JPH0379282B2 - - Google Patents

Info

Publication number
JPH0379282B2
JPH0379282B2 JP61151798A JP15179886A JPH0379282B2 JP H0379282 B2 JPH0379282 B2 JP H0379282B2 JP 61151798 A JP61151798 A JP 61151798A JP 15179886 A JP15179886 A JP 15179886A JP H0379282 B2 JPH0379282 B2 JP H0379282B2
Authority
JP
Japan
Prior art keywords
oxygen
nhch
cobalt
gas
separation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61151798A
Other languages
Japanese (ja)
Other versions
JPS6311504A (en
Inventor
Yoshiteru Kobayashi
Isao Konno
Junichi Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61151798A priority Critical patent/JPS6311504A/en
Publication of JPS6311504A publication Critical patent/JPS6311504A/en
Publication of JPH0379282B2 publication Critical patent/JPH0379282B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は酸素の分離、濃縮に有用な酸素の選択
分離材に関する。 酸素は最も広範囲、かつ多量に使用されている
気体であり、その利用分野として、鋼材の熔接や
切断用、高炉、転炉、平炉への吹き込み等製鉄
用、窯業におけるセメント、耐火物、ガラス等の
製造用、都市下水や一般産業廃水の活性汚泥処理
用、医療用等への用途が酸素富化空気の利用も含
めて知られている。日本の酸素の使用量は90〜
100億m3に達しそのほとんどは製鉄工業用として
使用されている。 〔従来の技術およびその問題点〕 酸素の工業的製造は既に今世紀の始めから深冷
分離法によつて行われてきた。この方法は、大量
の酸素を製造するためには都合が良いが、極めて
多量のエネルギーを必要とする。又、オンサイト
で酸素を利用する場合には、一旦耐圧容器に充填
して運搬する必要があり、その結果著しく高価な
ガスを使用することになり不利である。 又、比較的中小規模の酸素の製造方法として
は、ゼオライト、分子ふるいやカーボン等の吸着
剤を使用して空気から高濃度の酸素を分離・濃縮
する方法が最近注目されてきている。しかし、こ
の方法は電力消費量が多く、従つて酸素の製造コ
ストが高い。 以上の方法とは別に、酸素錯体を形成する特定
の金属錯体を分離手法に利用する方法が提案され
ている。例えば、コバルト−シツフ塩基錯体が可
逆的に酸素錯体を形成することは既知であつた
が、その錯体の安定性に問題があり、分離システ
ムとしては利用しがたい欠点があつた。その後
1960年代後期に米国空軍を始めとして、錯体の安
定化・耐久性の改良研究が行われ、フツ素誘導体
であるフルオミン等の長寿命の錯体が見出され
た。しかし、この錯体は27〜38℃といつた室温付
近で酸素を吸収するが、一方その放出(脱着)は
80℃付近の高温を必要とするので、その吸脱着に
は昇降温を必要という欠点があつた。 一方、特開昭59−12707号公報には、酸素との
錯化能を有する錯体を含む溶液を多孔質支持体に
保持した膜を通して、空気から酸素を選択的に分
離する方法が開示されている。この方法では、温
度を変更せずに膜の両側における酸素の分圧差を
利用して連続的に分離することが可能である。こ
のような膜分離法においては酸素と窒素の透過速
度比が大きく、かつ酸素の透過速度が大きいこと
が必要であるが、そのためには用いる錯体の酸素
に対する反応性及び生成する酸素錯体の拡散性が
できるだけ高いことが望ましいと考えられる。し
かるに、上記特開昭59−12707号公報に引用され
たケミカルリビユーズ79巻139頁(1979年)、カナ
デイアンジヤーナルオブケミストリー54巻342頁
(1976年)、ジヤーナルオブジアメリカンケミカル
ソサイエテイ102巻3285頁(1980年)等に見られ
る如くこれまで見い出されて研究されてきた酸素
錯体では巨大配位子を必要とし従つて拡散性がす
こぶる不満足なものであつた。一方、比較的低分
子のコバルト錯体の研究もなされているが、その
酸素錯体の安定性は小さく氷点下という低温にお
いてさえ分解してしまうものがほとんどであつ
た。 〔問題点を解決するための手段〕 我々は比較的簡単で小さい分子構造を有し、し
かも酸素に対する親和性が高く、また特異的かつ
速やかに錯体を形成する遷移金属錯体の探索を行
い、これらを用いる酸素の高選択分離法の開発を
目的に鋭意研究を行つたところ、以下に述べる特
定の化学構造を有する配位子及びCo塩とハルゲ
ン化ケイ素化合物から得られる錯体が特に酸素の
高選択分離材として極めて有用であることを見い
出し本発明に到達した。 即ち、本発明は(A)Co塩と(B)一般式−(
NHCH2CH2CH2)−o(nは2以上の整数)の骨格
を有するアミン化合物からなる組成物に(C)ハロゲ
ン化ケイ素化合物を接触してなる酸素選択分離材
に関する。 更に主として非水溶媒の存在下に、成分(A)、
(B)、(C)を接触して得られる酸素選択分離材に関す
る。また、本発明はこれら酸素選択分離材を含む
気体選択透過膜及び気体選択吸収材に関する。 以下に本発明の内容を詳細に説明する。 成分(A)のCo塩としては(B)一般式−(
NHCH2CH2CH2)−o(nは2以上の整数)の骨格
を有するアミン化合物(以下単に『アミン化合
物』と称する)又はアキシヤル塩基(D)と反応して
ある種の錯体を形成するものであれば特に限定さ
れないが以下の化合物を例示できる。 即ち、酸化コバルト、水酸化コバルト、又、フ
ツ化コバルト、塩化コバルト、臭化コバルト、ヨ
ウ化コバルト等のハロゲン化物並びにその水和
物、又、硫酸コバルト、硝酸コバルト、炭酸コバ
ルト、シアン化コバルト、チオシアン酸コバル
ト、過塩素酸コバルト、過ヨウ素酸コバルト、コ
バルトテトラフルオロボレート、シユウ酸コバル
ト、酒石酸コバルト、酢酸コバルト等の無機酸及
び有機酸塩並びにその水和物、更にコバルト明ば
ん等の複塩類、コバルトセン等の有機コバルト化
合物が挙げられる。これらコバルト原子価は任意
に選ばれるが二価が好ましく、又好適なコバルト
塩としては無機塩が選ばれる。 成分(B)は一般式−(NHCH2CH2CH2)−o(nは2
以上の整数)の骨格を有するアミン化合物であ
る。nの範囲は2〜100000であり、好ましくは2
〜10000、更に好ましくは2〜1000から選ばれる。
上記一般式を満足るすアミン化合物をX−(
NHCH2CH2CH2)−oYで表わした場合次の様な化
合物が例示される。即ち、Xが水素、Yがアミノ
基で示される鎖状ポリアミン化合物としては、ジ
プロピレントリアミン、トリプロピレンテトラミ
ン、テトラプロピレンペンタミン、ヘプタプロピ
レンヘキサミン、ヘキサプロピレンヘプタミン、
オリゴプロピレンイミン、ポリプロピレンイミン
が挙げられる。 Xが水素、Yがアミノ基以外の化合物の場合Y
