JPH0379350B2 - - Google Patents
Info
- Publication number
- JPH0379350B2 JPH0379350B2 JP6940982A JP6940982A JPH0379350B2 JP H0379350 B2 JPH0379350 B2 JP H0379350B2 JP 6940982 A JP6940982 A JP 6940982A JP 6940982 A JP6940982 A JP 6940982A JP H0379350 B2 JPH0379350 B2 JP H0379350B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen chloride
- chlorlactone
- reaction solution
- butyrolactone
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 25
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 25
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 25
- OMQHDIHZSDEIFH-UHFFFAOYSA-N 3-Acetyldihydro-2(3H)-furanone Chemical compound CC(=O)C1CCOC1=O OMQHDIHZSDEIFH-UHFFFAOYSA-N 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- CYCRRRIREKXQTK-UHFFFAOYSA-N 3-acetyl-3-chlorooxolan-2-one Chemical compound CC(=O)C1(Cl)CCOC1=O CYCRRRIREKXQTK-UHFFFAOYSA-N 0.000 claims description 2
- 238000005660 chlorination reaction Methods 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 claims description 2
- OARNHESMASZJCO-UHFFFAOYSA-N 3-chlorooxolan-2-one Chemical compound ClC1CCOC1=O OARNHESMASZJCO-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000000243 solution Substances 0.000 description 19
- 238000005273 aeration Methods 0.000 description 7
- 238000011282 treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Landscapes
- Furan Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は医薬品の中間原料として有名なα−ア
セチル−α−クロル−γ−ブチロラクトン(以下
クロルラクトンと略す)の安定化方法に関する。
クロルラクトンは一般的にはα−アセチル−γ
−ブチロラクトンを溶媒の存在下又は不存在下、
塩素で塩素化して製造され、得られる反応液は純
度約95%程度でやや粘調な微黄色の液体である。
用途によつてはこのものを直接供することができ
る。
しかし、この反応においては塩化水素が不可避
的に副生し、その大部分は反応中に未反応塩素と
随伴して系外に逃散するが、通常、反応液中に1
〜4%の塩化水素が含まれている。この反応液は
非常に不安定であり、この状態で常温下放置する
と参考例−1に示す通り反応液の純度及び色相が
著しく低下する。
他方、該反応液を高真空で蒸溜することにより
クロルラクトンを精製することは可能であるが、
常圧におけるクロルラクトンの沸点が225℃と高
いため、例えば圧力5Torr、塔頂温度105℃の如
き高真空で蒸溜してもクロルラクトンの約10%が
分解する等、蒸溜精製することは熱経時変化を受
け、大巾な収率低下をきたすので、経済上大きな
不利を伴い、必ずしも適当でない。
そのため当業界では、経済的に有利な該反応液
の直接使用において以前から反応液の安定化が望
まれていた。
先ず本発明者らは、クロルラクトンが塩化水素
共存系で品質低下をきたす原因について検討し、
次の事実を見い出した。即ち、原料α−アセチル
−γ−ブチロラクトン及びクロルラクトンは常温
下塩化水素と容易に開環反応を起し、そして脱炭
酸してハロゲン化ケトンに変化する。例えばクロ
ルラクトンについて開環反応を反応式で表わすと
次の通りである。
次いでこのハロゲン化ケトンは触媒量程度の微
量の塩化水素の存在でケトン類特有の縮合反応を
起し着色物質に変化するものである。塩化水素は
クロルラクトンに比較して分子量が約1/5と小さ
いため、微量の塩化水素が存在してもクロルラク
トンの品質低下に著しく影響することが判る。
クロルラクトン中の塩化水素濃度と品質の関係
については実施例−1に示す通りである。即ち、
常温下2ケ月間放置では塩化水素濃度の増加に伴
つて純度はほぼ定量的に低下するが、色相は塩化
水素濃度が0.15%以上になるとガードナーNo.で10
以上と悪くなる。このことから反応液中の塩化水
素濃度を0.1%以下にすることにより、該反応液
を安定に保存できることをつきとめた。
次に、本発明者らは塩化水素の除去法について
具体的手段、例えば水洗、不活性ガスによる曝気
などの物理的方法、中和等の化学的方法を検討し
た。しかし、クロルラクトンは水と接触すると加
水分解し、酸性溶液中ではケトン分解を、アルカ
リ性溶液中では酸分解を起すため、水洗及び水を
伴う処理は純度低下の原因となり、不適当であつ
た。又、陰イオン交換樹脂処理及びトリエチルア
ミン、ピリジン等の3級アミンによる中和は処理
液が着色する点で好ましくなかつた。
物理的方法の一例として参考例−2に示す通り
反応液に常温下長時間窒素を曝気することにより
塩化水素を0.14%まで除去できるが、不充分であ
つた。しかし、これは塩化水素を除去するための
前処理としては利用できる。
そこで真空曝気について検討したところ、実施
例−2に示す通り反応液を常温下100Torr以下の
圧力で真空曝気することにより、最高0.04%まで
塩化水素を低減できた。
この場合、圧力200Torrでは約30℃で真空曝気
しても塩化水素を0.1%以下にすることは困難で
あつた。又、温度を高くすることにより塩化水素
を0.1%以下にすることは可能と考えられるが、
温度約50℃で真空曝気すると熱経時変化のためで
あろう純度の低下が認められた。
なお、実際の操作条件の選定には対象とするク
ロルラクトンの塩化水素濃度、容量及び処理装
置、時間等から実験によつて適宜決められる。
斯様にして、クロルラクトンの反応液中の塩化
水素濃度を0.1%以下にすることにより、3ケ月
以上は工業的原料として供し得る品質を保持で
き、そのため工業的に極めて簡単な操作、常温下
100Torr以下の圧力で真空曝気することで、該反
応液中の塩化水素を除去できることを見い出し、
本発明を完成するに至つた。
