JPH0379782A - Insoluble electrode with laminated porous body - Google Patents

Insoluble electrode with laminated porous body

Info

Publication number
JPH0379782A
JPH0379782A JP1213790A JP21379089A JPH0379782A JP H0379782 A JPH0379782 A JP H0379782A JP 1213790 A JP1213790 A JP 1213790A JP 21379089 A JP21379089 A JP 21379089A JP H0379782 A JPH0379782 A JP H0379782A
Authority
JP
Japan
Prior art keywords
electrode
anode
generation
chlorine
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1213790A
Other languages
Japanese (ja)
Inventor
Masaaki Murotani
正彰 室谷
Masao Hiroi
広井 正男
Eiichi Tada
栄一 多田
Kozo Yamamoto
山本 耕造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI DEBUISON KAGAKU KK
Fuji-Davison Chemical Ltd
Original Assignee
FUJI DEBUISON KAGAKU KK
Fuji-Davison Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI DEBUISON KAGAKU KK, Fuji-Davison Chemical Ltd filed Critical FUJI DEBUISON KAGAKU KK
Priority to JP1213790A priority Critical patent/JPH0379782A/en
Publication of JPH0379782A publication Critical patent/JPH0379782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To inhibit the generation of Cl from the anode used in seawater and to increase the rate of generation of O2 by forming a porous layer of an electrically nonconductive material on the surface of an insoluble electrode of Pt, etc., and using the electrode as the anode. CONSTITUTION:When electrodes for a ship propelled by electromagnetic force are used in seawater, an electrode of Pt, Ni, stainless steel, etc., is used as the cathode and an electrode obtd. by vapor-depositing Pt 3a on one side of porous glass 2 having 1,000Angstrom pore diameter and 0.5mm thickness in about 0.1mum thickness, further plating the Pt 3a with Pt 3b in about 10mum thickness, joining a Pt coated Ti electrode 1 to the Pt 3b and fixing the rear side and lateral part with resin is used as the anode. This anode has a very high efficiency of generation of oxygen and low efficiency of generation of chlorine.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は多孔置体積層不溶性電極に関するもので、詳し
くは、電極面に多孔質層よりなる濃度拡散層を設けたこ
とにより反応制御が容易となった不溶性電極に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a porous laminated insoluble electrode, and more specifically, reaction control is facilitated by providing a concentration diffusion layer made of a porous layer on the electrode surface. This relates to insoluble electrodes.

[従来の技術」 従来の工業電解用電極は、平面電極面上で反応させる場
合が主である。この場合の電極形状としては、単に平面
状のもののみならず、対象反応に応じて、例えば、電極
表面にひだをつけるとか、電極表面を荒くして表面積を
大きくするとか種々の工夫がなされている。また、電極
自身を多孔質にするとか、メツシュにしたり、電極に孔
を開ける等の工夫もなされているが、いずれの場合も、
本質的には、電極面上で自由に反応させることを基本と
している。一方、陽極として、白金、チタンを白金で被
覆した電極、チタン表面を不溶化した電極(いわゆる、
不溶性陽極)等が用いられているが、普通は、平面のま
ま用いられている。しかしながら、表面の触媒能力だけ
では希望する電極性能が得られない場合が生じ、新しい
要求に対応できない場合が生じてきている。例えば、電
磁推進船に設置される陽極は海水から塩素を殆ど発生さ
せないことが、要求されているが従来の電極では塩素発
生を押さえることが殆どできなかった。
[Prior Art] Conventional industrial electrolytic electrodes are mainly used for reactions on a flat electrode surface. In this case, the shape of the electrode is not limited to just a flat shape, but various measures have been taken depending on the target reaction, such as adding pleats to the electrode surface or making the electrode surface rough to increase the surface area. There is. In addition, attempts have been made to make the electrode itself porous, to make it a mesh, or to make holes in the electrode, but in any case,
Essentially, it is based on allowing reactions to occur freely on the electrode surface. On the other hand, as an anode, platinum, an electrode with titanium coated with platinum, an electrode with an insolubilized titanium surface (so-called
Insoluble anodes) are used, but they are usually used as is. However, there are cases in which the desired electrode performance cannot be obtained with only surface catalytic ability, and new demands cannot be met. For example, anodes installed in electromagnetic propulsion vessels are required to generate almost no chlorine from seawater, but conventional electrodes have been unable to suppress the generation of chlorine.