として−CO2 -、−CRO、
[Industrial Application Field] The present invention relates to an oxygen selective separation material useful for oxygen separation and concentration. Oxygen is the gas most widely used and in large quantities, and its fields of use include welding and cutting steel materials, blowing into blast furnaces, converters, and open hearths, and other steelmaking applications, as well as cement, refractories, and glass in the ceramic industry. It is known for its uses, including the use of oxygen-enriched air, for the production of water, for activated sludge treatment of urban sewage and general industrial wastewater, and for medical purposes. The amount of oxygen used in Japan is 90~
10 billion m3 , most of which is used for the steel industry. [Prior art and its problems] Industrial production of oxygen has been carried out already since the beginning of this century by cryogenic separation methods. Although this method is convenient for producing large amounts of oxygen, it requires an extremely large amount of energy. Furthermore, when oxygen is used on-site, it is necessary to first fill it in a pressure-resistant container and transport it, which is disadvantageous because it results in the use of extremely expensive gas. Furthermore, as a method for producing oxygen on a relatively small to medium scale, a method of separating and concentrating highly concentrated oxygen from air using adsorbents such as zeolite, molecular sieves, and carbon has recently attracted attention. However, this method consumes a lot of power and therefore the production cost of oxygen is high. Apart from the above methods, a method has been proposed in which a specific metal complex that forms an oxygen complex is used in the separation method. For example, it was known that a cobalt-Schiff base complex reversibly forms an oxygen complex, but the stability of the complex was problematic, making it difficult to use as a separation system. after that
In the late 1960s, the United States Air Force and others conducted research to improve the stability and durability of complexes, and long-lived complexes such as fluorine derivative fluorine were discovered. However, although this complex absorbs oxygen at room temperature (27-38℃), its release (desorption) is
Since it requires a high temperature of around 80°C, its adsorption and desorption has the disadvantage of requiring temperature elevation and cooling. On the other hand, JP-A-59-12707 discloses a method for selectively separating oxygen from air through a membrane in which a porous support holds a solution containing a complex capable of complexing with oxygen. There is. This method allows continuous separation without changing the temperature by utilizing the difference in partial pressure of oxygen on both sides of the membrane. In such membrane separation methods, it is necessary to have a large permeation rate ratio between oxygen and nitrogen and a high permeation rate of oxygen, but for this purpose, the reactivity of the complex used with oxygen and the diffusivity of the generated oxygen complex are required. It is considered desirable that the value be as high as possible. However, Chemical Revue, Vol. 79, p. 139 (1979), Canadian Journal of Chemistry, Vol. 54, p. 342 (1976), and Journal of the American Chemical Society, Vol. 