以下、参考例及び実施例を挙げて本発明を具体
的に説明する。
参考例−1
攪拌器、温度計、塩素導入管及び排ガス吸収塔
に接続する冷却器を備えた2四ツ口丸底フラス
コに、α−アセチル−γ−ブチロラクトン1920g
(15モル)を仕込み、反応温度8〜12℃で塩素を
37.3N/Hrの速度で9時間(15モル)吹込み、
反応させ、反応液2455gを得た。反応液のガスク
ロマトグラフ分析値(面積パーセント)はクロル
ラクトン95.1%、α−アセチル−γ−ブチロラク
トン0.3%、高沸物3.7%であつた。又、硝酸銀滴
定による塩化水素は2.54%であつた。
次に、18〜25℃での反応液の純度及び色相の経
時変化を表−1に示す。
The present invention relates to a method for stabilizing α-acetyl-α-chloro-γ-butyrolactone (hereinafter abbreviated as chlorlactone), which is famous as an intermediate raw material for pharmaceuticals. Chlorlactone is generally α-acetyl-γ
- butyrolactone in the presence or absence of a solvent,
It is produced by chlorination with chlorine, and the resulting reaction solution is a slightly viscous, pale yellow liquid with a purity of approximately 95%.
Depending on the use, this product can be provided directly. However, in this reaction, hydrogen chloride is inevitably produced as a by-product, and most of it escapes from the system along with unreacted chlorine during the reaction.
Contains ~4% hydrogen chloride. This reaction solution is very unstable, and if left in this state at room temperature, the purity and hue of the reaction solution will drop significantly, as shown in Reference Example-1. On the other hand, it is possible to purify chlorlactone by distilling the reaction solution under high vacuum;
Since the boiling point of chlorlactone at normal pressure is as high as 225°C, approximately 10% of chlorlactone decomposes even if it is distilled under a high vacuum such as a pressure of 5 Torr and a tower top temperature of 105°C, making it difficult to purify by distillation over time. It is not necessarily suitable because it is subject to changes and causes a large decrease in yield, which is economically disadvantageous. Therefore, stabilization of the reaction solution has long been desired in the art for direct use of the reaction solution, which is economically advantageous. First, the present inventors investigated the cause of quality deterioration of chlorlactone in a hydrogen chloride coexistence system, and
I discovered the following facts. That is, the raw materials α-acetyl-γ-butyrolactone and chlorlactone easily undergo a ring-opening reaction with hydrogen chloride at room temperature, and are decarboxylated and converted into halogenated ketones. For example, the ring-opening reaction of chlorlactone is expressed as follows. Next, this halogenated ketone undergoes a condensation reaction characteristic of ketones in the presence of a trace amount of hydrogen chloride, such as a catalytic amount, and turns into a colored substance. Since the molecular weight of hydrogen chloride is about 1/5 smaller than that of chlorlactone, it can be seen that even the presence of a trace amount of hydrogen chloride significantly affects the quality deterioration of chlorlactone. The relationship between the hydrogen chloride concentration in chlorlactone and its quality is as shown in Example-1. That is,
When left at room temperature for two months, the purity decreases almost quantitatively as the hydrogen chloride concentration increases, but the hue changes to Gardner No. 10 when the hydrogen chloride concentration increases to 0.15% or more.