また、懸濁粒子は反応させないで、溶解物質のみを反応
させることなどは困難であった。
Furthermore, it is difficult to react only dissolved substances without reacting suspended particles.

[発明が解決しようとする課題] 本発明は上記実情に鑑み、例えば、電磁推進船用電極に
おいて、海水を電解した場合であっても、塩素の発生が
殆どなく、酸素の発生量が多く、しかも、耐久性に優れ
た不溶性電極を提供しようとするものである。電磁推進
船では、強!i場下海水に大電流(直流)を流して推力
を得る。従って、海水を電気分解しながら航行すること
になり、陽極から塩素と酸素が発生する。環境問題や腐
蝕等を考えて、塩素発生は出来るだけ少なくすることが
要求されている。
[Problems to be Solved by the Invention] In view of the above-mentioned circumstances, the present invention provides an electrode for an electromagnetic propulsion ship that generates almost no chlorine and generates a large amount of oxygen even when seawater is electrolyzed. The aim is to provide an insoluble electrode with excellent durability. In electromagnetic propulsion ships, it is strong! i Obtain thrust by passing a large current (DC) through seawater. Therefore, the ship navigates while electrolyzing seawater, and chlorine and oxygen are generated from the anode. Considering environmental issues and corrosion, it is required to reduce chlorine generation as much as possible.

[課題を解決するための手段] 本発明は、白金電極またはその他の不溶性電極の表面上
に、導電性を有しない材質によって層を形成させること
により達成される。すなわち、多孔質層が濃度拡散層と
して動き、電極反応を制御することができるのである。
[Means for Solving the Problems] The present invention is achieved by forming a layer of a non-conductive material on the surface of a platinum electrode or other insoluble electrode. In other words, the porous layer acts as a concentration diffusion layer and can control electrode reactions.

本発明の電極は、多孔質層を電極面前に設けることによ
り、濃度バリヤーとして働かせ、また、ある場合には隔
膜として働かせることにより、希望する反応を選択的に
行なわせることができる。
The electrode of the present invention can selectively carry out a desired reaction by providing a porous layer in front of the electrode surface to act as a concentration barrier, or in some cases as a diaphragm.

そして、例えば、海水電解時に白金電極を用いると、電
流効率で60〜70%の塩素ガスが発生するが、細孔直
径10000 A、厚み0.5mmの多孔質層を設置し
た場合には、塩素ガスの発生を10%以下に低減するこ
とができるのである。
For example, if a platinum electrode is used during seawater electrolysis, chlorine gas will be generated with a current efficiency of 60-70%, but if a porous layer with a pore diameter of 10,000 A and a thickness of 0.5 mm is installed, chlorine gas will be generated. Gas generation can be reduced to 10% or less.

本発明において基体となる電極としては、安定で不溶性
であれば陰極、陽極ともに、その材料に制限はなく、対
象とする電極反応に応じて適宜選択することができる。
In the present invention, the material of the electrode serving as the substrate for both the cathode and the anode is not limited as long as it is stable and insoluble, and can be appropriately selected depending on the target electrode reaction.

通常、陰極としては、例えば、白金、ステンレス、ニッ
ケル、白金被覆ニッケル等が挙げられ、また、陽極とし
ては、例えば、白金、白金被覆ニッケル等が挙げられ、
また、陽極としては、例えば、白金、白金被覆チタン、
RuO2はIrO2で被覆したチタン電極(いわゆる、
不溶性電極〉等が挙げられる。これらの電極の形状は通
常、平面形状のものでよいが、場合によって、加工を加
えたものでも差し支えない。
Usually, examples of the cathode include platinum, stainless steel, nickel, platinum-coated nickel, etc., and examples of the anode include platinum, platinum-coated nickel, etc.
In addition, as the anode, for example, platinum, platinum-coated titanium,
RuO2 is a titanium electrode coated with IrO2 (so-called
Insoluble electrode> etc. The shape of these electrodes may normally be a planar shape, but depending on the case, they may be shaped.