102, cited in the above-mentioned JP-A-59-12707. As can be seen on page 3285 (1980), the oxygen complexes that have been discovered and studied so far require large ligands and therefore have very unsatisfactory diffusivity. On the other hand, research has also been carried out on relatively low-molecular cobalt complexes, but most of the oxygen complexes have poor stability and decompose even at sub-zero temperatures. [Means for solving the problem] We searched for transition metal complexes that have a relatively simple and small molecular structure, have a high affinity for oxygen, and form complexes specifically and rapidly. As a result of intensive research aimed at developing a method for highly selective separation of oxygen using The present invention was achieved by discovering that it is extremely useful as a separation material. That is, the present invention provides (A) Co salt and (B) general formula -(
The present invention relates to an oxygen selective separation material formed by contacting a halogenated silicon compound (C) with a composition comprising an amine compound having a skeleton of NHCH 2 CH 2 CH 2 ) -o (n is an integer of 2 or more). Further mainly in the presence of a non-aqueous solvent, component (A),
This invention relates to an oxygen selective separation material obtained by contacting (B) and (C). The present invention also relates to a gas selective permeable membrane and a gas selective absorption material containing these oxygen selective separation materials. The content of the present invention will be explained in detail below. The Co salt of component (A) has the general formula (B) - (
NHCH 2 CH 2 CH 2 )- o (n is an integer of 2 or more) which reacts with an amine compound (hereinafter simply referred to as "amine compound") or an axial base (D) to form a certain type of complex. Although there are no particular limitations, the following compounds can be exemplified. That is, cobalt oxide, cobalt hydroxide, halides such as cobalt fluoride, cobalt chloride, cobalt bromide, cobalt iodide and their hydrates, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt cyanide, Inorganic and organic acid salts such as cobalt thiocyanate, cobalt perchlorate, cobalt periodate, cobalt tetrafluoroborate, cobalt oxalate, cobalt tartrate, and cobalt acetate, and their hydrates, as well as double salts such as cobalt alum. and organic cobalt compounds such as cobaltocene. These cobalt valences can be arbitrarily selected, but divalent ones are preferred, and inorganic salts are selected as suitable cobalt salts. Component (B) has the general formula -(NHCH 2 CH 2 CH 2 ) - o (n is 2
It is an amine compound having a skeleton of (an integer greater than or equal to). The range of n is 2 to 100000, preferably 2
-10,000, more preferably 2-1,000.
An amine compound that satisfies the above general formula is
NHCH 2 CH 2 CH 2 )- o When represented by Y, the following compounds are exemplified. That is, examples of chain polyamine compounds in which X is hydrogen and Y is an amino group include dipropylenetriamine, tripropylenetetramine, tetrapropylenepentamine, heptapropylenehexamine, hexapropyleneheptamine,
Examples include oligopropylene imine and polypropylene imine. When X is hydrogen and Y is a compound other than an amino group, Y
as −CO 2 , −CRO,