It gets worse. From this, it was found that the reaction solution could be stored stably by reducing the hydrogen chloride concentration in the reaction solution to 0.1% or less. Next, the present inventors investigated specific methods for removing hydrogen chloride, such as physical methods such as washing with water and aeration with inert gas, and chemical methods such as neutralization. However, chlorlactone hydrolyzes when it comes into contact with water, causing ketone decomposition in acidic solutions and acid decomposition in alkaline solutions, so washing with water and treatments involving water caused a decrease in purity and were inappropriate. Furthermore, treatment with an anion exchange resin and neutralization with tertiary amines such as triethylamine and pyridine are undesirable because the treatment solution becomes colored. As an example of a physical method, as shown in Reference Example 2, hydrogen chloride could be removed to 0.14% by aerating the reaction solution with nitrogen for a long time at room temperature, but this was insufficient. However, it can be used as a pretreatment to remove hydrogen chloride. Therefore, when we investigated vacuum aeration, we were able to reduce hydrogen chloride to a maximum of 0.04% by vacuum aerating the reaction solution at room temperature and at a pressure of 100 Torr or less, as shown in Example-2. In this case, at a pressure of 200 Torr, it was difficult to reduce hydrogen chloride to 0.1% or less even with vacuum aeration at about 30°C. Also, it is thought that it is possible to reduce hydrogen chloride to 0.1% or less by increasing the temperature;
When vacuum aeration was performed at a temperature of approximately 50°C, a decrease in purity was observed, probably due to thermal changes over time. The actual operating conditions are appropriately determined through experiments based on the hydrogen chloride concentration of the target chlorlactone, capacity, treatment equipment, time, etc. In this way, by reducing the hydrogen chloride concentration in the chlorlactone reaction solution to 0.1% or less, the quality that can be used as an industrial raw material can be maintained for more than 3 months, and therefore industrially it is extremely easy to operate and can be used at room temperature.
We discovered that hydrogen chloride in the reaction solution can be removed by vacuum aeration at a pressure of 100 Torr or less,
The present invention has now been completed. The present invention will be specifically described below with reference to Reference Examples and Examples. Reference Example-1 1920 g of α-acetyl-γ-butyrolactone was placed in a 2-4 neck round bottom flask equipped with a stirrer, a thermometer, a chlorine inlet tube, and a condenser connected to the exhaust gas absorption tower.
(15 mol) and added chlorine at a reaction temperature of 8 to 12℃.
Blow for 9 hours (15 mol) at a rate of 37.3N/Hr,
The reaction was carried out to obtain 2455 g of a reaction solution. Gas chromatography analysis values (area percent) of the reaction solution showed 95.1% chlorlactone, 0.3% α-acetyl-γ-butyrolactone, and 3.7% high-boiling substances. Further, hydrogen chloride was determined to be 2.54% by silver nitrate titration. Next, Table 1 shows the purity and hue of the reaction solution at 18 to 25°C over time.
【表】
実施例 1
表−2に示す塩化水素を含む精製クロルラクト
ンの18〜25℃における色相及び純度の2ケ月間の
経時変化を表−2に示す。[Table] Example 1 Table 2 shows the changes in hue and purity of purified chlorlactone containing hydrogen chloride shown in Table 2 over a period of 2 months at 18 to 25°C.
【表】
参考例 2
参考例−1で得られた反応液500gに15〜19℃
で、窒素を40N/Hrの速度で4時間曝気する
ことにより塩化水素は2.54%から0.15%まで低下
した。同条件で更に3時間曝気を行つたが、塩化
水素は0.14%しか低下しなかつた。
実施例 2
参考例−2で得られた反応液500gを表−3に
示す温度、圧力を変えて真空曝気を行つた。結果
を表−3に示す。[Table] Reference Example 2 Add 500g of the reaction solution obtained in Reference Example-1 to 15-19℃.
