箔の耐性被膜中に均一に設けら
れた多数の微細孔に対応する部分のみをエツチン
グ核として深く侵食せしめ得ることにより、比較
例に較べて大きな静電容量を有する電気的特性に
優れたものとなし得ることが判る。
[Table] As shown in the results in the above table, according to the present invention, only the portions corresponding to the many micropores uniformly provided in the resistant coating of the aluminum foil can be deeply eroded as etching nuclei. , it can be seen that it can be made to have a larger capacitance and excellent electrical characteristics than the comparative example.

Claims (1)

【特許請求の範囲】 1 アルミニウム箔の表面に、金属若しくは非金
属微粒子を混入した被覆材を塗布した後、前記微
粒子を除去することにより、箔表面に電解エツチ
ング液に対して耐性を有し、かつエツチング核を
形成すべき多数の微細孔の形成された耐性被膜を
一体的に付着形成することを特徴とする電解コン
デンサ用アルミニウム電極材の製造方法。 2 微粒子の除去工程を、被覆材の塗布面を溶解
液に接触させて溶解除去することによつて行う特
許請求の範囲第1項記載の電解コンデンサ用アル
ミニウム電極材の製造方法。
[Claims] 1. A coating material containing metal or non-metal fine particles is applied to the surface of the aluminum foil, and then the fine particles are removed, thereby making the foil surface resistant to electrolytic etching solution. A method for manufacturing an aluminum electrode material for an electrolytic capacitor, which comprises integrally depositing a resistant film having a large number of micropores to form etching nuclei. 2. The method for manufacturing an aluminum electrode material for an electrolytic capacitor according to claim 1, wherein the step of removing the fine particles is carried out by bringing the coated surface of the coating material into contact with a dissolving solution to dissolve and remove the particles.
JP17459884A 1984-08-21 1984-08-21 Method of producing aluminum electrode material for electrolytic condenser Granted JPS6151818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17459884A JPS6151818A (en) 1984-08-21 1984-08-21 Method of producing aluminum electrode material for electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17459884A JPS6151818A (en) 1984-08-21 1984-08-21 Method of producing aluminum electrode material for electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS6151818A JPS6151818A (en) 1986-03-14
JPH0379859B2 true JPH0379859B2 (en) 1991-12-20

Family

ID=15981367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17459884A Granted JPS6151818A (en) 1984-08-21 1984-08-21 Method of producing aluminum electrode material for electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS6151818A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220512A (en) * 1987-03-09 1988-09-13 松下電器産業株式会社 Electrode foil for electrolytic capacitor
JPH02151161A (en) * 1988-12-02 1990-06-11 Iwatsu Electric Co Ltd Listening system of message in broadcast or multiple address communication
KR20040078132A (en) * 2002-01-25 2004-09-08 쇼와 덴코 가부시키가이샤 Composite metal material and production method therefor, etched metal material and production method therefor, and electrolytic capacitor
US6855408B2 (en) 2002-01-25 2005-02-15 Showa Denko K.K. Composite metal material and method for manufacturing the same, etched metal material and method for manufacturing the same and electrolytic capacitor
WO2003062506A1 (en) * 2002-01-25 2003-07-31 Showa Denko K.K. Composite metal material and production method therefor, etched metal material and production method therefor, and electrolytic capacitor

Also Published As

Publication number Publication date
JPS6151818A (en) 1986-03-14

Similar Documents

Publication Publication Date Title
US2596307A (en) Process of electrostripping electrodeposited metals
CA1070260A (en) Method of electroforming on a metal substrate
DE60100233T2 (en) seed layer
JPH0379859B2 (en)
Monteiro et al. Surface pretreatments of aluminium for electroplating
CN1271248C (en) Production process of alumina template with nano holes
JP4333947B2 (en) Aluminum alloy sheet with a roughened surface
US20090302003A1 (en) Aqueous Solution for Chemical Polishing and Deburring and Process for Polishing and Deburring A Part made of Pure Nickel or Nickel-200 Therein
JPH1197298A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
CN114807918A (en) Metal replacement treatment liquid, and surface treatment method for aluminum or aluminum alloy
JPH08176852A (en) Surface roughening liquid etchant for pretreatment to plate titanium and titanium alloy with platinum and surface roughening etching method for platinum plating pretreatment
JPH0379858B2 (en)
JPH08218185A (en) Surface roughening etching solution for platinum plating pretreatment of titanium or titanium alloy and surface roughening etching method for platinum plating pretreatment
WO2003009321A1 (en) Aluminum foil for electrolytic capacitor
JPH01282813A (en) Manufacture of aluminum material for electrolytic capacitor electrode
US2491839A (en) Process for electroplating a sintered ferrous article
DE10208120A1 (en) Process for metallizing ceramics based on titanates
JP2008166602A (en) Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2001297950A (en) Method of manufacturing anode foil for aluminum electrolytic capacitor
DE10134961A1 (en) Coating substrate surface with metal or alloy using electrolyte solution, e.g. for galvanizing wafer, involves applying stabilizer to substrate surface to maintain metal or alloy in electrolyte solution
JP2551274B2 (en) Surface treatment method for aluminum materials
JP3480164B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
WO2024070341A1 (en) Metal nanowire production method
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP2851168B2 (en) Manufacturing method of tin / tin alloy plating material