【式】−O-、− OR、−CSS-、CRS、[Formula] -O - , -OR, -CSS - , CRS,

【式】−S-、−SR、− CONHR、−NHCOR、−CN、−CH=N−、
[Formula] -S - , -SR, -CONHR, -NHCOR, -CN, -CH=N-,

【式】−NH-、−NR-、−NR2(但し、Rは 水素又は有機基)等の官能基が選ばれ、具体的に
は H−(NHCH2CH2CH2)−3OH H−(NHCH2CH2CH2)−3N(CH32 H−(NHCH2CH2CH2)−3NHR H−(NHCH2CH2CH2)−3NHCOC17H35 等の化合物が例示できる。 又、Yとして前記官能基以外に更に、F、Cl、
Br、I、R(但しRは有機基)を挙げることもで
きる。具体的には H−(NHCH2CH2CH2)−2NHCH2CH2CH2F、 H−(NHCH2CH2CH2)−2NHCH2CH2CH2OH、 H−(NHCH2CH2CH2)−2NHCH2CH2CH2CH3、 H−(NHCH2CH2CH2)−2NHCH2CH2CH2−(ポ
リスチレン) 等の化合物が例示できる。 Xが有機基の場合であつてもYとして前記と同
様の官能基を選択でき、具体的な例として CH3−(NHCH2CH2CH2)−2NH2、 C6H5−(NHCH2CH2CH2)−2NH2、 C3H7−(NHCH2CH2CH2)−2NH(CH3)、 CH3−(NHCH2CH2CH2)−2N(CH32 C17H35−((NHCH2CH2CH2)−2NH(CH3) C15H31−(NHCH2CH2CH2)−2NHC15H31 ポリスチレン−(NHCH2CH2CH2)−2NH2 ポリウレタン−(NHCH2CH2CH2)−2NH−(ポリ
ウレタン) 等が挙げられる。 更に、nが3以上の整数の場合にはYとして
F、Fl、Br、I、R(但しRは有機基)を選択で
き CH3−(NHCH2CH2CH2)−3F、 CH3−(NHCH2CH2CH2)−3CH3、 CH3−(NHCH2CH2CH2)−3CH=CH2の化合物
を具体例として挙げることができる。なお、前記
X、Yはこれら具体例に限定されるものではな
く、一般式を満足するアミン化合物であれば任意
に選択することができる。 又、一般式
[Formula] Functional groups such as -NH - , -NR - , -NR 2 (where R is hydrogen or an organic group) are selected, specifically H-(NHCH 2 CH 2 CH 2 ) - 3 OH H -(NHCH 2 CH 2 CH 2 )- 3 N(CH 3 ) 2 H- (NHCH 2 CH 2 CH 2 )- 3 NHR H-(NHCH 2 CH 2 CH 2 )- 3 NHCOC 17 H 35 and other compounds I can give an example. In addition to the above functional groups, Y may also include F, Cl,
Br, I, and R (where R is an organic group) can also be mentioned. Specifically, H-(NHCH 2 CH 2 CH 2 )- 2 NHCH 2 CH 2 CH 2 F, H-(NHCH 2 CH 2 CH 2 )- 2 NHCH 2 CH 2 CH 2 OH, H-(NHCH 2 CH Examples include compounds such as 2CH2 ) -2NHCH2CH2CH2CH3 , H-(NHCH2CH2CH2 ) -2NHCH2CH2CH2- ( polystyrene ) . Even when X is an organic group, the same functional group as mentioned above can be selected as Y, and specific examples include CH3- ( NHCH2CH2CH2 ) -2NH2 , C6H5- ( NHCH 2 CH 2 CH 2 ) − 2 NH 2 , C 3 H 7 − (NHCH 2 CH 2 CH 2 ) − 2 NH (CH 3 ), CH 3 − (NHCH 2 CH 2 CH 2 ) − 2 N (CH 3 ) 2 C 17 H 35 −((NHCH 2 CH 2 CH 2 ) − 2 NH(CH 3 ) C 15 H 31 −(NHCH 2 CH 2 CH 2 )− 2 NHC 15 H 31 Polystyrene − (NHCH 2 CH 2 CH 2 ) -2NH2polyurethane- ( NHCH2CH2CH2 ) -2NH- ( polyurethane ), etc.Furthermore, when n is an integer of 3 or more, Y can be F , Fl, Br, I, R. ( However , R is an organic group ) can be selected . _ 2 ) - 3 CH=CH 2 compounds can be mentioned as a specific example. Note that the above X and Y are not limited to these specific examples, and can be arbitrarily selected as long as they are amine compounds that satisfy the general formula. In addition, the general formula