また、本発明では、上述の電極表面上に多孔質層を形成
させることを必須の要件とするものである。この多孔質
層を形成する材質としては、電極反応に対して安定であ
る上、導電性を有しないことが必要であり、通常、ガラ
ス、ポリエチレン、ポリプロピレン、ポリ塩化ビニルな
どの合成樹脂、ポリエチレンテレフタレート、ポリアミ
ドなどの合成m維等が挙げられる。多孔質層の形成方法
としては、例えば、多孔質ガラスなどの多孔質板状物を
積層する方法、合成樹脂製の網り40〜200メツシユ
)などを複数枚重ねて積層する方法、合成樹脂製不織布
などの膜状物を積層する方法等が挙げられる。これらの
中で、多孔質ガラスを用いた場合には、細孔直径の制御
が容易であり電極反応も良好に行なうことができるので
特に好ましい。
Moreover, in the present invention, it is an essential requirement to form a porous layer on the surface of the above-mentioned electrode. The material forming this porous layer needs to be stable against electrode reactions and not conductive, and is usually glass, synthetic resins such as polyethylene, polypropylene, and polyvinyl chloride, and polyethylene terephthalate. , synthetic fibers such as polyamide, and the like. Porous layers can be formed by, for example, laminating porous plates such as porous glass, laminating multiple sheets of synthetic resin mesh (40 to 200 mesh), or laminating synthetic resin nets (40 to 200 mesh). Examples include a method of laminating film-like materials such as nonwoven fabrics. Among these, it is particularly preferable to use porous glass because the pore diameter can be easily controlled and the electrode reaction can be carried out well.

多孔質層の厚さは、一般的に、0.1〜IIII+Il
、好ましくは0.2〜0.8mmPj!度である。また
、多孔質層の細孔直径は、通常、1000〜100OO
OAの範囲である。これら多孔質層の選定は対象とする
電極反応に応じて多々、最適値を決定することができる
The thickness of the porous layer is generally 0.1 to III+Il
, preferably 0.2 to 0.8 mmPj! degree. In addition, the pore diameter of the porous layer is usually 1000 to 100OO
This is the range of OA. The optimum value of these porous layers can be determined depending on the target electrode reaction.

電極表面上への多孔質層の固定方法としては、通常、 ■ 多孔質材料を基本電極面に積層し例えば、荒い目の
プラスチックの格子などで多孔質材料が外れないように
押え付ける方法。または、■ 多孔質材料の片面を蒸着
またはメツキにより白金層で覆った後、基本電極面に合
せて接着性樹脂等(エポキシ系樹脂、ウレタン系樹脂な
ど)で固めて固定する方法等が挙げられる。
The methods for fixing the porous layer on the electrode surface are usually: (1) Layering the porous material on the basic electrode surface and pressing it down with, for example, a coarse plastic grid to prevent it from coming off. Alternatively, one method is to cover one side of the porous material with a platinum layer by vapor deposition or plating, and then harden and fix it with adhesive resin, etc. (epoxy resin, urethane resin, etc.) in line with the basic electrode surface. .

[実施例] 次に、本発明の電極について実施例を挙げて更に具体的
に説明するが、本発明は力)かる実施例のみに限定され
るものではない。
[Example] Next, the electrode of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1図に示すような電極を作製した。すなわち、細孔直
径10000 A、厚み0.5nmmの多孔質ガラス2
の片面に白金3aを約0.1μmt蒸着した後、さらに
約10μmの厚みに白金をメツキ3bを施して、これに
白金被覆チタン電極1を合せて、裏面と横の部分を樹脂
で固めて電極を作製した。
Example 1 An electrode as shown in FIG. 1 was produced. That is, porous glass 2 with a pore diameter of 10,000 A and a thickness of 0.5 nm
After depositing platinum 3a in a thickness of approximately 0.1 μm on one side of the plate, plating 3b with platinum to a thickness of approximately 10 μm is applied, and the platinum-coated titanium electrode 1 is placed on this, and the back and side portions are hardened with resin to form the electrode. was created.

この電極を陽極に、白金板を陰極に使用し、35%食塩
水中に浸し、第1表を示すように電流密度を変え、以下
に示す方法により酸素発生率を調べた。その結果を第1
表に示す。
Using this electrode as an anode and a platinum plate as a cathode, the electrodes were immersed in 35% saline, the current density was changed as shown in Table 1, and the oxygen generation rate was examined by the method shown below. The result is the first
Shown in the table.