By aerating nitrogen at a rate of 40N/Hr for 4 hours, hydrogen chloride decreased from 2.54% to 0.15%. Aeration was continued for another 3 hours under the same conditions, but hydrogen chloride decreased by only 0.14%. Example 2 500 g of the reaction solution obtained in Reference Example 2 was subjected to vacuum aeration while changing the temperature and pressure shown in Table 3. The results are shown in Table-3.
【表】
次に3−4処理液について18〜25℃における色
相及び純度の経時変化を表−4に示す。[Table] Next, Table 4 shows changes in hue and purity over time at 18 to 25°C for the 3-4 treatment solution.
【表】【table】
Claims (1)
から得られたα−アセチル−α−クロル−γ−ブ
チロラクトンにおいて、実質上塩化水素を含まな
い状態で保存することを特徴とするα−アセチル
−α−クロル−γ−ブチロラクトンの安定化方
法。1 α-acetyl-α-chloro-γ-butyrolactone obtained from chlorination of α-acetyl-γ-butyrolactone, which is characterized in that it is stored in a state substantially free of hydrogen chloride. Method for stabilizing chloro-γ-butyrolactone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6940982A JPS58185577A (en) | 1982-04-23 | 1982-04-23 | Stabilization method for alpha-acetyl-alpha-chloro-gamma- butyrolactone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6940982A JPS58185577A (en) | 1982-04-23 | 1982-04-23 | Stabilization method for alpha-acetyl-alpha-chloro-gamma- butyrolactone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58185577A JPS58185577A (en) | 1983-10-29 |
JPH0379350B2 true JPH0379350B2 (en) | 1991-12-18 |
Family
ID=13401773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6940982A Granted JPS58185577A (en) | 1982-04-23 | 1982-04-23 | Stabilization method for alpha-acetyl-alpha-chloro-gamma- butyrolactone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58185577A (en) |
-
1982
- 1982-04-23 JP JP6940982A patent/JPS58185577A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58185577A (en) | 1983-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60237030A (en) | Manufacture of 1,2,3-trichloro-2-methyl-prone | |
JPH07188117A (en) | Method of treating liquid reaction product obtained in production dimethyl carbonate in the presence of cu catalyst | |
US4387082A (en) | Removal of nitrous oxide from exit gases containing this compound during the production of hydroxylammonium salts | |
US3956387A (en) | Manufacture of concentrated aqueous (meth)acrylamide solutions by catalytic addition of water to (meth)acrylonitrile | |
JP3792449B2 (en) | Purification method of methacrylic acid | |
JPH0379350B2 (en) | ||
JPS607614B2 (en) | Production method of cyclohexanone oxime | |
JP3001020B2 (en) | Acetonitrile purification method | |
JPH01190667A (en) | Production of n-methyl-2-pyrrolidone | |
JP2001002640A (en) | Production of high-purity pyrrolidone compound | |
KR100526378B1 (en) | Removal of water and ammonia from benzophenone imine reactor effluents | |
US4115399A (en) | Preparation of catalyst for the polymerization of 2-pyrrolidone | |
US3803206A (en) | Process for purifying adiponitrile containing oxidizable impurities | |
KR870001913B1 (en) | Preparation process of indol | |
US3979432A (en) | Preparation of nitriles | |
JPS61289069A (en) | Production of highly pure n-vinylformamide | |
JP3682805B2 (en) | Method for producing saturated aliphatic carboxylic acid amide | |
JPH06263725A (en) | Purification of n-methyl-2-pyrrolidone | |
JPH1087552A (en) | Production of high-purity acrylic acid | |
JP2001002639A (en) | Production of high-purity pyrrolidone compound | |
JPH06172283A (en) | Production of alpha-hydroxyisobutyric acid amide | |
JPS58120507A (en) | Continuous manufacture of hydrazine | |
JP2003146945A (en) | Method for producing methylamine | |
JPH0749383B2 (en) | Method for producing monochloroacetone | |
JPH0327344A (en) | Purification of dialkyl carbonate |