【式】及び[Formula] and

【式】(但しRはCO、 NR′、S、O等の二官能性基及びそれらを含む多
官能性有機基を示す)で表わされる環状ポリアミ
ン化合物も含まれ、具体例として−(
NHCH2CH2CH2)−3、−(NHCH2CH2CH2)−4、−(
NHCH2CH2CH2)−5等が挙げられる。 一方、以上のアミン化合物の例とは別にそれら
の誘導体も本発明のアミン化合物の定義に含まれ
る。即ち、ここで定義する誘導体とは式−(
NHCH2CH2CH2)−o中でHの一部又は全部が他の
原子又は官能基或いは有機又は無機ポリマー及び
オリゴマー等で置換された化合物、更にはHが脱
離して得られる不飽和化合物をも意味する。例え
ば、H以外の置換基を有する誘導体として
Also included are cyclic polyamine compounds represented by the formula (where R represents a bifunctional group such as CO, NR', S, O, or a polyfunctional organic group containing these), and specific examples include -(
NHCH 2 CH 2 CH 2 ) − 3 , −(NHCH 2 CH 2 CH 2 ) − 4 , −(
Examples include NHCH 2 CH 2 CH 2 ) -5 . On the other hand, in addition to the above examples of amine compounds, derivatives thereof are also included in the definition of amine compounds of the present invention. That is, the derivative defined here has the formula −(
Compounds in which part or all of H in NHCH 2 CH 2 CH 2 ) -o is substituted with other atoms or functional groups, or organic or inorganic polymers and oligomers, and further unsaturated compounds obtained by elimination of H. It also means For example, as a derivative having a substituent other than H

【式】(AはH以外の置換 基で不飽和結合を有していてもよい)が一例とし
て示されるが、Aは誘導体中の如何なる形態でN
又はCいずれの元素と結合していても、一個以上
存在していればよく、従つて必ずしも−(
NHCH2CH2CH2)−1単位に1個以上存在する必
要はない。また、Aが複数個存在する場合、それ
らは同一であつても異なつていてもよい。 またAは二官能性以上の多官能性基をも含む
が、この場合は環状化合物を示す。この際Aは以
下のn=3の例で示すように同一単位内で結合す
る必要はなくまた異種元素間で結合していてもよ
い。 また、置換基A中には不飽和結合を含んでいて
も本願発明の範囲に入る。 以上のH以外の置換基Aの具体例として以下の
官能基、オリゴマー、ポリマーが挙げられる。 官能基とはF、Cl、Br、Iなどのハロゲン原
子、カルボキシル基又はその金属塩(−COOH、
−COO)、スルホニル基(−SO3H)、スルフイニ
ル基(−SO2H)、酸無水物(−CO−O−CO
−)、オキシカルボニル基(−COOR)、ハロホル
ミル基(−COX)、カルバモイル基(−
CONH2)、ヒドラジノカルボニル基(−
CONHNH2)、イミド基(−CO−NH−CO−)、
アミジノ基
[Formula] (A is a substituent other than H and may have an unsaturated bond) is shown as an example, but A is N in any form in the derivative.
or C No matter which element it is bonded to, it is sufficient that one or more exists, and therefore it is not necessarily -(
NHCH 2 CH 2 CH 2 )-1 or more need not exist in one unit. Furthermore, when there are multiple A's, they may be the same or different. A also includes a difunctional or higher polyfunctional group, in which case it represents a cyclic compound. In this case, A does not need to be bonded within the same unit, or may be bonded between different elements, as shown in the example of n=3 below. Further, even if substituent A contains an unsaturated bond, it is within the scope of the present invention. Specific examples of the above substituent A other than H include the following functional groups, oligomers, and polymers. Functional groups include halogen atoms such as F, Cl, Br, and I, carboxyl groups, or metal salts thereof (-COOH,
-COO), sulfonyl group (-SO 3 H), sulfinyl group (-SO 2 H), acid anhydride (-CO-O-CO
-), oxycarbonyl group (-COOR), haloformyl group (-COX), carbamoyl group (-
CONH 2 ), hydrazinocarbonyl group (-
CONHNH 2 ), imide group (-CO-NH-CO-),
Amidino group