く酸素発生効率) 所定の時間電解した後、電解液をヨウ素滴定し、生成し
た塩素量を測定し、次式にしたがって塩素発生効率を求
める。100%から塩素発生効率を引いた値を酸素発生
効率とする。
Oxygen generation efficiency) After electrolyzing for a predetermined time, the electrolytic solution is titrated with iodine, the amount of chlorine generated is measured, and the chlorine generation efficiency is determined according to the following formula. The value obtained by subtracting the chlorine generation efficiency from 100% is defined as the oxygen generation efficiency.

[塩素発生効率(%)] [滴定により得た塩素発生量〈g)] =                  X100[電
解電気量より算出した理論的 塩素発生量(g)コ [酸素発生効率(%)] =100− [塩素発生効率
(%)] 第1表 実施例 2 白金板上に、ポリエチレン網を電極面から順に50メツ
シユの網、70メツシユの網、100メツシユの網、1
50メツシユの網、180メツシユの網をそれぞれ一枚
づつ積層して、その上をプラスチック格子で押さえて電
極とした。実施例1と同様にして酸素発生効率J3よび
塩素発生効率を調べた結果を第2表に示す。
[Chlorine generation efficiency (%)] [Chlorine generation amount obtained by titration (g)] = Chlorine generation efficiency (%)] Table 1 Example 2 Polyethylene mesh was placed on a platinum plate in order from the electrode surface: 50 mesh mesh, 70 mesh mesh, 100 mesh mesh, 1
One 50-mesh mesh and one 180-mesh mesh were laminated, and the top was pressed with a plastic grid to form an electrode. Table 2 shows the results of examining the oxygen generation efficiency J3 and chlorine generation efficiency in the same manner as in Example 1.

第2表 比較例 実施例1の方法において、 白金板をそのまま 電極とした場合の酸素発生効率および塩素発生効率を調
べた。その結果を第3表に示す。
Table 2 Comparative Examples In the method of Example 1, the oxygen generation efficiency and chlorine generation efficiency were investigated when the platinum plate was used as an electrode. The results are shown in Table 3.

第 表 実施例3 白金板の上に細孔直径4500A、厚み0.5mmの多
孔質ガラスを積層し、これを絶縁テープで止め、電極の
縁はそのままにした状態で、酸素発生効率おび塩素発生
効率を調べた。その結果を第4表に示す。
Table Example 3 Porous glass with a pore diameter of 4500 A and a thickness of 0.5 mm was laminated on a platinum plate, and this was fixed with insulating tape, leaving the edges of the electrodes as they were. I looked into efficiency. The results are shown in Table 4.

第 表 実施例4 実施例3で使用した電極の縁を樹脂で覆って、更に改良
した電極とした場合の酸素発生効率おび塩素発生効率を
第5表に示した。
Table 5 Example 4 Table 5 shows the oxygen generation efficiency and chlorine generation efficiency when the edge of the electrode used in Example 3 was covered with a resin to create a further improved electrode.

第5′ 表 [発明の効果] 以上の結果より、実施例1および実施例2で得られた本
発明の電極と比較例の電極の場合の酸素発生効率を較べ
ると本発明の電極の方が格段に優れていることが判る。
Table 5' [Effects of the Invention] From the above results, when comparing the oxygen generation efficiency between the electrode of the present invention obtained in Example 1 and Example 2 and the electrode of the comparative example, the electrode of the present invention is superior. It turns out that it's significantly better.

従って、本発明の電極においては、電極反応の制御がで
きることが理解できる。
Therefore, it can be understood that in the electrode of the present invention, the electrode reaction can be controlled.