〔実施例〕〔Example〕

以下、実施例で本発明の内容を説明する。 本願実施例において、ガスの透過速度は以下の
ようにして測定した。即ち、外径45mmの円筒形の
ガラスセルにポリトリメチルビニルシランで製造
した平膜を基膜として装着し、その上部に試験す
る選択分離材を含む溶液を注入後、撹拌下に透過
試験ガスを流通させた。一方、基膜の下方(二次
側)を減圧にして、一定時間内に透過したガス量
をガスクロマトグラフイで分析することにより透
過速度Qを求めた。なお、本実施例のQは特に断
らない限り30℃で測定した値であり、その単位は
c.c.(S.T.P.)/cm2・sec・cmHgである。またαは
窒素に対する酸素の速度比(QO2/QN2)を表わ
す。 実施例 1 (a) 分離材の調製 50mlフラスコにトリメチルシリルヨードを2
ml仕込み、窒素雰囲気下で撹拌しながら1−メ
チルイミダゾール2mlを徐々に滴下すると激し
く発熱して反応し固体を生成した。30分後、該
反応混合物に、無水チオシアン酸コバルト0.88
g、トリプロピレンテトラミン2.6ml及びジメ
チルスルホキシド10mlから別途調製した溶液を
添加して撹拌すると暗赤褐色のスラリー状の分
離材が得られた。 (b) ガス透過速度の測定 ガス透過測定用のセルに、(a)で調製した分離
材10mlを分取し、空気を0.5/分の速度で撹
拌した分離材上を流通させた。次いで二時側の
圧力を2mmHg、測定温度を30℃に調整した。
次いで、セルの上部から分離材中に2mlの1−
メチルイミダゾールを添加して、透過したガス
をガスクロマトグラフイーで分析したところ、
酸素濃度が90.9%であることが判つた。これは
αが37.4であることに対応しており、またQO2
は1.3×10-6であつた。本分離材は高い選択分
離性を長時間に渡つて示した。 実施例 2 (a) Co−ポリアミン錯体の合成 100mlのフラスコに無水チオシアン酸コバル
ト2.6gを仕込み充分に脱気・乾燥した後、精
製窒素下において撹拌しながらトリプロピレン
テトラミン8.6mlを徐々に滴下した。発熱反応
が起こり暗赤褐色の均一溶液が得られた。室温
下で撹拌しながら、該反応混合物に脱気精製し
たジメチルスルホキシド21.4mlを添加して反応
を継続して目的の錯体を得た。 (b) ハロゲン化ケイ素との接触 50mlのフラスコに脱気・乾燥した水素置換シ
リコーンオイル(信越化学社製KF−99)0.9ml
を分取し、精製窒素下にヨウ素1.3gを添加し
て反応させた。次いで、1−メチルイミダゾー
ルを2mlを添加したところ激しく発熱して白色
の固体が得られた。 得られた固体に(a)で得られた錯体溶液10mlを
添加して後、100℃に加熱して反応させて分離
材を得た。 (c) ガス透過速度の測定 実施例1の(b)と同様にして(b)で調製した分離
材のガス透過試験を行つたところ透過ガスの酸
素濃度は78.1%であることが判つた。これはα
が13.4であることに対応しており、またQO2
5.1×10-7であつた。ハロゲン化されたケイ素
ポリマーもまた選択分離性に対して効果がある
ことがわかる。 〔発明の効果〕 本発明の分離材を使用すれば、気体選択透過膜
としても、気体選択吸収材としても分離性能が高
い為に酸素を高濃度に濃縮することが出来る。酸
素の吸脱着の速度が従来知られている酸素錯体よ
り格段に速い為に、非常に効率よく酸素を濃縮す
ることができる。例えば空気から一段ないし二段
の操作で100%近い酸素を効率よく取り出すこと
が出来る。一方供給ガスが空気の場合には酸素を
分離した残りの気体は高濃度の窒素を含み、窒素
の製造方法としても有用である。また、これとは
別に微量の酸素を含む気体から酸素を除去する方
法としても有用である。 本発明の酸素選択分離材を使用して空気から酸
素を分離できるが、酸素はあらゆる産業に広く使
用されている気体であり特に鋼材の熔接、切断、
電気炉への酸素吹き込み、ガラスの溶解、パルプ
の漂白、廃水処理、金属加工、製紙、航空、宇
宙、公害防止、医療、電子工業、化学工業、海洋
開発等の分野で本発明の分離材は有用に使用でき
る。一方、空気から酸素を除いた残りの気体から
窒素を分離すれば不活性ガスとして電子工業、食
品工業、鉄鋼冶金工業、化学工業、医療用等広い
分野に有用である。
Hereinafter, the content of the present invention will be explained with reference to Examples. In the Examples of the present application, the gas permeation rate was measured as follows. That is, a flat membrane made of polytrimethylvinylsilane is attached as a base membrane to a cylindrical glass cell with an outer diameter of 45 mm, and after a solution containing the selective separation material to be tested is injected onto the top of the membrane, a permeation test gas is passed through it while stirring. I let it happen. On the other hand, the permeation rate Q was determined by reducing the pressure below the base membrane (secondary side) and analyzing the amount of gas permeated within a certain period of time using gas chromatography. Note that Q in this example is a value measured at 30°C unless otherwise specified, and its unit is
cc(STP)/ cm2・sec・cmHg. Further, α represents the velocity ratio of oxygen to nitrogen (QO 2 /QN 2 ). Example 1 (a) Preparation of separation material 2 ml of trimethylsilyl iodide in a 50 ml flask
ml, and 2 ml of 1-methylimidazole was gradually added dropwise while stirring under a nitrogen atmosphere, causing a reaction with intense heat generation to produce a solid. After 30 minutes, add 0.88 cobalt thiocyanate anhydride to the reaction mixture.
A solution separately prepared from 2.6 ml of tripropylenetetramine and 10 ml of dimethyl sulfoxide was added and stirred to obtain a dark reddish-brown slurry of separation material. (b) Measurement of gas permeation rate 10 ml of the separation material prepared in (a) was placed in a cell for measuring gas permeation, and air was passed over the separation material stirred at a rate of 0.5 min. Next, the pressure on the 2 o'clock side was adjusted to 2 mmHg, and the measurement temperature was adjusted to 30°C.
Then, pour 2 ml of 1- into the separation material from the top of the cell.
When methylimidazole was added and the permeated gas was analyzed by gas chromatography, it was found that
The oxygen concentration was found to be 90.9%. This corresponds to α being 37.4 and QO 2
was 1.3×10 -6 . This separation material showed high selective separation properties over a long period of time. Example 2 (a) Synthesis of Co-polyamine complex After 2.6 g of cobalt thiocyanate anhydride was placed in a 100 ml flask and thoroughly degassed and dried, 8.6 ml of tripropylenetetramine was gradually added dropwise with stirring under purified nitrogen. . An exothermic reaction occurred and a dark reddish-brown homogeneous solution was obtained. While stirring at room temperature, 21.4 ml of degassed and purified dimethyl sulfoxide was added to the reaction mixture, and the reaction was continued to obtain the desired complex. (b) Contact with silicon halide 0.9 ml of degassed and dried hydrogen-substituted silicone oil (KF-99 manufactured by Shin-Etsu Chemical Co., Ltd.) in a 50 ml flask
was collected, and 1.3 g of iodine was added to react under purified nitrogen. Next, 2 ml of 1-methylimidazole was added, and a white solid was obtained with intense heat generation. After adding 10 ml of the complex solution obtained in (a) to the obtained solid, the mixture was heated to 100°C and reacted to obtain a separation material. (c) Measurement of gas permeation rate When the separation material prepared in (b) was subjected to a gas permeation test in the same manner as in (b) of Example 1, it was found that the oxygen concentration of the permeated gas was 78.1%. This is α
corresponds to 13.4, and QO 2 is
It was 5.1×10 -7 . It can be seen that halogenated silicon polymers also have an effect on selective separation. [Effects of the Invention] When the separation material of the present invention is used, oxygen can be concentrated to a high concentration because of its high separation performance both as a gas selective permeation membrane and as a gas selective absorption material. Since the rate of adsorption and desorption of oxygen is much faster than that of conventionally known oxygen complexes, oxygen can be concentrated very efficiently. For example, nearly 100% oxygen can be efficiently extracted from air in one or two steps. On the other hand, when the supplied gas is air, the remaining gas from which oxygen has been separated contains a high concentration of nitrogen, making it useful as a method for producing nitrogen. In addition, it is also useful as a method for removing oxygen from a gas containing a trace amount of oxygen. Oxygen can be separated from air using the oxygen selective separation material of the present invention. Oxygen is a gas widely used in all industries, especially for welding and cutting steel materials.
The separation material of the present invention can be used in the fields of oxygen blowing into electric furnaces, glass melting, pulp bleaching, wastewater treatment, metal processing, paper manufacturing, aviation, space, pollution prevention, medical care, electronic industry, chemical industry, marine development, etc. It can be usefully used. On the other hand, if nitrogen is separated from the remaining gas after removing oxygen from air, it becomes an inert gas that is useful in a wide range of fields such as the electronic industry, food industry, steel metallurgy industry, chemical industry, and medical use.