この実施例における多孔質層の役割は、溶質の濃度バリ
ヤーである。海水電解において、陽極における反応は、
塩化物イオンの酸化による塩素の発生と水の酸化による
酸素発生であるが、塩化物イオンが電極面上で反応する
ためには沖合から塩化物イオンが拡散してくる必要があ
る。このイオンの拡散を、電極面上に設置した多孔質層
が妨げる役目をするのである。一方、溶媒である水は、
多量に存在し、電極面上にはいつでも存在するので、酸
素発生は妨げられないのである。したがって、塩素発生
を出来るだけ押えるためには、電極面上に設置する多孔
質層の孔径と厚みを調節すると同時に贋拌、対流による
影響を受けないようにするのが望ましい。例えば、多孔
質体をつなぎあわせた場合には隙間を作らないようにす
るか、隙間は埋めるようにする、電極の縁はコートする
等の手当をすることが好ましい。
The role of the porous layer in this example is a solute concentration barrier. In seawater electrolysis, the reaction at the anode is
Chlorine is generated by oxidation of chloride ions, and oxygen is generated by oxidation of water. In order for chloride ions to react on the electrode surface, chloride ions must diffuse from offshore. The porous layer placed on the electrode surface serves to prevent the diffusion of these ions. On the other hand, water, which is a solvent,
Since it is present in large quantities and is always present on the electrode surface, oxygen evolution is not hindered. Therefore, in order to suppress the generation of chlorine as much as possible, it is desirable to adjust the pore diameter and thickness of the porous layer placed on the electrode surface, and at the same time to prevent it from being affected by agitation and convection. For example, when porous bodies are joined together, it is preferable to take measures such as not creating gaps or filling the gaps, or coating the edges of the electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で作成した本発明の電極の一例を示す
断面図であり、1は白金被覆チタン電極、2は多孔質ガ
ラスを示す。
FIG. 1 is a cross-sectional view showing an example of the electrode of the present invention prepared in Example 1, where 1 shows a platinum-coated titanium electrode and 2 shows a porous glass.

Claims (1)

【特許請求の範囲】[Claims] (1)白金電極またはその他の不溶性電極の表面上に、
導電性を有しない材質によつて多孔質層を形成させたこ
とを特徴とする多孔質体積層不溶性電極。
(1) On the surface of a platinum electrode or other insoluble electrode,
A porous laminated insoluble electrode characterized in that a porous layer is formed of a material that does not have conductivity.
JP1213790A 1989-08-19 1989-08-19 Insoluble electrode with laminated porous body Pending JPH0379782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1213790A JPH0379782A (en) 1989-08-19 1989-08-19 Insoluble electrode with laminated porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1213790A JPH0379782A (en) 1989-08-19 1989-08-19 Insoluble electrode with laminated porous body

Publications (1)

Publication Number Publication Date
JPH0379782A true JPH0379782A (en) 1991-04-04

Family

ID=16645098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1213790A Pending JPH0379782A (en) 1989-08-19 1989-08-19 Insoluble electrode with laminated porous body

Country Status (1)

Country Link
JP (1) JPH0379782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1613555A1 (en) * 2002-12-18 2006-01-11 Markos Ninolakis Electrochemical method of sterilizing the sea ballast of ships

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1613555A1 (en) * 2002-12-18 2006-01-11 Markos Ninolakis Electrochemical method of sterilizing the sea ballast of ships

Similar Documents

Publication Publication Date Title
Kulesza et al. Electrocatalytic properties of bifunctional Pt/W (VI, V) oxide microstructures electrodeposited on carbon substrates
US4312720A (en) Electrolytic cell and process for electrolytic oxidation
US4778578A (en) Deposition of catalytic electrodes of ion-exchange membranes
US4224121A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
EP0002787B1 (en) Composite halogen electrode, rechargeable metal-halogen energy storage cell comprising said electrode and method of use of the electrode
US5082538A (en) Process for replenishing metals in aqueous electrolyte solutions
CA2216942A1 (en) Electrode, electrochemical cell and electrochemical processes
GB2030349A (en) Process and Accumulator, for Storing and Releasing Electrical Energy
GB2073251A (en) Anode for reducing oxygen generation in the electrolysis of hydrogen chloride
GB2071157A (en) Catalytic electrode and combined catalytic electrode and electrolytic structure
US5536379A (en) Gas diffusion electrode
JPH0125836B2 (en)
US20190112720A1 (en) Pulsed current catalyzed gas diffusion electrodes for high rate, efficient co2 conversion reactors
EP0560740A1 (en) Apparatus and process for electrolytic ozone generation
KR910001950B1 (en) Electrode structure and process for fabricating the same
JPS5887288A (en) Metal ion collecting network electrode and manufacture
Brudzisz et al. A facile approach to silver nanowire array electrode preparation and its application for chloroform reduction
JPH0379782A (en) Insoluble electrode with laminated porous body
JPH08269761A (en) Water electrolytic cell and its production
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
US3444003A (en) Multilayer catalytic electrode having a layer of noble metal and lead and a surface layer free of lead and method of constructing same
CA1215679A (en) Spontaneous deposition of metals using fuel fed catalytic electrode
CN1165295A (en) Mcdified surface bipolar electrode
JP2002206186A (en) Electrode structure and electrolysis method using this structure
US6165333A (en) Cathode assembly and method of reactivation