Claims (1)

【特許請求の範囲】 1 (A)Co塩と(B)一般式−(NHCH2CH2CH2)−o
(nは2以上の整数)の骨格を有するアミン化合
物からなる組成物に(C)ハロゲン化ケイ素化合物を
接触してなる酸素分離材。 2 特許請求の範囲第1項記載の分離材において
成分(A)、(B)、(C)の接触を(D)アキシヤル塩基の存在
下に行なうか、又は成分(D)を成分(A)、(B)、(C)の接
触後に添加してなる酸素分離材。
[Claims] 1 (A) Co salt and (B) general formula -(NHCH 2 CH 2 CH 2 ) - o
An oxygen separation material formed by contacting a composition comprising an amine compound having a skeleton (n is an integer of 2 or more) with (C) a halogenated silicon compound. 2. In the separation material described in claim 1, components (A), (B), and (C) are brought into contact in the presence of (D) an axial base, or component (D) is brought into contact with component (A). , (B) and (C) are added after contact.
JP61151798A 1986-06-30 1986-06-30 Gas separation material Granted JPS6311504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61151798A JPS6311504A (en) 1986-06-30 1986-06-30 Gas separation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61151798A JPS6311504A (en) 1986-06-30 1986-06-30 Gas separation material

Publications (2)

Publication Number Publication Date
JPS6311504A JPS6311504A (en) 1988-01-19
JPH0379282B2 true JPH0379282B2 (en) 1991-12-18

Family

ID=15526531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61151798A Granted JPS6311504A (en) 1986-06-30 1986-06-30 Gas separation material

Country Status (1)

Country Link
JP (1) JPS6311504A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102584521B1 (en) * 2019-02-15 2023-10-05 한화비전 주식회사 Imaging processing device for motion detection and method thereof

Also Published As

Publication number Publication date
JPS6311504A (en) 1988-01-19

Similar Documents

Publication Publication Date Title
Wang et al. Lanthanide metal–organic frameworks containing a novel flexible ligand for luminescence sensing of small organic molecules and selective adsorption
US6997971B1 (en) Cross-linked polybenzimidazole membrane for gas separation
ES2528178T3 (en) Microporous polymeric material
Li et al. Advances of metal‐organic frameworks in energy and environmental applications
US4766229A (en) Materials for gas separation
CN110605098B (en) Non-reversible covalent organic framework for efficiently and selectively recovering gold and preparation method thereof
JP2018538282A (en) Zeolite-like imidazolate structure
Tsukube Biomimetic membrane transport via designed macrocyclic host molecules
JPH0420930B2 (en)
JPH0379281B2 (en)
JPH0379282B2 (en)
US4830999A (en) Zeolite containing entrapped anionic material
JPH0379283B2 (en)
KR20010062262A (en) Intermolecularly bound transition element complexes for oxygen-selective adsorption
JPH0324403B2 (en)
JPH0218896B2 (en)
Senthilkumar et al. Gas permeation and sorption properties of non-ionic and cationic amino-hydroxy functionalized poly (dimethylsiloxane) membranes
JPH0363415B2 (en)
JPH04341329A (en) Oxygen permeable polymer film
JPS63194715A (en) Gas separating material
BR102017028169A2 (en) FEIII DINUCLEAR METALACYCLE SYNTHESIS PROCESS, SELECTIVE ADSORBENT FOR NITROGEN COMPOUNDS, REUSE AND USE PROCESSES
JPH0217211B2 (en)
US4205056A (en) Process for ortho-para-hydrogen conversion
JPS637837A (en) Uranium adsorption material
JPH04243541A (en) Oxygen separating material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term